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Abstract

In many over-the-counter (OTC) markets, price is negotiated bilaterally and the

bargaining over price takes time. This paper develops a dynamic equilibrium model

of OTC asset markets with both search delays and endogenous bargaining delays.

We first show that trade delays arise in bargaining even when the information about

the asset quality is almost public. This type of delays has several implications for

the OTC liquidity different from the models with public or asymmetric information

about the asset quality. First, conditional on the public information, the liquid-

ity is U-shaped in the quality and assets in the middle of the quality range may

not be traded. Second, search and bargaining delays have opposite effects on the

market liquidity showing that the reduction in such delays through greater trans-

parency, while welfare improving, may also hurt the market liquidity. Third, the

substitutability of different asset classes leads to flights-to-liquidity during periods

of market uncertainty and reveals adverse effects of gradual transparency policies.

Finally, the paper derives the effect of asset liquidity, market liquidity and market

tightness on asset prices.
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1 Introduction

Many important asset markets are decentralized. Examples include over-the-counter

(OTC) markets for commercial and residential real estate, asset-backed securities, deriva-

tives, corporate and municipal bonds, credit-default swaps, private equity, sovereign debt,

bank loans, etc. In such markets, asset prices are negotiated bilaterally and it takes par-

ties time to agree on the price. These bargaining delays can range from months as in the

real-estate or private equity markets to hours or even minutes as in the most liquid parts

of the bond market. The existing literature abstracts from bargaining delays by adopting

the Nash bargaining solution and instead focuses on search delays. In fact, search delays

are thought of as a reduced form for all types of trade delays.1 The goal of this paper is to

understand how justified is this approach and to disentangle the effect of the bargaining

delays on the asset liquidity and pricing.

The novelty of our approach is the departure from the Nash bargaining solution in the

bargaining stage. We first show that in the standard alternating-offer bargaining game,

bargaining delays arise even when parties have very precise information about the asset

quality, as long as the public information is crude. This gap between the public and private

information is relevant in many OTC markets. In such markets only a limited amount of

public information about assets is available in the form of credit ratings, past quotes, etc.,

while agents are sophisticated in evaluating assets and have more precise information.2,3

We consider the bargaining delays arising in the almost public information limit, as the

precision of the private information goes to infinity, while holding fixed the precision of

the public information.4

We then incorporate the bargaining delays arising in the limit of almost public infor-

mation into otherwise standard dynamic equilibrium model of OTC markets à la Duffie

1Duffie (2012) summarizes the current approach as follows “[s]earch delays ... proxy for delays associ-
ated with reaching an awareness of trading opportunities, arranging financing and meeting suitable legal
restrictions, negotiating trades, executing trades, and so on.”

2The Committee on the Global Financial System (2005) gives the following account of the OTC trade:
“Interviews with large institutional investors in structured finance instruments suggest that they do not
rely on ratings as the sole source of information for their investment decisions ... Indeed, the relatively
coarse filter a summary rating provides is seen, by some, as an opportunity to trade finer distinctions
of risk within a given rating band. Nevertheless, rating agency ‘approval’ still appears to determine the
marketability of a given structure to a wider market.”

3? documents that even in primary markets, asymmetric information between the originator of the
MBS and the investor is both present and statistically significant, however, the absolute magnitude of its
effect on transactions costs and prices is small.

4This terminology comes from the epistemic literature (Aumann (1999)) where the public information
establishes the common knowledge among agents. As the private information of parties becomes more
precise, values become almost common knowledge, thus, the term almost public information limit.
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et al. (2005). On the one hand, this limit approach captures positive bargaining delays

that are determined by the precision of the public information about assets. On the other

hand, it allows for the tractability in the analysis of the OTC model, as it abstracts from

learning about the quality of the asset. Formally, we solve for the unique steady-state

equilibrium of the economy, in which agents are occasionally hit by liquidity shocks, and

to share risks, they can trade a continuum of assets in the market with search delays and

endogenous bargaining delays. The bargaining delays are endogenous and determined in

equilibrium by agents’ valuations which in turn depend on the ability to sell quickly the

asset in the future as well as the steady-state distribution of assets among agents in the

economy.

The analysis provides several new predictions and policy implications. In equilib-

rium, not all assets are necessarily traded which allows the distinction between two trade

margins: extensive (whether the asset is traded or not) and intensive (asset-specific nego-

tiation delays). On the intensive margin, the novel testable implication is that the asset

liquidity, captured by the real costs of the bargaining delay, is U-shaped in quality condi-

tional on the public information about the asset. This pattern arises from the dynamics of

the negotiation in the almost public information limit: the buyer continuously increases

his price offers starting from the ask price and the seller continuously decreases her price

offers starting from the bid price, until one of the sides accepts the offer of the opponent.

Thus, the buyer of a high quality asset and the seller of a low quality asset are willing to

accept early on an offer close to the bid and ask price, respectively, rather than wait for

more favorable offers. At the same time, owners and buyers of assets in the middle of the

quality range have incentives to delay trade to hold out for a more favorable price offer.

This prediction is in contrast to the adverse selection models of asset trade, in which lower

asset qualities are more liquid.

The extensive trade margin arises because of the buyers’ option to continue the search

for a different asset. In equilibrium, they follow a simple threshold strategy and “shop”

for assets with the shortest negotiation times. In conjunction with the U-shaped liquidity

pattern, this implies that a range of asset qualities in the middle may not be traded at all.

For such assets, it takes parties too long to agree on the price, and buyers prefer to reject

such assets and continue their search for an asset whose price takes less time to negotiate.

The presence of the extensive trade margin shows that trade delays are relevant even in

markets where search and bargaining delays are normally short, e.g. corporate bonds

market, and hence, seemingly should not have a significant effect on liquidity. In such

markets, short observed negotiation delays can imply that a range of assets is rejected by
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buyers, as they take too long to negotiate, which essentially makes them illiquid.

The analysis of both forms of delay allows the distinction between two trade frictions

in decentralized markets: the search friction which is reflected in the ability of market

participants to find a trading opportunity and the bargaining friction which is reflected

in the ability of market participants to promptly negotiate the price once an opportunity

is identified. The standard approach abstracts from the bargaining friction and focuses

only on the search friction.

We show that this view is only partially justified. First, the limit trade delays gen-

erated by only search or only bargaining frictions are quite different. Conditional on the

trade taking place, the former leads to stochastic delays for both sides (as in Duffie et al.

(2005)), while the latter leads to deterministic delays for sellers of actively traded assets

and stochastic delays for buyers. Second, on the intensive margin, the two frictions are

indeed similar: an increase in the bargaining friction leads to an increase in the average

bargaining delay. However, on the extensive margin, the two frictions have opposite ef-

fects on the market liquidity captured by the range of asset qualities always accepted by

buyers.

The bargaining friction in our model is determined by the quality of the public infor-

mation about assets. For example, during periods of heightened market uncertainty, the

infrequently updated credit ratings become less reliable in assessing the risks associated

with the asset, and hence, the bargaining friction increases. An increase in the bargaining

friction leads to a larger bid-ask spread and longer negotiation delays. This results in

a decrease in the market liquidity, as agents prefer to trade fewer assets for which the

negotiation times do not increase significantly. In the recent financial crisis, the signif-

icant increase in downgrades of financial products (see Benmelech and Dlugosz (2010),

Ashcraft et al. (2010)) indicates an increased quality heterogeneity of assets conditional

on the public information. In line with my model, it was accompanied by the dried-up

liquidity.

On the contrary, an increase in the search friction lowers the market liquidity. As

it becomes easier to search for assets in the market, buyers prefer to reject more assets

and accept for trade only the most liquid assets. The opposing effect of search and

bargaining frictions on the market liquidity shows that transparency, although welfare

improving, does not always improve the market liquidity. Many transparency policies

are associated with both more efficient search and higher quality of public information.

For example, promoting post-trade transparency through the prompt disclosure of past

quotes improves the public information about assets, and thus, decreases the bargaining
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friction. At the same time, if agents are willing to hold only assets about which they have

sufficient information, post-trade transparency expands the consideration sets of buyers,

hence, shortening search delays and reducing the search friction. As a result, the overall

effect of post-trade transparency on the market liquidity is ambiguous. This is consistent

with the existing mixed evidence on the effect on liquidity of the post-trade transparency

in the corporate bonds market (see Bessembinder et al. (2006), Edwards et al. (2007),

Asquith et al. (2013), Goldstein et al. (2007)).

In the analysis of liquidity, different assets act as substitutes for risk-sharing. In the

recent financial crisis of 2007-2008, traders reacted to the increase in market uncertainty by

a shift in their preferences towards safer and more liquid assets, a phenomenon known as

flight-to-liquidity (Dick-Nielsen et al. (2012), Friewald et al. (2012)). Similarly, opponents

of greater transparency in OTC markets point out that it can result in the migration of

trade to certain asset classes hurting the liquidity of the market as a whole.

We extend the baseline model to take into account the substitutability between asset

classes. An increase in the bargaining friction for one asset class can result in flight-to-

liquidity episodes wherein agents migrate to trading assets with lower bargaining friction,

which exacerbates the negative effect of the increased market uncertainty on the liquidity.

Interestingly, once we take into account the asset substitutability, even the reduction in

the bargaining friction can have adverse effects. If the reduction is uneven across asset

classes, and as a result, there is an asset class that is significantly more liquid than the

rest of the market, then agents will migrate to trading assets in this class. This adversely

affects the liquidity of the rest of the market and can result in an overall decrease in the

market liquidity and welfare. This reveals the negative effects of gradual transparency

policies. For example, the introduction of mandatory trade reporting in corporate bonds

market was introduced in several stages. Asquith et al. (2013) shows that this hurt the

liquidity of high-yield bonds for which the post-trade transparency was introduced later

than for the investment grade bonds.

Finally, we derive an intuitive decomposition of asset prices into three components:

fundamental value component, liquidity premium component and average-liquidity com-

ponent. This decomposition is consistent with the empirical evidence that there is a

significant non-default component in corporate spreads which depends both on the liq-

uidity of bond and marketwide liquidity. (see, e.g., Longstaff et al. (2005), Bao et al.

(2011)). The effect of different components on asset prices is unambiguous and depends

on how they affect agents’ outside options of continuing the search. Factors that improve

the outside option of the seller, such as the fundamental value, asset liquidity, seller’s
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match intensity, increase the price, while factors that improve the outside option of the

buyer, such as marketwide liquidity and buyer’s match intensity, decrease price.

Related literature This paper is related to several strands of literature. First, the

paper builds on the search and bargaining model of OTC markets introduced in Duffie

et al. (2005) and further developed to account for risk-aversion (Duffie et al. (2007)), unre-

stricted asset holdings (Lagos and Rocheteau (2007, 2009)), asset heterogeneity (Vayanos

and Weill (2008), Weill (2008)), agent heterogeneity (Vayanos and Wang (2007), Shen

et al. (2015), Hugonnier et al. (2014)).5 These models use the Nash bargaining solution,

and hence, implicitly assume that the asset quality is public information which implies

that the trade happens immediately after agents meet. This paper contributes to this

literature by considering the almost publicly information about asset quality which leads

to positive negotiation delays and allows the study of the effect of endogenous negotiation

delays on prices and liquidity. Importantly, we show that while on the intensive margin,

negotiation delays are similar to search delays, on the extensive margin, they operate

quite differently.

Second, the paper contributes to the literature exploring the relationship between the

liquidity and asset quality. Dynamic asset trading models with adverse selection (Guerrieri

and Shimer (2014), Kurlat (2013), Chang (2014)) predict a decreasing relationship: in

order to provide incentives for sellers of lower-quality assets to reveal their quality, such

assets should be more liquid.6 While this literature focuses on the asymmetric information,

the screening bargaining solution used in this paper is derived as the limit of the bargaining

model with two-sided correlated private information. This results into a different U-

shaped dependence of the liquidity on the asset quality.7

Third, the paper contributes to the theoretical literature that studies the effect of

transparency on the efficiency and liquidity of OTC markets (Duffie et al. (2015), Asriyan

5In this respect, the paper is also related to the literature on asset pricing with transaction costs
which explored exogenous proportional transaction costs (Constantinides (1986), Heaton and Lucas
(1996), Huang (2003)), fixed trading costs (Lo et al. (2004)) and exogenous bid-ask spreads (Amihud
and Mendelson (1986)). Like Duffie et al. (2005), this paper focuses on a different type of costs, the
opportunity costs of delayed trade, however, in our model the delay, rather than being exogenously given,
is endogenously determined.

6There is also a growing literature that introduces the adverse selection into the Walrasian competitive
equilibrium (e.g. see Guerrieri et al. (2010), Kurlat (n.d.)) and imperfectly competitive equilibrium (e.g.
see Lester et al. (2015)).

7He and Milbradt (2014), Chen et al. (2014) analyze the feedback loop between the liquidity and
default, and show that assets closer to default are associated with higher bid-ask spreads. Both the
channel and the prediction is different from this paper.
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et al. (2015)). This literature shows that higher transparency reduces the information

asymmetry between agents, and hence, may lead to more efficient risk sharing and higher

liquidity. This paper shows that the effect of transparency on liquidity is ambiguous

depending on whether it leads to the reduction in the bargaining or search friction. It

also shows that adverse effects can arise because of the asset substitutability.

Forth, the paper is related to the theoretical literature on search-and-bargaining pio-

neered by Rubinstein and Wolinsky (1985) most of which focuses on the case of complete

information and hence immediate agreement (see Osborne and Rubinstein (1990), Gale

(2000) for an excellent survey). Exceptions include work by Satterthwaite and Shneyerov

(2007) and Lauermann and Wolinsky (2014) who study the conditions for convergence

to the Walrasian outcomes in search models with incomplete information where alloca-

tions are determined by static auction mechanisms. In contrast, my focus is on negoti-

ation delays, and because of the bargaining friction, my model does not converge to the

competitive outcome even as the search friction vanishes. Another paper that explicitly

incorporates trade delays into a search model is Atakan and Ekmekci (2014). In their

model, agents imitate exogenously given commitment types requesting a fixed share of

the surplus, while in my model all agents are rational.

The structure of the paper is the following. Sections 2 and 4 present and solve the

model. Section 5 provides the asset pricing and liquidity implications. Section 6 shows

how the substitutability of asset classes leads to flights-to-liquidity and adverse effects

of gradual transparency policies. Section 7 discusses the generality of results. Section

8 concludes and gives directions for future research. All proofs are relegated to the

Appendix.

2 Model

This section describes the economy in which agents trade assets to share risks in a market

with a random search. Subsection 2.1 introduces the novel screening bargaining solu-

tion. Subsection 2.2 and 2.3 define the (steady-state) equilibrium and central equilibrium

quantities.

There is a continuum of agents of mass a > 1. Time t ≥ 0 is continuous. There are

two observable intrinsic types of agents which we call in anticipation of their equilibrium

behavior buyers (b) and sellers (s).8 The intrinsic type of each agent switches indepen-

8I will use female pronouns for sellers, and male pronouns for buyers.
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dently from b to s with a Poisson intensity yd, and from s to b with a Poisson intensity

yu. The initial distribution of types is stationary with a mass yu
yu+yd

a of buyers and a mass
yd

yu+yd
a of sellers.

There is a continuum of asset qualities θ ∈ [0, 1] each in a unit supply. Agents are

risk-neutral and discount the future at the common discount rate r. The flow payoff from

asset θ is kθ for the buyer and kθ − ` for the seller where k and ` are positive.9,10 The

interpretation is that assets are traded within an asset class defined by the public infor-

mation. Examples of such classes are mortgage-backed securities rated AAA maturing in

10 years, investment grade zero-coupon bonds with short maturities, or renovated studios

in downtown area. The quality θ is an index that aggregates various factors that affect

asset payoffs and are not captured by the public information. Thus, k reflects the as-

set heterogeneity conditional on the public information. This interpretation of the asset

quality comes from the type of bargaining delays analyzed in this paper (see the next

subsection for more details). Higher asset qualities translate into higher flow payoffs for

both types of agents. Sellers experience a transitory liquidity shock, and for them holding

the asset is associated with additional holding costs ` > 0. Thus, in a frictionless market,

buyers would purchase assets from sellers.

Each agent is constrained to hold at most one asset. This way, we abstract from

agents’ portfolio decisions and focus on their risk-sharing motives. Assets are initially

randomly distributed among agents. Since a > 1, not all agents own assets.

Agents can trade assets in a market with the search friction. There are two stages to

the trading process: the search stage and the bargaining stage. Search is costless, and

all unmatched agents participate in search. Searching agents are randomly matched to

each other. The matching process is independent of the evolution of intrinsic types and is

given by the quadratic matching technology commonly used in the search-and-bargaining

literature (see e.g. Duffie et al. (2005)).11 Buyers of mass mb contact sellers of mass

ms with intensity λ
2
mbms, and so the total meeting rate of these two groups of agents is

λmbms. The fact that the match is not instantaneous represents the search friction and

the contact intensity parameter λ controls the severity of the search friction.

When a match is found, the agents involved choose whether to participate in the

bargaining stage or continue the search. To rule out uninteresting equilibria where the

9I can normalize ` = 1, as only the ratio k/` matters. We prefer to keep the separate notation for the
purpose of interpretation.

10The results on liquidity are shift invariant, so we can add an arbitrary constant d > 0 to flow payoffs
to guarantee that all the prices and payoffs are positive.

11Duffie and Sun (2007) provides probabilistic foundations for this matching technology.
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buyer rejects the trade because she anticipates that the seller will also reject the trade, we

assume that sellers always choose to participate in the bargaining stage.12 The buyer can

proceed to the bargaining stage with his current stage or return to the search stage by

saying “yes” or “no”, respectively. We assume that the buyer can condition his strategy

directly on the quality of the asset. As mentioned, the screening bargaining solution

that we apply is a reduced form for bargaining between agents who get conditionally

independent private signals about the quality which are infinitely more precise compared

to the public information. Thus, the interpretation is that agents condition their strategies

on these almost-perfect signals about the asset’s quality.

The (mixed) strategy of the buyer σ(θ) ∈ [0, 1] specifies the probability with which the

buyer matched with the seller of asset θ participates in the bargaining stage. Denote by

ΘL the set of assets such that σ(θ) = 1, and by ΘM the set of assets such that σ(θ) ∈ (0, 1).

We call assets in ΘL unconditionally liquid or simply liquid, assets in ΘM conditionally

liquid, and assets in ΘI ≡ [0, 1]\(ΘL ∪ΘM) illiquid.

Once agents proceed to the bargaining stage, they trade an asset θ with delay t(θ) at

price p(θ). We assume that once the intrinsic type of one of the matched agents switches

or agents complete the trade, the match is destroyed, and agents do not participate in

search while matched. We next describe in details how p(θ) and t(θ) are determined

though the screening bargaining solution.

2.1 Screening Bargaining Solution

Motivated by the Nash bargaining solution and its non-cooperative foundations, the lit-

erature on OTC markets commonly assumes that the surplus is split proportionately

without delay once the match is found. In this subsection, we introduce an alternative

screening bargaining solution applied in this paper. We first define the screening bargain-

ing solution (SBS) for a general class of bargaining problems. In this section, we use the

SBS as a reduced form and in the next section we provide microfoundations for it and

show that it captures bargaining outcome when the information about the asset quality

is almost public.

Consider the following general bargaining problem described by the tuple (ρ, v, c).

There is a unit continuum of asset qualities θ ∈ [0, 1] and for each θ, the buyer’s valuation

is v(θ) and the seller’s cost is c(θ). In equilibrium, v and c will correspond to endogenous

buyer’s gains from buying the asset and seller’s losses from selling the asset, respectively.

12In equilibrium, the seller always gets a higher utility from bargaining than from continuing the search.
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Assume that v and c are weakly increasing, almost everywhere continuously differentiable,

and the trade surplus ξ(θ) ≡ v(θ) − c(θ) is positive for all θ. Time is continuous, and

parties discount at rate ρ. If parties trade at time t at price p, then the payoff to the

buyer is e−ρt(v(θ)− p) and the payoff to the seller is e−ρt(p− c(θ)).
Before formally defining the SBS, let us first provide an intuitive description of how

the SBS works out in terms of a related continuous-time bargaining game G(ps· , p
b
· ). The

seller continuously decreases her price offer pst , and the buyer continuously increases his

price offer pbt . Both sides take the paths of offers as given, but choose the time when they

accept the offer of the opponent strategically, in particular, it is conditioned on the asset

quality θ. The trade happens once one of the sides accepts the price offer of the opponent.

Initial price offers ps0 and pb0 can be viewed as the bid and ask prices, respectively. These

are the prices at which each side can trade immediately. However, generally agents prefer

to wait for a more favorable price offer from the opponent.

The continuous-time bargaining game G(ps· , p
b
· ) is a realistic description of the actual

negotiations in OTC markets where parties start from extreme price offers and gradually

moderate their offers until one of the sides accepts.13 The next section provides the game

theoretic foundations for this bargaining game. In particular, it addresses the question

why both sides stick to price-offer paths ps· and pb· and do not condition their counter-offers

on the asset quality.

In the pure-strategy Nash equilibrium of this bargaining game, for any asset quality θ

corresponds the bargaining outcome consisting of the price p(θ) and the time t(θ) of trade.

Of course, the outcome would depend on the choice of paths of price offers pst and pbt . Let

price offers be such that in the equilibrium outcome, the surplus is split proportionally.

This uniquely pins down the trade delay. We call this equilibrium outcome the SBS. More

formally, the SBS is defined as follows.

Definition 1. The screening bargaining solution (SBS) (p, t) to the bargaining problem

(ρ, v, c) with the surplus split α ∈ (0, 1) satisfies:

13Lewis (2011)(pp. 212-213) describes the negotiation between Morgan Stanley and Deutsche Bank
over the price of subprime CDOs:

What do you mean seventy? Our model says they are worth ninety-five, said one of the
Morgan Stanley people on the phone call.

Our model says they are worth seventy, replied one of the Deutsche Bank people.
Well, our model says they are worth ninety-five, repeated the Morgan Stanley person,

and then went on about how the correlation among the thousands of triple-B-rated bonds
in his CDOs was very low, ... he didn’t want to take a loss, and insisted that his triple-A
CDOs were still worth 95 cents on the dollar.
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Figure 1: Illustration of the SBS. For an asset quality θ > θ∗, the buyer accepts the seller’s
offer pst(θ) = p(θ) at time t(θ); for an asset quality θ′ < θ∗, the seller accepts the buyer’s offer

pbt(θ′) = p(θ′) at time t(θ′).

1. for all θ ∈ [0, 1],

p(θ) = (1− α)v(θ) + αc(θ); (2.1)

2. t(1) = t(0) = 0 and for some θ∗:

θ ∈ argmax θ′∈[θ∗,1]e
−ρt(θ′)(v(θ)− p(θ′)), for θ ≥ θ∗, (2.2)

θ ∈ argmax θ′∈[0,θ∗]e
−ρt(θ′)(p(θ′)− c(θ)), for θ ≤ θ∗. (2.3)

Condition (2.1) states that the price splits the surplus between the buyer and the seller

in proportion α to 1−α. Conditions (2.2) and (2.3) characterize the equilibrium delay in

the bargaining game described above. For asset qualities above θ∗, the buyer gives in first

and accepts the seller’s offer at time t(θ). Condition (2.2) ensures that for such a buyer

accepting at time t(θ) is indeed optimal. Symmetrically, for asset qualities below θ∗, the

seller gives in first and accepts the buyer’s offer at time t(θ) and condition (2.3) ensures

optimality of time t(θ) (see Figure 1). We call this dynamics the two-sided screening

dynamics motivated by the fact that (t(θ), p(θ)) is the screening contract for buyers of

qualities θ > θ∗, and it is a screening contract for sellers of qualities below θ < θ∗.

The present paper applies the SBS as a reduced form for strategic bargaining. In

equilibrium, there is the endogenous value of trade for the buyer v(θ) and the cost of

trade for the seller c(θ) during the bargaining stage (see equations (4.7) and (4.8) below).

In the bargaining stage, the match can be exogenously destroyed if the intrinsic type of

one of the agents switches, so the efficient discount factor is ρ ≡ r + yu + yd. A tuple
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(ρ, v, c) defines bargaining problem to which we apply the SBS to determine the price and

bargaining delay in equilibrium. To guarantee that v and c are, indeed, weakly increasing,

we assume that the buyer’s share of the surplus is sufficiently large:

α ≥ yd
r + yd

. (2.4)

We additionally restrict attention to equilibria in which functions v and c are weakly

increasing on [0, 1] and absolutely continuous on ΘL ∪ΘM . If some asset θ is expected to

trade with a significant delay, this would lead to a discontinuity in v and c at θ, which in

some cases can in turn justify the longer negotiation delay. The continuity requirement

on v and c rules out this sort of self-sustained illiquidity.

Lastly, let us stress the assumption that agents do not make any price offers before

they proceed to the bargaining stage, and agents agree to start the negotiation or reject

and continue the search by simply saying “yes” or “no” to the current match. This

assumption rules out conditional offers, e.g. when the buyer threatens to leave if his offer

is not accepted or the seller promises to offer a low prime if the buyer agrees to start

the negotiation. This assumption can be motivated by the limited commitment of agents

before the bargaining stage stage. It allows the separation of the bargaining stage and

justifies the application of the screening bargaining solution.

2.2 Equilibrium

Now, I describe the distribution of asset holdings among agents and define the steady-state

equilibrium.

Each agent can be either matched (m) or unmatched (u). We refer to the intrinsic

type of the agent and his match status as the type τ ∈ {bu, su, bm, sm} of the agent.

The asset position of the agent [0, 1]∪ {φ} is the quality of the asset that the agent owns

or bargains over. We use notation φ for agents who do not own an asset and are not

matched to a seller. The evolution of types and asset holdings is depicted in Figure 2. For

example, consider a group of matched sellers, each of whom holds an asset of quality θ.

Then the transition from this group could happen according to three possible scenarios.

First, the bargaining stage is completed and the asset changes hands (bold arrows from

block of matched agents in Figure 2). Second, a seller in this group recovers from liquidity

shock and becomes a buyer (arrow indexed by intensity yu). Finally, the buyer to whom

the seller is matched switches intrinsic type and the match is destroyed (arrow indexed
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Figure 2: The evolution of types and asset holdings. Bold arrows indicate transitions
between types and changes in asset holding caused by bargaining, and thin arrows indicate tran-
sitions caused by the switching of the intrinsic types (intensities are written next to arrows).

by intensity yu).

The economy is in steady state. Denote the steady-state distribution of assets among

different types of agents by M = {Mτ ∈ ∆([0, 1]), τ ∈ {bm, bu, sm, su}}. For example,

for any measurable set Θ ⊆ [0, 1], Mbu(Θ) gives the mass of unmatched sellers that own

assets in Θ, and Mbm(Θ) gives the mass of matched buyers that bargains over some asset

in Θ. We consider equilibria such that there exists the mass density function µτ of Mτ .

There are several balance conditions imposed on M . First, for any asset θ, the sum of

agent positions is equal to the supply of the asset,

µsu(θ) + µbu(θ) + µbm(θ) = 1. (2.5)

Second, since all assets are in unit supply and the total mass of assets is a, the mass of

agents that do not hold any asset is equal to a− 1,

Msu(φ) +Mbu(φ) +Mbm(ΘL ∪ΘM) = a− 1. (2.6)

Third, the number of matched agents of each intrinsic type should coincide with the

number of matches,

µsm(θ) = µbm(θ). (2.7)

Finally, the steady-state assumption requires that there be no changes in the distribution

M over time. We analyze the equilibrium of the model in steady state defined as follows.

Definition 2. A tuple (σ,M) constitutes an equilibrium if the buyer’s strategy σ is optimal

given M , and M is the stead-state distribution of assets generated by σ.
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2.3 Market Thickness and Trade Margins

Before proceeding to the analysis, we introduce measures of market thickness and liquidity.

Let Λs ≡ λMbu(φ) be the contact intensity with unmatched buyers without an asset,

and Λb ≡ λMsu(ΘL) be the contact intensity with sellers of liquid assets. Λs and Λb

capture how easily each side of the market can find a trade partner. Both are measures

of market thickness and as we will show below are closely related. By convention, we will

only refer to Λs as the market thickness. Let FL ∈ ∆(ΘL) be the steady-state probability

distribution of asset qualities in the pool of unmatched sellers of liquid assets.14

We analyze two trade margins. First, the extensive margin, captured by σ(θ), reflects

whether the asset is actively traded in the market, i.e. always accepted for trade, or can

be rejected by some buyers. To capture the extensive margin of the whole market, let

L ≡ |ΘL| be the mass of assets in that are always accepted by buyers. We refer to L as

the market liquidity ; higher L means that the buyer accepts a broader range of assets for

trade.

Second, the intensive margin reflects how quickly the asset gets negotiated which is

captured by the quantity x(θ) ≡ e−ρt(θ). Then x(θ) is the factor by which the surplus

from trade of the asset θ is dissipated due to the negotiation delay. We refer to x(θ) as the

liquidity of asset θ. The empirical counterpart of the liquidity x(θ) is the trade volume.15

As we show in the Appendix, the trade volume is given by

Λsσ(θ)yd
yu + yd + Λsσ(θ)

x(θ)
yu+yd
ρ , (2.8)

which is an increasing function of the liquidity x(θ). The intensive margin for the whole

market is captured by the average liquidity x ≡ 1
L

´
θ∈ΘL

x(θ)dFL(θ) and the aggregate

liquidity X ≡
´
θ∈ΘL

x(θ)dθ. It follows from (2.8) that when r is small compared to the

intensity of shocks and recoveries yu + yd and the set of conditionally liquid asset ΘM is

small, the average and the aggregate trading volumes are close to x and X, respectively.

14Alternatively, one could consider assets in ΘL∪ΘM to measure the market liquidity. Here and further,
we focus on L, as it allows for clearer comparative statics and simulations indicate that the difference
between two measures is often very small.

15The trade volume is also equal to the asset turnover, as each asset is in the unit supply.
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3 Microfoundation for the Screening Bargaining So-

lution

This section provides game-theoretic foundations for the screening bargaining solution

(SBS) introduced in the previous section. Readers more interested in the implications of

the bargaining delays for the OTC liquidity may skip it on first reading.

The (generalized) Nash bargaining solution (NBS) commonly used in the literature is

derived from the static axiomatic approach (Nash (1950), Roth (1979), Binmore (1987)).

It predicts the proportional split of the surplus (according to the parties’ bargaining

power), but is silent about the delay required to reach this split. Rubinstein (1982) and

Binmore et al. (1986) take the non-cooperative approach (by modelling explicitly the

bargaining protocol) to show that the split in the NBS, which we refer to as the Nash

split, is attained without delay when the information about values is public and offers are

frequent. In this section, we relate the SBS outcome to the outcome of bargaining when

the information about values is almost public and offers are frequent, and show that in

such a model, the trade delay is necessary to attain the Nash split.

Consider the following discrete-time bargaining game G(F,∆). The seller’s type θs

and the buyer’s type θb are jointly distributed on [0, 1]2 according to the CDF F with

strictly positive, continuously differentiable density f . Types are affiliated, i.e. f is log-

supermodular. We can think of types as noisy private signals about the underlying asset

quality θ. The affiliation of signals captures the correlation of signals with the underlying

asset quality: a buyer is more likely to receive a high signal θb when the asset quality θ

is high and thus, the seller’s signal θs is likely to be high as well. This signal structure is

similar to that used in the global games literature (see, e.g., Morris and Shin (1998)).

Values are private and given by v(θb) for the buyer and c(θs) for the seller. We

assume that functions v and c are strictly increasing, continuously differentiable,16 and

v(0) > c(1). The latter is the no-adverse selection condition: the trade is always efficient.

We additionally assume that v(θ) = c(θ) + ξ which holds for the specification of v and c

in the OTC model.17 This assumption is not necessary for our results, but it simplifies

certain steps in the proofs.

16In the equilibrium of our OTC model, functions v and c are only guaranteed to be weakly increasing
and they may have discountinuous jumps. Such functions can be approximated (e.g., in L1 norm) by
strictly increasing, continuously differentiable functions, and this section provides microfoundations for
this case in the sense that it describes the bargaining outcomes for arbitrarily close specifications of v
and c.

17See (A.28) and (A.29) in Appendix.
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Figure 3: Timing of the discrete-time bargaining game.

Both sides discount time at a constant rate ρ. Bargaining happens in discrete rounds

of length ∆. In the beginning of the round, the seller makes a price offer or accepts the

last price offer of the buyer. After delay ∆b, the buyer either accepts the last price offer

of the seller or makes a counter-offer. After that, time ∆s = ∆−∆b elapses and the new

round starts. Figure 3 illustrates the bargaining protocol. The ratio ∆b

∆b+∆s
= α captures

the bargaining strength of the buyer.18 The game stops when one of the parties accepts

the price offer of the opponent with trading happening at the accepted price. Note that

as ∆→ 0, parties are able to make offers and respond almost continuously.

The solution concept is Perfect Bayesian equilibrium (PBE). We focus on PBEs in

strategies that have the following simple interval form: after any history, the set of types

that pool with each other and make the same counter-offer (or accept) is an interval. This

requirement is stronger than pure strategies, as it rules out strategies in which two types

pool with each other, but separate from some types in between. However, it still allows

for rich signaling possibilities.19,20

We additionally introduce the following refinement. Call a party informed after a

history if its posterior beliefs assign probability 1 to a single type of opponent. We

require that the support of players’ posterior beliefs about the opponent’s type cannot

expand over time, unless there is an informed party, in which case the beliefs of only

the informed party are not allowed to expand. The requirement that the support of

beliefs does not expand (the support restriction), is standard in the bargaining literature

(see Grossman and Perry (1986), Rubinstein (1982), Bikhchandani (1992)). The existing

PBE constructions in bargaining games with one-sided uncertainty and two-sided offers,

18This intepretation of α is standard in the bargaining literature (see Osborne and Rubinstein (1990)):
the buyer’s ability to commit to a longer delay before the counter-offer increases his surplus share in the
complete information game. Similarly, Lemma 4 in Appendix shows that in our model, upper and lower
bounds on the price of trade are decreasing in α.

19In the bargaining with one-sided private information and two-sided offers (e.g. Gul and Sonnenschein
(1988), Ausubel and Deneckere (1989), ?), the cheap-talk messages that are not accepted, but reveal
information are normally ruled out by assumption. The restriction to interval strategies allows for such
cheap-talk messages.

20As we discuss below in footnote 29 under a stronger notion of the correlation of types, the restriction
to interval strategies itself does not prevent achieving the Nash split without delay.
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however, do not always satisfy this requirement.21 In order to guarentee the existence,

we slightly weaken the support restriction for the case when one party fully revealed its

type.22

The SBS is intended to capture bargaining when parties make offers almost continu-

ously and the signals about the quality are very precise. We next formalize this idea. The

(bargaining) outcome consists of a pair of functions (t, p) where t(θs, θb) and p(θs, θb) are

the time and price, resp., at which types θs and θb trade. A PBE outcome is the outcome

generated by PBE strategies. For a fixed distribution of types F , consider a sequence of

PBE outcomes (tF,∆, pF,∆) indexed by ∆ → 0, and say that (tF,∆, pF,∆) converges to the

continuous-time limit (tF , pF ) if (tF,∆, pF,∆)
p→ (tF , pF ).23,24

Let F ∗ be the uniform distribution on the diagonal θs = θb. Under F ∗, θ = θs = θb

and the quality of the asset is a public information. Consider a sequence of distributions

F
p→ F ∗ such that for any ε > 0,

sup
(θs,θb):|θs−θb|>ε

max{f(θb|θs), f(θs|θb)} < ε

for all F sufficiently far in the sequence.25 When F is close to F ∗, the quality is almost

public information in the following sense. For any ε0 > 0, conditional on θs, the seller

assings probability greater than 1−ε0 to the buyer’s type being within ε0 of θs, she assigns

a probability greater than 1−ε0 that the buyer assigns probability greater than 1−ε0 that

the seller’s type is within ε0 of θs and we can continue these statements up to perhaps

very large (for F very close to F ∗), but necessarily finite order (hence, the information

about the quality is almost public, but not public).

The main result of this section is that the bargaining outcomes are quite different when

θ is public information (F = F ∗), and when it is almost public information (F ≈ F ∗). Let

us start with the former. Denote the price of the Nash split by p(θs, θb) = (1−α)v(θb) +

αc(θs). The following proposition due to Binmore et al. (1986) states that in this case

trade happens without delay.

21See e.g. Grossman and Perry (1986).
22The first part of Theorem 1 below holds without this modification of the support restriction, and we

only use it in the proof of the second part (see footnote 38 in the proof of Lemma 12).
23Here and further,

p→ denotes convergence in probability, e.g. (tF,∆, pF,∆)
p→ (tF , pF ) as ∆→ 0 if for

all ε > 0, lim∆→0 PF (|tF,∆ − tF | < ε and |pF,∆ − pF | < ε) = 1.
24There are known technical issues in definining games in continuous time (see Simon and Stinchcombe

(1989)). For this reason, it is standard in the bargaining literature to take a limit ∆→ 0 in the discrete-
time game to obtain predictions that do not depend on the protocol of bargaining (e.g. the order of
offers).

25See Online Appendix for an example of such a sequence.
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Proposition 1 (Binmore et al. (1986)). (tF ∗ , pF ∗) does not depend on the sequence

(tF ∗,∆, pF ∗,∆) and (tF ∗ , pF ∗) = (0,p).

Consider now the case of almost public information about the asset quality. Denote

by t(θs) the delay associated with quality θs in the SBS as given by (2.2)− (2.3).

Theorem 1. 1. Consider a sequence of PBE continuous-time limits (tF , pF ) indexed

by F
p→ F ∗. If pF

p→ p as F
p→ F ∗, then there exist 0 < xl < xh < 1 and

0 < θs < θ
s
< 1 such that

xl > lim sup
F
p→F ∗

EF [e−ρtF ], (3.1)

xh > lim inf
F
p→F ∗

EF [e−ρtF |θs < θs or θs > θ
s
]. (3.2)

2. There exists a sequence of PBE continuous-time limits (tF , pF ) such that (tF , pF )
p→

(t,p) as F
p→ F ∗.26

Theorem 1 shows that the bargaining outcome when information the asset quality is

not public differs drastically from the case when the quality is a pubic information, and

importantly, this difference does not vanish as players’s signals become very precise (F

arbitrarily close to F ∗). First, the bargaining delay is necessary to attain the Nash split

of the surplus (inequality (3.1)). Second, the bargaining delay is generally non-monotone:

it is lower for qualities closer to extremes of the distribution (0 and 1) and higher in the

middle (inequality (3.2)). Finally, the SBS can be approximated by the PBE outcomes

as offers become frequent and the information about quality becomes almost public. As

we will show in the next section, the SBS outcome captures positive and non-monotonic

bargaining delays (U-shaped liquidity) that we obtain in Theorem 1.

Let us provide the intuition for these results. First, why the delay is necessary to

attain the Nash split? Although the formal proof is quite involved, the underlying idea

is simple. Suppose to contradiction, for any ∆ and F arbitrarily close to 0 and F ∗, resp.,

there were a PBE in which trade happens with high probability without a significant

delay. Since sufficiently different asset qualities should be traded at sufficiently different

prices in order to match the Nash split, it is necessary that at least one of the sides reveals

quite precisely its signal. Then one side, say the buyer, can relatively quickly convince

the seller that its value is relatively low. But this implies that high types of the buyer

26That is, for all ε > 0,lim
F

p→F∗ PF (|tF − t| < ε and |pF − p| < ε) = 1.
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can mimic lower types and get a more favorable price by only slightly delaying the trade,

which is a contradiction to the sequential rationality.27

The non-monotonicity of the bargaining delay is also quite intuitive. We show that the

buyer has the option to trade immediately at price close to p(1) which is the complete-

information price of trade when both players’ types equal 1.28 Since pF
p→ p, the buyer’s

types close to 1 expect to trade with a high probability at a price close to p(1), thus,

for them the expected bargaining delay cannot be too long. Symmetric argument shows

that for the seller’s types close to 0, the expected bargaining delay is relatively show, as

they have the option to trade immediately at a price close to p(0) (which is the complete-

information price of trade when both players’ types equal 0). Therefore, types close to the

extremes of the range are guaranteed to trade relatively quickly which gives us inequality

(3.2).

Now, let us turn to why the SBS can be approximated by the PBEs for F ≈ F ∗, but not

when F = F ∗? When the information about the quality is public, there is a unique split of

the surplus sustainable in any continuation equilibrium and so, it is not possible to reward

or punish players to sustain the delay. This is, however, possible when the information

is noisy. We construct PBEs approximating the SBS in the grim trigger strategies. In

particular, we specify that if e.g. the seller deviates from the equilibrium path, then the

buyer infers that the seller’s signal is very low and the seller is very desperate to trade

(formally, the buyer beliefs that the seller’s type is 0). After such an optimistic updating,

in the continuation equilibrium the buyer almost immediately gets the maximal share of

the surplus. By specifying such a punishment path, we can sustain the equilibrium path

that involves delay. Despite the fact there is an efficiency loss due to the bargaining delay

on the equilibrium path and both parties assign a high probability to it, nobody wants to

seem desperate and deviate from the equilibrium path.

Theorem 1 highlight the crude public information, rather than parties’ private in-

formation, as the source of the bargaining delay. The assumption of the coarse public

information about the asset quality is relevant in many OTC markets. Credit ratings for

financial assets put only crude bounds on the risks associated with the asset, and expe-

rienced traders rely on their private information sources to further refine these bounds.

Likewise, in the real estate, an experienced realtor goes beyond the public profile of the

27Here, the assumption that the support cannot expand is crucial: once the buyer signals that his value
is relatively low, this gives him a guarantee of relatively low price in any continuation play. Lemma 4 in
Appendix shows how the bounds on the price of trade depend on the support of types remaining in the
game.

28SeeLemma 4 in Appendix.
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house and assesses various characteristics of the neighborhood, such as safety and demo-

graphics, to determine more precisely its value. In our model, the precision of the public

information is captured by the slope of functions v and c (or referring to the primitives

of the OTC model by the parameter k): the more homogenous the assets, the smaller the

differences in the prices at which assets trade, and in turn, the smaller bargaining delay

is required to attain the Nash split.

Finally, let us motivate our focus on the PBEs of the bargaining game approximat-

ing the SBS. First, the multiplicity of equilibria is the major concern in the literature

on bargaining with two-sided private information about values and two-sided offers. In

particular, in our model, along with PBEs described in Theorem 1, there is a continuum

of PBEs in which trade happens immediately at some price in (c(1), v(0)). We choose to

focus on PBEs that approximate the Nash split. On the one hand, this allows us to better

contrast our results to that in the OTC literature which applies the Nash bargaining so-

lution. On the other hand, the original paper by Nash (1950) gives axiomatic foundations

for the Nash split of the surplus. Thus, it is reasonable to assume that such a split would

be a natural focal point for equilibrium split when players have very precise information

about the quality.

Second, Tsoy (2014) shows that the SBS outcome is robust to the assumptions about

the distribution of types. Tsoy (2014) considers F with positive mass only on a band

around the diagonal θs = θb and approximate F ∗ by making this band very narrow. This

correlation structure is much stronger that the one used in this paper in that players

know, rather than assign very high probability, that their signals are close to each other.

Under this stronger correlation structure, Tsoy (2014) constructs PBEs approximating

the SBS.29

Third, technically, the sharp constast between the outcomes with public and almost

public information about the asset quality stems from the order of limits. Rubinstein

(1982)’s analysis first assumes that the idealized complete-information model G(F ∗,∆)

is a good approximation for G(F,∆), and then makes offers frequent. Our analysis first

makes offers frequent in G(F,∆), and then takes limit F
p→ F ∗. We beliefve that our

approach better captures the negotiation in OTC markets where there are virtually no

restrictions on the protocol of bargaining, while the private information of parties is

29 Under this stronger correlation structure and dispensing with the assumption that the support of
beliefs does not expand, Tsoy (2014) also contructs PBEs that attain the Nash split without delay. On
the one hand, Theorem 1 shows that such an outcome is not robust to the model of the correlation used
in this paper. On the other hand, the construction of the efficient outcome in Tsoy (2014) also uses
interval strategies suggesting that such strategies are not very restrictive.
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a relevant feature. Relatedly, the proof of Theorem 1 suggests that the limiting case

(F → F ∗) sheds light also on the bargaining dynamics when the noise in the signals is

not small. We consider the continuous-time bargaining game introduced in the previous

section for any distribution F (not only for F ∗ as in the SBS) and show that the trade

dynamics similar to that in the SBS arises in BNEs of this game.

4 Equilibrium Analysis

This section characterizes the unique equilibrium (Theorem 2). First, Lemma 1 derives

the steady-state distribution M of assets among different agents. Next, Lemma 2 shows

that the buyer’s optimal strategy σ has a simple threshold form. Finally, Lemma 3 uses

the SBS to pin down the liquidity profile x.

4.1 Steady-State Distribution

In this subsection, we show that for a given strategy profile σ and liquidity profile x,

there exists a unique steady-state distribution M , and we describe its properties. The

following lemma describes Λs,Λb, FL in the unique steady-state distribution corresponding

to a given strategy profile and specification of delay.

Lemma 1. For any σ, x, L and Λs, there exists a unique steady-state distribution M in

which Λs is the unique solution to

Λs

λ
=

yu
yu + yd

(a− 1)− yd
yu + yd

ˆ 1

0

Λsσ(θ)

yu + yd + Λsσ(θ)
dθ, (4.1)

Λb is given by

Λb =
λydL

yu + yd + Λs

, (4.2)

and FL is uniform conditional on θ ∈ ΘL.

Lemma 1 shows that Λs,Λb, and FL depend only on σ, but not on t(·).30 The result

that the liquidity characteristic t(·) does not affect the distribution of assets FL may be

counter-intuitive at first sight, as one may expect that more liquid assets are traded more

quickly and so are more abundant in the market. To see why, observe that the inflow into

the group of sellers of asset θ is formed from matched sellers whose counter-party is hit

30Unlike Λ,Λb,FL, steady-state distribution M derived explicitly in the Appendix depends on the delay
profile t(·).
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by a liquidity shock and from unmatched buyers owning asset θ who are hit by a liquidity

shock (see Figure 2). Both these inflows have intensity yd. At the same time, the outflow

from this group of sellers happens because of the recovery from the shock of sellers and

the formation of new matches. The former has intensity yu and the latter has intensity

Λs, and both are again independent of t(·). Therefore, t(·) only changes the distribution

of agents between those who have already completed a trade and those still bargaining

but does not affect the mass of sellers in the search stage.

Equation (4.1) has a natural interpretation. The left-hand side gives the mass of

buyers without an asset, which in the absence of trade, equals yu
yu+yd

(a− 1). When agents

are allowed to trade the mass of buyers without an asset decreases, which reflects the fact

that ownership of assets becomes more efficient.

An interesting feature that follows from equation (4.1) is that if buyers accept a greater

variety of assets this reduces the chances of the seller to be matched. In particular, if σ

weakly increases for all θ, then it follows from equations (4.1) and (4.2) that Λs decreases

and Λb increases. The more assets buyers accept, the more likely it is for the buyer to find

a match, however, this implies more competition for sellers and for them the likelihood

of forming a match decreases. Notice that this happens despite the fact that there are

no search externalities, i.e. the fact that additional sellers are searching for buyers does

not reduce the chances of others to be matched. The competition between sellers arises,

however, for the following reason: the fact that buyers accept a wider variety of assets

implies that more buyers find matches. These buyers are either busy in the bargaining

stage or have already completed their trades. This reduces the number of buyers searching

in the market and reduces the likelihood of a match for unmatched sellers.

4.2 Optimal Search Strategy

Now, given a steady-state distribution M and delay profile t(·), we compute the optimal

strategy σ. For τ ∈ {bu, su, bm, sm}, let Vτ (θ) be the expected utility of an agent of type

τ owning (or bargaining over) asset θ, and for τ ∈ {bu, su}, let Vτ (φ) be the expected

utility of an agent of type τ owning no asset. Value functions during the search stage are
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determined by the following Bellman equations,

rVsu(φ) = yu(Vbu(φ)− Vsu(φ)), (4.3)

rVbu(θ) = v(θ) + yd(Vsu(θ)− Vbu(θ)), (4.4)

rVbu(φ) = yd(Vsu(φ)− Vbu(φ)) + Λb (E [Vbm(θ)|θ ∈ ΘL]− Vbu(φ)) (4.5)

rVsu(θ) = v(θ) + yu(Vbu(θ)− Vsu(θ)) + σ(θ)Λs (Vsm(θ)− Vsu(θ)) . (4.6)

The depreciation of value functions in the left-hand side of equations (4.3)− (4.6) equals

the sum of flow payoffs and changes in value functions due either to switches of intrinsic

types or the formation of matches. For example, consider equation (4.5). The flow payoff

of the searching buyer without an asset is zero. If the buyer is hit by a liquidity shock, his

value function drops to Vsu(φ), while if he is matched to a seller, then his value function

increases to E [Vbm(θ)|θ ∈ ΘL]. Notice that if a buyer is matched to a seller of an asset in

ΘM , then his continuation utility is Vbu(φ) irrespective of whether he starts to negotiate or

continues to search. Therefore, in equation (4.5), it is sufficient to consider the case when

the buyer is matched to sellers of assets ΘL and the relevant distribution is FL. This is

however not the case in equation (4.6) which described the value function of the seller of

asset quality θ. In equilibrium, such a seller strictly prefers to start the negotiation, and

hence, for her the probability with which the asset that she offers for trade is accepted is

important.

To determine the price of trade, we compute the benefits v(θ) from trade for the buyer

of asset θ, and the costs of trade c(θ) for the seller of asset θ. Let ĉ(θ) be the value for the

seller of asset θ from staying in the match but never selling the asset until the recovery

from the liquidity shock happens, and v̂ be the value for the buyer from staying in the

match but not buying from the current seller. Then

c(θ) = −(Vsu(φ)− ĉ(θ)), (4.7)

v(θ) = Vbu(θ)− v̂. (4.8)

In the Appendix we show that the trade surplus is constant and equal ξ ≡ `
ρ
. This

follows from the fact that holding costs do not depend on the asset quality translates.

By the assumption of the proportional split of the surplus, the price of trade is given by

(2.1). Given the Bellman equations (4.3)− (4.6), the price of trade (2.1) and the liquidity

profile x, one can find value functions and determine optimal strategies. The following

lemma states that the equilibrium strategy takes the simple threshold form.
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Lemma 2. The asset of quality θ is always accepted by buyers (θ ∈ ΘL) whenever

x(θ) > x ≡ Λb

ρ+ Λb

x, (4.9)

and is always rejected whenever the inequality in (4.9) is reversed. Moreover,

Vbu(φ) = α
r + yu
r

ξx. (4.10)

.

From Lemma 2, buyers search for sufficiently liquid assets in the market. In fact, if

not all assets are accepted for trade in equilibrium, there is a non-trivial search process

occurring in equilibrium. The buyer may reject several assets before he finds a sufficiently

liquid asset for which he proceeds to the bargaining phase. The threshold of the buyer

depends on the average liquidity and the ability to find liquid assets in the market. If the

search is fast (Λb is large), then the buyer’s threshold is close to the average liquidity, i.e.

the outside option of the buyer is essentially to go back to the market and get a random

draw from the pool ΘL. If the search is slow (Λb is small), then the buyer accepts a wide

range of assets, as finding another asset entails a significant delay.

4.3 Liquidity Profile

The last step in characterizing the equilibrium is to show how profile x is determined.

Lemma 3. Either ΘL = [0, 1] or there exist 0 < θ̌ < θ ≤ θ∗ ≤ θ̂ < 1 such that

ΘL = [0, θ̌] ∪ [θ̂, 1] and ΘM = (θ̌, θ). Moreover,

x(θ) =


1−

v(1)− v(θ)

αξ
, for all θ > θ̂,

1−
c(θ)− c(0)

(1− α)ξ
, for all θ ≤ θ̌.

(4.11)

4.4 Equilibrium

The next theorem combines equilibrium conditions for M,σ, x derived in the previous

subsections to characterize the unique equilibrium.
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Theorem 2. There exists a unique equilibrium characterized by (Λs, L) solving:

Λs ≥
λyd
ρ

(
ξr

k

(
e
k
ξr
L − 1

)
− L

)
− yu − yd, with equality iff L < 1, (4.12)

L =
yu + yd + Λs

ydΛs

(
yu(a− 1)− (yu + yd)

Λs

λ
− h(L,Λs)

)
; (4.13)

where h(L,Λs) ≡
ˆ min

{
1, ρ+Λs

Λs

(1−L)k
(1−α)ydξ

e
k
rξ
L
}

0

(1− s)yd

1 + yu+yd
Λs
−
(

1− yu+yd
ρ

)
s
ds.

The equilibrium is characterized by the market liquidity L and the market thickness

Λs. Let me sketch the solution of the model. Lemma 1 shows that the distribution M

is pinned down by the market thickness parameters Λs and L as well as strategy σ and

liquidity profile x. We then use Lemma 2 and 3 as well as expressions for value functions

to derive σ and x for given Λs and L. Therefore, the equilibrium is characterized by Λs

and L that satisfy two requirements.

Equation (4.12) reflects the optimality of the buyer’s strategy and it produces an

increasing relationship between Λs and L. This captures the fact that when it is easier

for the seller to find trade partner, it is harder to find a trade partner for the buyer

conditional on the same range of actively traded assets (see equation (4.2)) and so, it is

optimal for the buyer to extend the range of acceptable assets. Equation (4.13) reflects

the steady-state requirement that produces a decreasing relationship between Λs and L.

It states that when buyers accept more assets for trade, fewer buyers are searching in the

market, as more of them have already traded or are in the process of negotiation. Thus,

the market thickness Λs decreases and it is harder for the sellers to find a trade partner.

The equilibrium determination is depicted in Figure 4.

5 Main Results

This section applies the equilibrium characterization in Theorem 2 to derive asset pricing

and liquidity implications. The search and bargaining frictions, although similar on the

intensive margin, differ on the extensive margin. This implies that transparency policies

have an ambiguous effect on the liquidity of decentralized markets. Further, because of

the extensive margin, despite the short observable trade delays, search and bargaining

frictions can have an important effect on the asset and market liquidity.
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Steady State

Optimal Strategy

Λs

L1

Figure 4: Equilibrium is determined as the intersection of the increasing curve given by equation
(4.12) reflecting the optimality of strategy σ and the decreasing curve given by equation (4.13)
reflecting the stead-state distribution of assets in the economy.

Asset Prices The next proposition gives the asset price decomposition into three com-

ponents: the fundamental value, the liquidity premium and the average liquidity compo-

nents.

Proposition 2. Prices of assets are given by

p(θ) =
1

r
(kθ − (r + yd)ξ) + (1− α)ξ︸ ︷︷ ︸

fundamental value

+ (1− α)
yd
r

σ(θ)Λs

ρ+ σ(θ)Λs

ξx(θ)︸ ︷︷ ︸
liquidity premium

− α
yu
r

Λb

ρ+ Λb

ξx︸ ︷︷ ︸
average liqudity

.

(5.1)

Moreover, the bid-ask spread p(1)− p(0) =
k

r
.

The first component is the price if there were no opportunity to search for another

asset in the market. This price captures the value of holding the asset for the seller plus his

fraction of the trade surplus. The other two components reflect how the outside options

created by the search market affect prices. The second component of the price depends

on x(θ) and reflects the liquidity premium. The more liquid the asset is, the higher the

price the buyer is willing to pay. This effect is driven by the outside option of the seller

to search in the market for another buyer. For a more liquid asset, after the new match is

formed, less surplus is dissipated due to delay, which increases the outside option of the

seller and hence increases the price of asset. Observe that this outside option depends on

the ability of the seller to find a buyer (Λs). The more unmatched buyers in the market,

the more valuable the outside option of the seller and the higher the price sensitivity to
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the asset’s liquidity. The fact that the sensitivity of the price to liquidity depends on

aggregate market conditions was documented empirically (see Bao et al. (2011), Friewald

et al. (2012)). The third component is the effect of average (across assets in ΘL) liquidity

in the market. This component accounts for the buyer’s outside option of finding another

seller. Naturally, the outside option of the buyer is increasing in the average liquidity and

pushes the price down. Therefore, the third component has a negative sign. This effect

is larger the easier it is for the buyer to find a trade partner (higher Λb).

Market tightness also affects prices although not directly but through their sensitivity

to asset liquidity and average asset liquidity. When the mass of searching buyers in the

market is higher, it is easier for a seller to find a counter-party. Hence, the gains for

the seller from holding a more liquid asset are higher, which translates into the higher

sensitivity of the asset price to asset liquidity and leads to an increase in asset prices. On

the contrary, when the mass of searching sellers in the market is higher, the buyer can

more easily find a seller in the market. Hence, the gains for the buyer from an increase in

average asset liquidity are higher, which translates into the higher sensitivity of the asset

price to average asset liquidity and a dampening of prices.

When x(θ) = x for all θ, my model reduces to Duffie et al. (2007) which already

allows us to distinguish between the default and non-default components of asset prices.

Equation (5.1) further separates the liquidity premium component which varies in the

cross-section of assets, and the average-liquidity component which will be shown in Section

6 to depend on the liquidity of other asset classes. Existing empirical evidence on the

behavior corporate spreads suggests that the decomposition in the pricing equation (5.1)

captures key components of asset prices in OTC markets. Longstaff et al. (2005) shows

that the default component does not explain entirely corporate spreads. The non-default

component varies with liquidity measures in the cross-section of assets and depends on

the marketwide liquidity in the time series analysis. While Longstaff et al. (2005) does

not provide a direct test of my theory, my model can be useful in explaining these effects

on corporate spreads. The last two components in equation (5.1) correspond to the

non-default component. While the liquidity premium component ensures the variation

of the non-default component across assets, the average-liquidity component ensures the

variation of the non-default component with respect to the marketwide liquidity.

Finally, notice that the bid-ask spead depends on the asset heterogeneity. When

agents vary significantly in flow payoffs, the variation in prices is higher and in the SBS,

the negotiation starts from offers that are farther apart.
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U-shaped Liquidity Lemma 3 implies that the liquidity is U-shaped in quality. This

follows from the dynamics behind the SBS. For the lowest qualities, the seller’s value of

the asset as low and so, she prefers to accept a larger discount earlier rather than wait

longer for more favorable offers. Symmetrically, the buyer of the highest qualities has

the highest value and so, he prefers to accept a high price early on rather than wait for

the lower offers from the seller. It is qualities in the middle that trade with the longest

delay and hence, are less liquid. In fact, Lemma 3 implies that they may not be traded

at all. Since the buyer is looking for relatively liquid assets in the market, he may prefer

to continue the search rather than starting the lengthy negotiation over the price of the

asset quality in the middle of the quality range.

The U-shaped prediction is the novel empirical implication of the paper and it dif-

fers from the implication of Guerrieri and Shimer (2014).31 They study the model with

asymmetric information and discover an increasing relationship between the liquidity and

default risk. This stems from the fact that in order to incentivize owners of assets to

reveal their private information, assets of higher quality should be traded at higher prices

but with lower probability compared to the lower-quality assets. The existing empirical

literature gives a contradicting evidence about the relation between the asset quality and

liquidity. Longstaff et al. (2005), Ericsson and Renault (2006) document a positive corre-

lation between illiquidity and default risk for corporate bonds. Beber et al. (2009) shows

that for Euro-bonds the correlation is reversed: more risky sovereign debt is also more

liquid. The model in this paper reconciles this evidence within a single framework. While

in general the dependence in my model is U-shaped, the shape can be significantly skewed

to either side depending on the specification of the payoff function32 and the split of the

surplus α (see Online Appendix for the comparative statics with respect to α).

Search and Bargaining Frictions Recall that the search friction decreases with the

contact intensity λ, and the bargaining friction increases with the asset heterogeneity k.

The next proposition shows how the market liquidity and average delay react to both

types of frictions.

Proposition 3. Suppose the equilibrium before and after the change of parameters has

ΘI 6= φ. The following comparative statics hold:

31The companion paper (Tsoy, 2015) derives a similar prediction in the bargaining model where v and
c are exogenous. This paper in contrast shows that the U-shaped liquidity pattern is present even when
v and c are endogenous, and in particular, they both determine and depend on the negotiation delays.

32See non-linear specifications in Section 7.
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1. An increase in k leads to a decrease in L, x, x, and an increase in Λs.

2. An increase in λ leads to a decrease in L and an increase in x and x.

To see the effect of the bargaining friction, let us first consider the case when k is

close to 0. Then the differences in flow payoffs across assets are very small, and thus,

various asset qualities are traded at similar prices. Therefore, there are little incentives

to delay trade for a slightly more favorable offer, and negotiations are short. An increase

in the asset heterogeneity k leads to the differences in prices at which assets are traded

to increase. As a result, the negotiation starts from the offers that are farther apart and

agents have higher incentives to delay trade and wait for a more favorable price offer. The

increase in the bargaining delays makes fewer assets attractive for trade to buyers and

so, the market liquidity L drops. However, if buyers reject too many assets the search

delays increase. Hence, buyers are also willing to tolerate longer negotiation delays, i.e.

x decreases. As a result, the average liquidity x decreases. Notice that the increase in

bargaining friction increases the market thickness Λs. This is the effect of competition

among sellers for buyers. When bargaining friction is greater, fewer assets are actively

traded. Therefore, a larger fraction of unmatched buyers searches for more scarce trade

opportunities, which improves the match intensity for sellers.

On the contrary, an increase in the search friction leads to a higher market liquidity.

When it is harder for buyers to find another sellers, the outside option of searching further

in the market depreciates. As a result, buyers are willing to accept a wider range of asset

qualities for trade. Recall from Lemma 3, that the buyer’s utility is proportional to

x. Proposition 3 shows that both frictions reduce the utility of buyers, while they have

opposite effects on the market liquidity.

In the literature, the search friction is thought of as a reduced form for all types of

frictions leading to trade delay. My analysis partially justifies this approach. On the

intensive margin, the bargaining friction is similar to the search friction. An increase

in the bargaining friction leads to higher average negotiation delays. However, on the

extensive margin the two frictions operate quite differently. Therefore, only one type of

friction cannot serve as a proxy for the other.

Vanishing Frictions In my model, we have both search and bargaining frictions and

the interaction of the two produces interesting predictions for trade margins. One can see

from the system characterizing the equilibrium in Theorem 2 that when the bargaining

friction vanishes (k → 0), the model reduces to that of Duffie et al. (2007). A natu-
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ral question is whether the search friction is essential for negotiation delays. The next

proposition shows that even when the search friction vanishes (λ → ∞), in the limit

there are non-trivial negotiation delays and some assets can be not traded. This contrasts

with Duffie et al. (2007) where in the limit of vanishing search frictions the equilibrium

is efficient.

Proposition 4. The limit of equilibria as λ→∞ is characterized by (Λ∗b , L
∗) solving:

L∗ =
Λ∗b
ρ

(
ξr

k

(
e
k
ξr
L∗ − 1

)
− L∗

)
, with equality iff L < 1,

L∗ =
yu
yd

(a− 1)− (yu + yd)
L∗

Λ∗b
−
ˆ min

{
1,
k(1−L∗)
(1−α)ydξ

e
k
rξ
L∗
}

0

1− s
1− s+ yu+yd

ρ
s
ds.

Moreover, Λs →∞, while Λs
λ
→M∗

bu(φ) ∈ (0,∞).

While Proposition 4 follows simply from taking the limit of (4.12) and (4.13), it is not

immediate why buyers do not search for the most liquid (with x(θ) = 1) asset given that

search delays are virtually zero. Proposition 4 shows that in the limit there is a shortage

of sellers in the market33. When holders of liquid assets are hit by a liquidity shock, they

almost immediately find a trade partner and start bargaining. Because of the shortage

of sellers, it takes buyers some time to find an appropriate asset for trade (Λb is finite).

Thus, the buyer accepts the range of asset qualities.

Transparency and News The analysis of two trade frictions adds to the debate about

the effect of transparency on the liquidity of OTC markets. There is a tendency toward

increasing transparency of OTC markets. In July 2002, the Transaction Reporting and

Compliance Engine (TRACE) was introduced in the U.S. corporate bond market that

required the public reporting of nearly all transactions with minimal delays. Recent

financial crises increased the pressure for a greater transparency in other markets, such

as credit derivatives and credit-default swaps. My analysis shows that the transparency

has a bright and dark side.

On the one hand, such policies as more accurate and frequently updated credit rat-

ings, introduction of benchmarks, and dissemination of past quotes, improve the quality

of public information. As a result, conditional on better public information, the asset

heterogeneity is reduced which decreases the bargaining friction and thus increases the

33Indeed, it follows from Λb → Λ∗b that Msu(ΘL) = Λb

λ → 0.
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market liquidity. Bessembinder et al. (2006), Edwards et al. (2007) provide empirical

evidence that the introduction of TRACE improved corporate bonds liquidity and led to

a decrease in transaction costs.

On the other hand, such policies as better trading platform that allow for a more effi-

cient search and greater post-trade transparency reduce the search friction and thus lead

to lower market liquidity. This of course does not mean that such form of transparency is

bad for welfare. On the contrary, the analysis of the welfare in Proposition 3 and numer-

ical example show that the reduction in the search friction leads to a more efficient risk

sharing. However, because of the reduction of the market liquidity, this is not a Pareto

improvement and owners of assets that become illiquid are worse off from such policies.

The analysis of bargaining friction reveals that the shocks that affect the quality of

public information decrease the market liquidity. In the recent financial crisis, because of

the bad news from the housing market, credit ratings became less informative about the

quality of mortgage-backed securities, collateralized debt obligations, and other assets.34

Downgrades of structured products coincided with dried-up liquidity of structured finance

products (see Brunnermeier (2008)). This is consistent with predictions of this paper:

drop in the quality of ratings lead to an increase in the bargaining friction which in turn

results in the drop in the market liquidity.

Short Delays and Selling Pressure A common criticism of the search and bargaining

models is that in many OTC markets, such as the corporate bonds market, the perception

is that trade delays are not significant, and hence, it may be questionable how important

they are for prices and liquidity. The analysis of both trade margins shows that even

small trade delays can significantly impact asset prices and liquidity. The effect comes

through the extensive margin. When the search delays are short, by Proposition 3, few

assets are actively traded, while the average bargaining delays are also short. Thus, short

observed search and bargaining delays do not mean that assets can be quickly sold.

Another question is whether it is possible that a relatively wide range of assets is

rejected by buyers. My interpretation is that such assets are more sensitive to market

conditions. That is, in normal times all assets are actively traded (although with varying

delay), however, in times of lower liquidity, the liquidity of certain assets in the middle is

impaired. As a result, on a long horizon all assets are traded at least once, but the trading

34Benmelech and Dlugosz (2010) reports that for structured finance products, both the amount and the
size of downgrades increased significantly during 2006-2008. Ashcraft, Goldsmith-Pinkham, and Vickery
(2010) documents a spike in downgrades for subprime and Alt-A mortgage-backed securities.
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activity varies because of varying sensitivity to market condition. The next proposition

shows that the market liquidity drops during the times of selling pressure. We capture

the selling pressure via a simultaneous offsetting increase in yd and decrease in yu, so that

the long-run ratio of sellers in the population increases.

Proposition 5. Suppose that yd increases and yu decreases so that yu+yd stays constant.

Then L decreases.

Trading Activity In the next section, we study how the migration of agents between

asset classes causes the market liquidity and trading activity to change. As a preliminary

observation, the next proposition derives the comparative statics with respect to the

number of agents a.

Proposition 6. An increase in a leads to an increase in L and Λs and a decrease in x.

Expectedly, when more agents participate in trading, the market liquidity L increases.

Interestingly, the buyer’s strategy threshold and the buyers’ utility is decreasing in a.

When there are more agents, there are both more buyers and more sellers in the market.

Thus, the competition among buyers for unmatched sellers of liquid assets increases, which

in turn forces buyers to accept a wider range of assets. As a result, buyers’ utility goes

down together with their strategy threshold x, and a wider range of assets is actively

traded.

6 Transparency and Flights-to-Liquidity

This section shows that the substitutability between asset classes leads to flights-to-

liquidity during periods of market uncertainty and adverse liquidity effects of the gradual

transparency policies.

I first extend the baseline model to two asset classes. There are two asset classes

indexed by i = 1, 2, each of mass 1 and a mass a > 2 of agents. Asset classes i are

characterized by their asset heterogeneity ki. The mass ai ≥ 1 of agents trading assets

in each class i is determined in equilibrium so that a1 + a2 = a. Other than that,

parameters of the search-and-bargaining model are as in the baseline model in Section 2.

The equilibrium in the multi-class model is defined next. Subscripts indicate equilibrium

quantities for the corresponding asset class.
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Definition 3. A tuple (σi,Mi, ai)i=1,2 is a multi-class equilibrium if (σi,Mi) is the equi-

librium of the baseline model with mass of agents ai and the following conditions hold
x1 = x2, if a− 1 > a1 > 1,

x1 ≤ x2, if a1 = 1,

x1 ≥ x2, if a1 = a− 1.

(6.1)

The interpretation of condition (6.1) is that if trading assets in one of the classes

brings a higher utility to the buyer, buyers will migrate into trading this asset class.

To see this, recall that the buyers’ utility of trading each asset class is proportional to

strategy thresholds x1 and x2 (cf. Lemma 2). If both are equal, then buyers are indifferent

between the two classes. If one is greater, then all agents migrate to the more preferable

(for buyers) class making the other class illiquid. The equilibrium of the two-class model

always exists and is unique.

Theorem 3. There exists a unique two-class equilibrium.

I next show that a flight-to-liquidity occurs as a response to an increase in the market

uncertainty about one of the asset classes.

Proposition 7. Suppose that k1 increases and/or k2 decreases. Then the market liquid-

ity L1, the aggregate liquidity X1 and the participation a1 decrease, while L2, X2 and a2

increase.

When the bargaining friction increases for the first asset class, agents migrate to

trading assets in class 2 for which the bargaining friction is lower. This flight-to-liquidity

exacerbates the drop in liquidity. By Propositions 3 and 6, both an increase in k and a

decrease in a lead to a decrease in L. As a result, as fewer agents are trading assets in

class 1, the negative effect on the market liquidity from the increase in the bargaining

friction is exacerbated.

OTC markets are known to be prone to flights-to-liquidity episodes when, due to

increased market uncertainty, agents shift their portfolio preferences to safer and more

liquid assets. These phenomena are associated with dried-up liquidity in markets for

more risky assets. Friewald et al. (2012), Dick-Nielsen et al. (2012) show empirically that

flight-to-quality episodes were observed during the recent liquidity crisis of 2007-2008.

An important observation is that the level of payoffs in each asset class does not

affect the equilibrium characterization in Theorems 2 and 3, and only affects the levels of
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utilities and prices. Therefore, my model stresses that the flights are flights-to-liquidity

rather than flights-to-quality. In particular, if asset class 1 experiences an increase in

market uncertainty (k) but at the same time a decrease in the level of payoffs, e.g. a

decrease in the aggregate default probability for corporate bonds, then the direction and

the magnitude of the migration to trading assets in class 2 would not change. This is

consistent with the empirical evidence that default risk plays a smaller role than liquidity

in flights (see Beber et al. (2009)).35

Gradual Transparency Policies The dried-up liquidity during the recent financial

crisis inspired regulators to shift trading of financial assets from OTC markets to more

centralized platforms. E.g. Title VII of Dodd-Frank calls for a greater transparency of

trading in credit-default swaps and credit derivatives. Before the crisis in 2002, the public

dissemination of trades in the corporate bonds market was introduced through the Trade

Reporting and Compliance Engine (TRACE). Interestingly, the TRACE was introduced

in several phases with early phases requiring disclosure only for larger issues of investment

grade bonds, and later phases expanding the requirement to high-yield bonds and other

assets, such as agency-backed securities.

The analysis of the flights-to-liquidity shows that such gradualism in introducing trans-

parency can hurt the market liquidity. More specifically, consider the following stylized

model with two asset classes. We suppose that k1 > k2 and we interpret the first asset

class as high-yield bonds, and the second asset class as investment grade bonds. Suppose

that k1 >> 0 so that L1 < 1, while k2 ≈ 0 so that L2 = 1. Consider the effect of the

introduction of the post-trade transparency in the asset class 2. This leads to a decrease

in the bargaining friction in the second asset class. Proposition 7 implies that the trading

will shift into the second asset class hurting the liquidity of the first asset class. Thus,

this measure will not increase the market liquidity of the second asset class (it is already

1). However, it will reduce the market liquidity of the first asset class, thus, reducing the

overall market liquidity L1 +L2. Moreover, by Proposition 7 it will also lead to a decrease

in the aggregate liquidity X1 (which captures the trading volume) in the first asset class.

Asquith et al. (2013) shows that the introduction of TRACE while decreasing the price

dispersion, also decreased the trading activity in high-yield bonds which is consistent with

the mechanism described above.

35The analysis of flights-to-quality in Section 6 reveals that in the corporate bond market, the latter
component would decrease asset prices of all bonds with the improvement in the liquidity of the Treasure
market, a regularity confirmed empirically in Longstaff et al. (2005).
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7 Extensions

This paper focuses on the effect of endogenous bargaining delays on the liquidity and

prices. To capture the endogenous bargaining delays in a tractable way, we apply the

screening bargaining solution and restrict attention to linear flow payoffs, the size of the

holding costs that does not depend on the asset quality, and equal supply of each asset

quality. In this section, we discuss the generality of my results.

There are several reasons to consider more general payoff specification. Post-search

delays can arise for a variety of other reasons including asymmetric information about the

quality, pre-trade evaluation of assets, work-up procedures, gradual execution of the deal

to maintain the privacy, time it takes to raise financing for the deal. Further, one can

argue both that more risky assets are associated with higher gains from trade (e.g. agents

holding toxic assets are especially eager to sell them) and that higher-quality assets are

associated with higher benefits for the holder (e.g. such assets can be used as collateral

for cheaper short-term borrowing).

Suppose that flow payoffs of the buyer and the seller are given by general functions

v and v, respectively. Functions are assumed to be strictly increasing and continuously

differentiable such that v(θ) > v(θ) for all θ. Denote by `(θ) ≡ v(θ) − v(θ) the holding

costs that can vary with θ. Also suppose that in the bargaining stage trade happens

with delay t(θ) which can be either exogenous or be determined in equilibrium by some

mechanism. We also assume that the supply of an asset quality θ is given by f(θ) where

f is continuous and positive for all θ, with c.d.f. F .

With this more general specification of payoffs, the key quantity is z(θ) = `(θ)
ρ
x(θ),

the expected surplus from trade. The interpretation is that with probability 1− x(θ), the

match is destroyed because of one of the sides switches its types and the realized surplus

in the match is zero, and with complementary probability x(θ), the surplus `(θ)
ρ

is realized

after agents negotiate for time t(θ). Let L ≡
´
θ∈ΘL

dF (θ) be the mass of liquid assets and

z ≡ 1
L

´
θ∈ΘL

z(θ)dF (θ) be the average liquidity. Both the threshold form of the buyers’

strategy and the asset price decomposition generalize.

Theorem 4. The asset of quality θ is always accepted by buyers (θ ∈ ΘL) whenever

z(θ) > z ≡ Λb

ρ+ Λb

z, (7.1)

and is always rejected whenever the inequality in (7.1) is reversed. Prices of assets are
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given by

p(θ) =
1

r

(
v(θ)− (r + yd)

`(θ)

ρ

)
+ (1− α)

`(θ)

ρ︸ ︷︷ ︸
fundamental value

+ (1− α)
yd
r

σ(θ)Λs

ρ+ σ(θ)Λs

z(θ)︸ ︷︷ ︸
liquidity premium

− α
yu
r

Λb

ρ+ Λb

z︸ ︷︷ ︸
average liqudity

.

(7.2)

Theorem 4 shows that under general payoffs, the buyers’ preferences are not guided

solely by the liquidity considerations. Instead, the buyer trades off the post-search trade

delay and the surplus from trade. Even when the gains from trade are large, the buyer may

reject the asset because of the high delay associated with it. In the working paper version

of this paper, we prove Theorem 4 and analyze numerically the non-linear specifications of

payoffs in my model as well as the model with exogenous post-search delays. Importantly,

the conclusion of Theorem 4 does not depend on the particular specification of trade delay.

This suggests that it can be used for the empirical test of different theories of asset-specific

trade delays. For example, instead of the SBS one can use the bargaining model with

interdependent values in Fuchs and Skrzypacz (2013) (or a more general version of it in

Deneckere and Liang (2006)). In fact, heuristically the equilibrium of such a model can

be obtained from my model by setting α = 0 and specifying in Definition 1 that θ∗ = 1.36

8 Conclusion

This paper develops a tractable model of decentralized asset markets with both search and

endogenous bargaining delays. The key to the tractability is the application of the novel

screening bargaining solution that captures bargaining delays due to the gap between

the coarse public and precise private information. The analysis allows for the separation

between the intensive and extensive trade margins, as well as between the search and

bargaining frictions. The liquidity of the asset is U-shaped in the quality and assets in

the middle of the quality range may not be traded at all. While on the intensive margin,

search and bargaining frictions operate similarly, on the extensive margin, they are quite

different. The search friction increases, while the bargaining friction decreases the market

liquidity. This shows that greater transparency can hurt liquidity if it leads to lower search

frictions in the market. we also show that because of the substitutability of asset classes,

the OTC markets are prone to flights-to-liquidity and gradualism in the introduction of

36One also needs to put additional restrictions on payoff functions. In particular, Fuchs and Skrzypacz
(2013) assume that v(1) = c(1) (no-gap assumption).
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transparency can have adverse effects for the market liquidity. Finally, we derive the asset

price decomposition which holds for a variety of specifications of post-search delay.

A Appendix

Appendix A.1 contains the proofs for the micro-foundations of the SBS. Appendix A.2 contains

the the analysis of the OTC model. The Online Appendix contains proofs of the auxiliary

results.

A.1 Microfoundation for the Screening Bargaining Solution

Proof of Part 1 of Theorem 1

Denote α = 1−e−ρ∆b
1−e−ρ∆ , α = e−ρ∆s−e−ρ∆

1−e−ρ∆ , p(θs, θb) = (1 − α)v(θb) + αc(θs), and p(θs, θb) =

(1− α)v(θb) + αc(θs). Let ` and `, resp., be the minimum and maximum on [0,1] of derivatives

of v. We first derive the following bounds on the price of trade.

Lemma 4. Suppose after some history, the highest remaining types of the buyer and seller equal

to θ̂b and θ̂s, resp., and the lowest remaining types of the buyer and seller equal to θ̌b and θ̌s,

resp. Suppose θ̂b > θ̌b and θ̂s > θ̌s. Then

p(θ̌s, θ̌b) ≤ pF,∆(θs, θb) ≤ p(θ̂s, θ̂b). (A.1)

Moreover, any offer below p(θ̌s, θ̌b) and any offer above p(θ̂s, θ̂b) is accepted with probability 1

by the buyer and seller, resp.

Proof. Let P , resp. Q, be the supremum over all histories of price offers accepted by the buyer,

resp. rejected by the seller, with positive probability in PBE. By the definition of Q, after any

history the buyer’s type θb can guarantee himself the utility arbitrarily close to e−ρ∆s(v(θb)−Q)

by making an offer marginally above Q (that is guaranteed to be accepted by the seller). By

the definition of P ,

e−ρ∆s(v(θb)−Q) ≤ v(θb)− P. (A.2)

Let U(θs) be the supremum over all histories of the continuation utilities of the seller’s type

θs after the rejection of the offer in the current round. If type θs rejects an offer, she cannot

guarantee more than max{e−ρ∆b(P−c(θs)), e−ρ∆U(θs)}, which implies U(θs) ≤ e−ρ∆b(P−c(θs)).
By the definition of Q,

Q− c(θs) ≤ e−ρ∆b(P − c(θs)). (A.3)
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By (A.3), Q ≤ P . Combining (A.2) and (A.3), we get

P ≤ (1− e−ρ∆s)v(θ
b
) + e−ρ∆sQ

≤ (1− e−ρ∆s)v(θ
b
) + e−ρ∆s(1− e−ρ∆b)c(θ

s
) + e−ρ∆P,

(A.4)

where we used the fact that the support of beliefs does not expand to put an upper bound on

v(θb) and c(θs) in (A.2) and (A.3). By iterating the inequality (A.4), we obtain the upper bound

in (A.1). By the definition of Q, any offer above p(θ̂s, θ̂b) is accepted with probability one by

the seller. The argument for the lower bound is symmetric.

Denote D = {(θs, θb) : |θs − θb| < 1
4ε

2}, Ω = {(θs, θb) : |pF,∆(θs, θb)− p(θs, θb)| < 1
4ε

2}, and

Θ = Ω ∩ D. Fix ε > 0. For F sufficiently far in the sequence, PF (D) > 1 − 1
4ε

2. Moreover,

for any such F and ∆ sufficiently small, there is a PBE in G(F,∆) such that PF (Ω) > 1− 1
4ε

2.

Define B1−ε,s = {θs : PF (Θ|θs) > 1− ε} and B1−ε,b = {θb : PF (Θ|θb) > 1− ε}.

Lemma 5. For any interval I such that |I| < ε, I ∩B1−ε,s 6= ∅ and I ∩B1−ε,b 6= ∅.

Proof. We show that I ∩B1−ε,s 6= ∅ (I ∩B1−ε,b 6= ∅ is analogous). Let F s be the marginal of F

on θs. First, we show that PF s(B1−ε,s) > 1− ε
2 . Note that

PF (Θ) = PF (Ω) + PF (D)− PF (Ω ∪D) ≥ PF (Ω) + PF (D)− 1 > 1− ε2

2 .

Now,

PF (Θ) =

ˆ 1

0
PF (Θ|θs)dF s(θs) ≤ (1− ε)(1− PF s(B1−ε,s)) + PF s(B1−ε,s) = 1− ε+ εPF s(B1−ε,s)

and so, PF s(B1−ε,s) ≥ 1− 1
ε (1− PF (Θ)) > 1− ε

2 .

Note that F
p→ F ∗ =⇒ F

d→ F ∗ =⇒ F s
d→ F s∗. Since F s and F s∗ are continuous, they

converge uniformly as functions of θs. Thus, for F far enough in the sequence |F s(θs)−F s∗(θs)| <
ε
4 for all θs. Let I = [θ̌s, θ̂s]. By the triangular inequality,

|PF s(I)− PF s∗(I)| ≤ |F s(θ̂s)− F s∗(θ̂s)|+ |F s(θ̌s)− F s∗(θ̌s)| ≤ ε
2 ,

and so, PF s(I) ∈ [|I| − ε
2 , |I| +

ε
2 ]. Therefore, PF s(I ∩ B1−ε,s) ≥ PF s(I) + PF s(B1−ε,s) − 1 ≥

|I| − ε > 0 which proves I ∩B1−ε,s 6= ∅.

Let [s∗0, s
∗
0] = [b∗0, b

∗
0] = [0, 1]. For n = 1, . . . , N (N to be specified below), define the nested

intervals of seller’s types [s∗n, s
∗
n) as follows. For given [s∗n−1, s

∗
n−1), let S∗n be the collection of all

intervals [sn−1, sn−1) such that
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• before round n, seller’s types in [sn, sn) pool with types in [s∗n−1, s
∗
n−1), and in round

n, they pool with each other and separate from types in [s∗n−1, s
∗
n−1)\[sn, sn), and (since

players use interval strategies, [sn, sn) is well defined);

• sn < 1− 2ε.

Let [s∗n, s
∗
n) be the set in S∗n such that s∗n > sn for all intervals [sn, sn) ∈ S∗n. Analogously,

for n = 1, . . . , N , define the nested intervals of buyer’s types (b∗n, b
∗
n] as follows. For given

(b∗n−1, b
∗
n−1], let B∗n be the collection of all (bn, bn] of seller’s types that satisfy

• buyer’s types in (bn, bn] pool with each other in round n and pool with types in (b∗n−1, b
∗
n−1]

before round n;

• bn > 2ε.

Let (b∗n, b
∗
n] be the set in B∗n such that b

∗
n < bn for all (bn, bn] ∈ B∗n. Let round N be the first

round n in which either 1
3 ≤ s

∗
n or b

∗
n ≤ 2

3 .

Lemma 6. For ε sufficiently small and any n < N ,

1. s∗n ≥ 1− 2ε and b∗n ≤ 2ε;

2. s∗n − s∗n > 1
3 and b

∗
n − b∗n > 1

3 ;

3. types in (s∗n, s
∗
n] and (b∗n, b

∗
n] reject the opponent’s offer and make some counter-offers ps∗n

and pb∗n , resp.;

4. there is a positive constant C (independent of n) such that

pb∗n ≤ p(1
3) + Cε; (A.5)

ps∗n ≥ p(2
3)− Cε. (A.6)

Proof. 1,2) Fix n < N . If s∗n < 1− 2ε, then there is [sn, sn) ∈ S∗n such that sn = s∗n > s∗n which

contradicts the definition of [s∗n, s
∗
n). Thus, s∗n ≥ 1− 2ε, and analogously, b∗n ≤ 2ε. Since s∗n <

1
3

by the definition of N , s∗n − s∗n ≥ 2
3 − 2ε > 1

3 (when ε < 1
6), and analogously, b

∗
n − b∗n > 1

3 .

3) Suppose before round n, both players pool with [s∗n, s
∗
n) and (b∗n−1, b

∗
n−1], resp., and

suppose to contradiction that seller’s types in [s∗n, s
∗
n) accept pb∗n−1. Let θ̂s = sup{(1

3 ,
2
3 −

1
4ε

2) ∩
B1−ε,s} and θ̌s = inf{(1

3 ,
2
3 −

1
4ε

2) ∩B1−ε,s} (these types also accept pb∗n−1 as [θ̌s, θ̂s] ⊆ [s∗n, s
∗
n)).

We first show that for some c0, |p(θs) − pb∗n−1| ≤ c0ε for θs ∈ {θ̌s, θ̂s}. Consider θs ∈ {θ̌s, θ̂s}.
Since θs ∈ B1−ε,s, type θs assigns probability at least 1−ε to Θ. Note that [θs− 1

4ε
2, θs+ 1

4ε
2] ⊆
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[2ε, 2
3 ] ⊆ (b∗n−1, b

∗
n−1], and so after round n − 1 the probability of Θ is at least 1−ε

1−β where

β = 1− F (b
∗
n−1|θs) + F (b∗n−1|θs). Since type θs accepts pb

∗
n−1 and θs ∈ B1−ε,s, it is necessary

pb∗n−1 ∈
[

1−ε
1−β (p(θs − 1

4ε
2)− 1

4ε
2) + ε−β

1−βp(0), 1−ε
1−β (p(θs + 1

4ε
2) + 1

4ε
2) + ε−β

1−βp(1)
]
⊆[

(1− ε)(p(θs − 1
4ε

2)− 1
4ε

2) + εp(0), (1− ε)(p(θs + 1
4ε

2) + 1
4ε

2) + εp(1)
]

(A.7)

and so, |p(θs)− pb∗n−1| ≤ c0ε where c0 is some positive constant. Thus,

`(θ̂s − θ̌s) ≤ p(θ̂s)− p(θ̌s) ≤ |p(θ̌s)− pb∗n−1|+ |p(θ̂s)− pb∗n−1| ≤ 2c0ε

and so, θ̂s− θ̌s ≤ 2c0
` ε. On the other hand, by Lemma 5, θ̂s− θ̌s ≥ 1

3−3ε and so, for ε < `
3(3`+2c0)

this leads to a contradiction. Therefore, types in [s∗n, s
∗
n) reject pb∗n−1 and make a counter-offer

ps∗n . The argument is analogous for the buyer.

4) Consider type θ̌s defined above. By Lemma 5, θ̌s < 1
3 + ε. By (A.7),

pb∗n−1 ≤ (1− ε)(p(θ̌s + 1
4ε

2) + 1
4ε

2) + εp(1) ≤ (1− ε)(p(1
3 + ε+ 1

4ε
2) + 1

4ε
2) + εp(1) ≤ p(1

3) +Cε,

where C is some constant.

Lemma 7. For sufficiently small ε, one of the two obtains:

• there is the seller’s type θ̃s ∈ (0, 4ε) ∩ B1−ε,s and the seller’s strategy that guarantees the

expected utility at least (1− ε)e−ρ∆(N+1)(p(1
3 , 0)− c(θ̃s)) in the beginning of the game;

• there is the buyer’s type θ̃b ∈ (1− 4ε, 1) ∩B1−ε,b and the buyer’s strategy that guarantees

the expected utility at least (1− ε)e−ρ∆(N+1)(v(θ̃b)−p(1, 2
3)) in the beginning of the game.

Proof. There are two cases depending on whether 1
3 ≤ s

∗
N or b

∗
N ≤ 2

3 and 1
3 > s∗N

Case 1: 1
3 ≤ s

∗
N . There are two possibilities:

1. First, suppose that there is η ≤ N and an interval of seller’s types [sη, sη) ⊂ [s∗η−1, s
∗
η−1)

with s∗N ≤ sη that reject pb∗η−1 and make a counter-offer p̂ > p(s∗N , 0) in round η. By

Lemma 4, if such a counter-offer in round η is rejected, then the seller can guarantee to

trade at price p(sη, 0) in round η + 1. Consider the following strategy of the seller:

• as long as the buyer pools with types in [b∗n−1, b
∗
n−1), the seller pools with types

[s∗n, s
∗
n) for n ≤ η, pools with [sη, sη) in round η and, if in round n, offer p̂ is rejected,

offers p(s∗η, 0) in round η + 1;

• otherwise, the seller rejects all offers and makes unacceptable offers above p(1).
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Type θ̃s ∈ (2ε+ 1
4ε

2, 4ε)∩B1−ε,s (this set is non-empty by Lemma 5) assigns probability at

least 1− ε to the buyer’s type belonging in [b∗η−1, b
∗
η−1), as [θ̃s − 1

4ε
2, θ̃s + 1

4ε
2] ⊆ [2ε, 2

3 ] ⊆
[b∗η−1, b

∗
η−1). Therefore, by deviating to the described strategy, type θ̃s can guarantee

utility

(1− ε)e−ρ∆(N+1)(p(sη, 0)− c(θ̃s)) ≥ (1− ε)e−ρ∆(N+1)(p(s∗N , 0)− c(θ̃s))

≥ (1− ε)e−ρ∆(N+1)(p(1
3 , 0)− c(θ̃s)).

2. Now, suppose that for any η ≤ N and any interval of seller’s types [s, s) ⊂ [s∗η−1, s
∗
η−1)

with s∗N ≤ s that pool with each other and separate from other types in [s∗η−1, s
∗
η−1),

they either accept pb∗η−1 or make a counter-offer below p(s∗N , 0) in round η. Consider the

following strategy of the buyer:

• for η ≤ N , as long as the seller pools with types in [s∗η, s
∗
η), the buyer pools with

types in [b∗N , b
∗
N ), unless the seller makes an offer below p(s∗N , 0), in which case the

buyer accepts it;

• otherwise, the buyer rejects all offers and makes unacceptable offers below p(0).

By Lemma 5, there exists type θ̃b ∈ (1−2ε+ 1
4ε

2, 1− 1
4ε

2]∩B1−ε,b that assigns probability

at least 1 − ε to θs > 1 − 2ε, as [θ̃b − 1
4ε

2, θ̃b + 1
4ε

2] ⊆ [1 − 2ε, 1] ⊆ [s∗N , 1]. Therefore, by

deviating to the described strategy, type θ̃b can guarantee utility

(1− ε)e−ρ∆(N+1)(v(θ̃b)−max{pb∗1 , . . . , pb∗N−1,p(s∗N , 0)}) ≥

(1− ε)e−ρ∆(N+1)(v(θ̃b)−max{p(1
3) + Cε,p(s∗N , 0)}),

where the inequality follows from Lemma 6.

Case 2: b
∗
N ≤ 2

3 , but
1
3 > s∗N . By the symmetric argument as in case 1, one of the following

holds:

• there is the seller’s type θ̃s ∈ (0, 4ε) ∩ B1−ε,s and the seller’s strategy that guarantees

the expected utility at least (1 − ε)e−ρ∆(N+1)(min{p(2
3) − Cε,p(1, b

∗
N )} − c(θ̃s)) in the

beginning of the game;

• there is the buyer’s type θ̃b ∈ (1− 4ε, 1)∩B1−ε,b and the buyer’s strategy that guarantees

the expected utility at least (1−ε)e−ρ∆(N+1)(v(θ̃b)−p(1, 2
3)) in the beginning of the game.

This completes the proof of the lemma.
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We can now prove part 1 of Theorem 1. Suppose in Lemma 7 the first case is realized (the

argument is symmetric for the second case): there is a type θ̃s ∈ (0, 4ε)∩B1−ε,s who is guaranteed

utility (1 − ε)e−r∆(N+1)(p(1
3 , 0) − c(θ̃s)) in the beginning of the game. Since θ̃s ∈ B1−ε,s, it is

necessary that

(1− ε)e−ρ∆(N+1)(p(1
3 , 0)− c(θ̃s)) ≤ (1− ε)(p(θ̃s + 1

4ε
2)− c(θ̃s)) + εv(1)

and so,

e−ρ∆N ≤ er∆
(1− ε)(p(θ̃s + 1

4ε
2)− c(θ̃s)) + εv(1)

(1− ε)(p(1
3 , 0)− c(θ̃s))

→
ε→0

p(0)− c(0)

p(1
3 , 0)− c(0)

< 1.

Therefore, when ε is small, there is T > 0 such that ∆N > T and so, types in (1
3 ,

2
3)2 trade

with a delay at least T . The probability of such types approaches 1
3 as F

p→ F ∗, and so there is

c1 > 0 such that when ε < 1
6c1

,

EF [e−ρtF,∆ ] ≤ (1
3 + c1ε)e

−ρT ≤ 1
2e
−ρT ≡ xl,

for all F sufficiently far in the sequence and all ∆ sufficienly small. This proves (3.1).

To show (3.2), observe that every seller type can trade at price p(0). Thus, for any θs ∈
B1−ε,s,

p(0)− c(θs) ≤ (1− ε)EF [e−ρtF,∆ |θs,Θ](p(θs + 1
4ε

2) + 1
4ε

2 − c(θs)) + εv(1)

≤ EF [e−ρtF,∆ |θs,Θ](1− α)ξ + c2ε,

for some constant c2 > 0. This implies that for any θ
s

EF [e−ρtF,∆ |θs,Θ] ≥
p(0)− c(θs)− c2ε

(1− α)ξ
>

p(0)− c(θs)− c2ε

(1− α)ξ

for all θs ∈ B1−ε,s below θs. By choosing θs and ε sufficiently close to zero, we can guarantee

that there is x̃ > xl such that for all ∆ sufficiently small, EF [e−ρtF,∆ |θs,Θ] ≥ x̃. Moreover,

EF [e−ρtF,∆ |θs < θs] =

ˆ θs

0
EF [e−ρtF,∆ |θs]dF s(θs)

≥
ˆ θs

0
EF [e−ρtF,∆ |θs,Θ]PF (Θ|θs)dF s(θs)

≥ x̃

ˆ θs

0
PF (Θ|θs)dF s(θs)

≥ (1− ε)x̃PF s(B1−ε,s) ≥ (1− ε)(1− ε
2)x̃.
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Thus, there is xh > xl such that for F sufficiently close to F ∗ and all ∆ sufficiently small,

EF [e−ρtF,∆ |θs < θs] ≥ xh .

The analogous argument applied to buyer’s types close to 1 gives that there is θ
s
> θs such

that EF [e−ρtF,∆ |θb < θ
s
] ≥ xh. Observing that for fixed θ

s
, |EF [e−ρtF,∆ |θb < θ

s
]−EF [e−ρtF,∆ |θs <

θ
s
]| → 0 as F

p→ F ∗, we get the inequality (3.2).

Proof of Part 2 of Theorem 1

The proof proceeds as follows. We first introduce and analyze the continuous-time bargaining

game G(ps· , p
b
· |F ) which is a generalization of the game G(ps· , p

b
· ) in subsection 2.1 to affiliated

distributions of types F (thus, G(ps· , p
b
· ) = G(ps· , p

b
· |F ∗)). We then proceed with a series of

approximations. First, we approximate the SBS outcome with the BNE outcome in G(·|F ∗).
Second we approximate each BNE outcome of G(·|F ∗) with BNE outcomes of G(·|F ), F

p→ F ∗.

Finally, we approximate each BNE outcome of G(ps· , p
b
· |F ) with PBE outcome in the discrete-

time bargaining game G(F,∆),∆ → 0. Thus, we construct a sequence of PBE frequent-offer

limits (indexed by F
p→ F ∗) that approximates the SBS outcome, and hence prove the theorem.

Continuous-Time Bargaining Game G(·|F ) Consider a strictly decreasing function ps· and

a strictly increasing function pb· and the following continuous-time bargaining game G(ps· , p
b
· |F ).

The buyer continuously makes offers pbt and the seller continuously makes offers pst . Players can

choose only the time when they accept the price offer of the opponent, and the trade happens

once the first acceptance happens (at the accepted price). The difference from G(ps· , p
b
· ) is

that players’ types are distributed according to a general affiliated distribution F , not F ∗. We

consider BNEs in threshold strategies. Let T be the first time when pst = pbt . For any t ∈ [0, T ],

let θst and θbt be, resp., strictly increasing and strictly decreasing functions such that θs0 = 0 and

θb0 = 1. At time t, all types of the seller below θst (resp.,, all types of the buyer above θbt ) accept

the offer pbt (resp., pst ).

Lemma 8. Suppose that a tuple (ps· , p
b
· , θ

s
· , θ

b
· ) satisfies the system of differential equations

r(v(θbt )− pst ) + ṗst =(pst − pbt)θ̇bt
f(θst |θbt )

1− F (θst |θbt )
,

−r(pbt − c(θst )) + ṗbt =(pst − pbt)θ̇bt
f(θbt |θst )
F (θbt |θst )

;

(A.8)

with initial conditions θs0 = 0 and θb0 = 1, and θsT < 1 and θbT > 0. Then threshold strategies

(θs· , θ
b
· ) constitute a BNE in G(ps· , p

b
· |F ).

Proof. We show that if θb· satisfies the first equation in the system (A.8), then it is a best response

to the threshold strategy θs· . Buyer’s type θb chooses the acceptance time t to maximize u(θb, t)
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given by

u(θb, t) =

ˆ t

0
e−ru(v(θb)− pbu)dF (θsu|θb) + (1− F (θst |θb))e−rt(v(θb)− pst ).

The first-order condition for this problem is

(pst − pbt)f(θst |θb)θ̇st = (1− F (θst |θb))(r(v(θb)− pst ) + ṗst ).

From the first-order condition,

u(1, t(1))− u(θ̃b, t(θ̃b)) =

ˆ 1

θ̃b

(
∂

∂θb
u(θb, t(θb)) +

∂

∂t
u(θb, t(θb))t′(θb)

)
dθb

=

ˆ 1

θ̃b

∂

∂θb
u(θb, t(θb))dθb,

(A.9)

where t(θb) is the inverse of θb· . In Claim 1 below, we show that u(θb, t) satisfies the smooth single

crossing difference (SSCD) condition in (θb,−t). Together with the envelope formula (A.9), this

verifies the conditions of Theorem 4.2 in Milgrom (2004) and proves that θb· is a best response

to θs· . Therefore, (θs· , θ
b
· ) constitute a BNE of G(F ).

Claim 1. u(θb, t) satisfies the SSCD condition in (θb,−t).

Proof: We will show the following conditions are satisfied which imply the SSCD.

1. u(θb, t) satisfies the (strict) single crossing difference condition in (θb,−t), i.e. for all t̃ > t

and θ̃b > θb,

u(θb, t)− u(θb, t̃) ≥ 0 =⇒ u(θ̃b, t)− u(θ̃b, t̃) > 0.

2. for all t, if ∂
∂tu(θb, t) = 0, then for all δ > 0, ∂

∂tu(θb, t− δ) ≥ 0 and ∂
∂tu(θb, t+ δ) ≤ 0.

Let us start with the single crossing difference condition. Consider θb < θ̃b and t < t̃ ≤ T and

suppose that

u(θb, t) ≥ u(θb, t̃). (A.10)

We will show that u(θ̃b, t) > u(θ̃b, t̃). Define function

g(u|θb, t) = e−ru(v(θb)− pbu)1{u < t)}+ e−rt(v(θb)− pst )1{u ≥ t}.

Then ˆ T

0
g(u|θb, t)dF (θsu|θb) ≥

ˆ T

0
g(u|θb, t̃)dF (θsu|θb) ≥

ˆ T

0
g(u|θb, t̃)dF (θsu|θ̃b),

where the first inequality follows from (A.10), the second inequality follows from the fact that
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g(·|θb, t̃) is decreasing and F (·|θ̃b) first-order stochastically dominates F (·|θb) (as f is affiliated).

This implies that

u(θb, t) =

ˆ t

0
e−ru(v(θb)− pbu)dF (θsu|θb) + (1− F (θst |θb))e−rt(v(θb)− pst )

≥
ˆ t̃

0
e−ru(v(θb)− pbu)dF (θsu|θ̃b) + (1− F (θs

t̃
|θ̃b))e−rt(v(θb)− pst ),

or equivalently,

v(θb)

(ˆ t

0
e−rudF (θsu|θb) + (1− F (θst |θb))e−rt −

ˆ t̃

0
e−rudF (θsu|θ̃b)− (1− F (θs

t̃
|θ̃b))e−rt̃

)

≥ pst −
ˆ t̃

0
e−rupBu dF (θsu|θ̃b)− (1− F (θs

t̃
|θ̃b))e−rt̃ps

t̃
. (A.11)

We will show that the left-hand side of (A.11) is positive and so, the left-hand side would increase

if we substitute v(θ̃b) instead of v(θb). This in turn implies that u(θ̃b, t) > u(θ̃b, t′) and completes

the proof of the strict single crossing difference. Let h(u|t) = e−ru1{u < t)} + e−rt1{u ≥ t}.
Then the left-hand side of (A.11) is equal to

v(θb)

(ˆ T

0
h(u|t)dF (θsu|θb)−

ˆ T

0
h(u|t̃)dF (θsu|θ̃b)

)
≥v(θb)

(ˆ T

0
h(u|t)dF (θsu|θ̃b)−

ˆ T

0
h(u|t̃)dF (θsu|θ̃b)

)
=v(θb)

ˆ T

0
(h(u|t)− h(u|t̃))dF (θsu|θ̃b) > 0,

where the first inequality follows from F (·|θ̃b) first-order stochastically dominates F (·|θb) and

h(·|t) decreasing, and the last term is strictly positive by t < t̃.

Now, let us show the second requirement of the SSCD condition. Suppose ∂
∂tu(θb, t) = 0.

By taking the partial derivative

ert
∂

∂t
u(θb, t) = (pst − pbt)f(θst |θb)θ̇st − (1− F (θst |θb))(r(v(θb)− pst ) + ṗst ),

we get that

ert
∂

∂t
u(θb − δ, t) =

(pst − pbt)f(θst |θb − δ)θ̇st − (1− F (θst |θb − δ))(r(v(θb − δ)− pst ) + ṗst ) =

(1− F (θst |θb − δ))
(

(pst − pbt)
f(θst |θb − δ)

1− F (θst |θb − δ)
θ̇st − (r(v(θb − δ)− pst ) + ṗst

)
.
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Since v(θb − δ) ≤ v(θb) and
f(θst |θb−δ)

1−F (θst |θb−δ)
≥ f(θst |θb)

1−F (θst |θb)
(by the affiliation of f), it follows that

∂
∂tu(θb − δ, t) ≥ 0. Showing that ∂

∂tu(θb + δ, t) ≤ 0 is analogous. q.e.d.

Approximate the SBS with BNEs in G(·|F ∗) The next lemma constructs price-offer paths

ps,ε· and pb,ε· and BNEs in G(ps,ε· , p
b,ε
· |F ∗) that approximate the SBS outcome.

Lemma 9. For any ε ≥ 0. Let

pb,εt = p(0) + (1− α)ε+ (1− α)r(ξ + ε)t,

ps,εt = p(1)− αε− αr(ξ + ε)t,

θb,εt = v−1 (p(1) + αξ − αr(ξ + ε)t) ,

θs,εt = c−1 (p(0)− (1− α)ξ + (1− α)r(ξ + ε)t) ;

(A.12)

for t ≤ T ε = p(1)−p(0)−ε
r(ξ+ε) . Then

1. (θs,ε· , θ
b,ε
· ) constitutes a BNE in G(ps,ε· , p

b,ε
· |F ∗);

2. the outcome of (θs,0· , θb,0· ) in G(ps,0· , pb,0· |F ∗) coincides with the SBS outcome;

3. θbT ε > θsT ε + ε/`;

4. the outcome of (θs,ε· , θ
b,ε
· , p

s,ε
· , p

b,ε
· ) converge uniformly to (θs,0· , θb,0· , ps,0· , pb,0· ) as ε→ 0.

Proof. 1) (θs,ε· , θ
b,ε
· , p

s,ε
· , p

b,ε
· ) satisfy the premise of Lemma 8 and so, (θs,ε· , θ

b,ε
· ) constitutes a

BNE in G(ps,ε· , p
b,ε
· |F ∗).

2) We can verify using (A.12) that θs,0
T 0 = θb,0

T 0 and

ps,0t = v(θb,0t )− αξ = p(θb,0t ),

pb,0t = c(θs,0t ) + (1− α)ξ = p(θs,0t ).

Since types θs,0t and θb,0t accept offers pb,0t and ps,0t , resp., (2.1) obtains. Since threshold types

θs,0t and θb,0t prefer to accept at time t rather than any other type t ≤ T 0, (2.2) and (2.3) obtain

where θ∗ = θs,0
T 0 = θb,0

T 0 . Thus, the outcome of (θs,0· , θb,0· ) in G(ps,0· , pb,0· |F ∗) coincides with the

SBS outcome.

3) v(θb,εT ) − c(θs,εT ) = ξ + ε and so, v(θb,εT ) = v(θs,εT ) + ε ≥ v(θb,εT ) − `(θb,εT − θ
s,ε
T ) + ε which

implies θb,εT > θs,εT + ε/`.

4) From (A.12), (θs,ε· , θ
b,ε
· , p

s,ε
· , p

b,ε
· ) converge pointwise to (θs,0· , θb,0· , ps,0· , pb,0· ) as ε → 0 on a

compact [0, T 0], and by the continuity of (θs,ε· , θ
b,ε
· , p

s,ε
· , p

b,ε
· ) and (θs,0· , θb,0· , ps,0· , pb,0· ), the conver-

gence is also uniform.
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Approximate the BNEs in G(·|F ∗) with BNEs in G(·|F ) For each (θs,ε· , θ
b,ε
· ) in G(ps,ε· , p

b,ε
· |F ∗),

we construct an approximating sequence of BNEs (θs· , θ
b
· ) in G(ps,ε· , p

b,ε
· |F ),F

p→ F ∗.37

Lemma 10. Let T = T ε, θs· = θs,ε· , θb· = θb,ε· and pst , p
b
t be given by the differential equations

(A.8) with the terminal condition psT = pbT and the initial condition ps0 = ps,ε0 . Then (θs· , θ
b
· )

constitute BNE in G(ps· , p
b
· |F ) and (θs· , θ

b
· , p

s
· , p

b
· ) converge uniformly to (θs,ε· , θ

b,ε
· , p

s,ε
· , p

b,ε
· ) as

F
p→ F ∗.

Proof. To prove the convergence, we show that ps· , p
b
· converge pointwise to ps,ε· , p

b,ε
· as F

p→ F ∗.

Denote

ψ1(t) =
(1− α)r(ξ + ε)

c′(θs,εt )
· f(θs,εt |θ

b,ε
t )

1− F (θs,εt |θ
b,ε
t )

,

ψ2(t) =
αr(ξ + ε)

v′(θb,εt )
· f(θb,εt |θ

s,ε
t )

F (θb,εt |θ
s,ε
t )

.

Using (A.12) to compute θ̇s,εt and θ̇b,εt , we rewrite the system (A.8) as

ṗst = pst (ψ1(t) + r)− pbtψ1(t)− rv(θb,εt ),

ṗbt = pbt(ψ2(t) + r)− pstψ2(t)− rc(θs,εt ),

By subtracting the second equation from the first and denoting ∆pt = pst − pbt , we get

∆ṗt = ∆pt(ψ1(t) + ψ2(t) + r)− r(v(θb,εt )− c(θs,εt ))

with the terminal condition ∆pT = 0, which we can solve to get

∆pt = r

ˆ Tε

t
(v(θb,εu )− c(θs,εu ))e−

´ u
t (ψ1(s)+ψ2(s)+r)dsdu.

We can now solve for individual price-offer paths. We have

ṗst = rpst + ∆ptψ1(t)− rv(θb,εt ),

from which we get

pst = ert(p(1)− αε) +

ˆ t

0
(∆puψ1(u)− rv(θb,εu ))er(t−u)du,

pbt = pst −∆pt.

By Lemma 9, θbt = θb,εt > θs,εt + ε/` = θst + ε/` for all t ≤ T , and so, for F sufficiently far in

37We do not explicitly index the sequence by corresponding F and ε and simply write (θs· , θ
b
· ).
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the sequence, for all t ≤ T ,
f(θs,εt |θ

b,ε
t )

1−F (θs,εt |θ
b,ε
t )

and
f(θb,εt |θ

s,ε
t )

F (θb,εt |θ
s,ε
t )

are bounded from above by c0ε for some

constant c0. This together with the fact that v′ and c′ are bounded from below by ` implies

that |ψ1(t)| and |ψ2(t)| converge to zero pointwise on [0, T ] as F
p→ F ∗. Therefore, price-offer

paths and their derivatives converge pointwise on [0, T ] as F
p→ F ∗ and so, by the continuity of

ps· , p
b
· , p

s,ε
· , p

b,ε
· and their derivatives on the compact [0, T ], the convergence is also uniform.

The derivatives of ps,ε· and pb,ε· are bounded away from zero (from above and below, resp.),

and so for F sufficiently far in the sequence, ps· and pb· are strictly decreasing and increasing,

resp. This together with the construction of (θs· , θ
b
· , p

s
· , p

b
· ), implies that (θs· , θ

b
· , p

s
· , p

b
· ) satisfies

the conditions of Lemma 8 and so, (θs· , θ
b
· ) constitutes a BNE in G(ps· , p

b
· |F ).

Approximate BNEs in G(·|F ) with PBEs in G(F,∆) We use grim trigger strategies to

construct PBEs in G(F,∆) that approximate each BNE (θs· , θ
b
· ) in G(ps· , p

b
· |F ). On the equilib-

rium path, the seller makes decreasing offers qsn and the buyer makes increasing offers qbn. Offers

do not depend on the type, but the acceptance of the opponent’s offer does. Specifically, players

follow threshold strategies on-path: in round n, all types of the seller below sn accept qbn−1 and

types above sn reject it and counter-offer qsn; all types of the buyer above bn accept qsn and types

below bn reject it and counter-offer qbn. If there is a deviation from the equilibrium path, the

play switches to the punishing path (described below) that punishes the deviator.

Construction of the Equilibrium Path: We first construct on-path strategies and show that

no type wants to mimic another type in the acceptance decision. We construct the discrete-time

approximation of θs· and θb· (defined in the previous step) using the Euler method: sN+1 =

1,sN = θsT , bN = θbT , and for n < N = b T∆c, sn = sn+1 − θ̇s(n+1)∆∆ and bn = bn+1 − θ̇b(n+1)∆∆.

We construct price-offer paths qs· and qb· backwards in time starting from N and qsN+1 = qbN = qsT
as follows: for n ≤ N ,

v(bn)− qsn = e−r∆s
F (sn+1|bn)− F (sn|bn)

1− F (sn|bn)
(v(bn)− qbn) + e−r∆

1− F (sn+1|bn)

1− F (sn|bn)
(v(bn)− qsn+1),

(A.13)

qbn−1 − c(sn) = e−r∆b
F (bn|sn)− F (bn−1|sn)

F (bn−1|sn)
(qsn − c(sn)) + e−r∆

F (bn|sn)

F (bn−1|sn)
(qbn − c(sn)).

(A.14)

Denote by (s·, b·, q
s
· , q

b
· ) the linear extrapolation of (s·, b·, q

s
· , q

b
· ) to the continuos time on [0, T ].

Lemma 11. (s·, b·, q
s
· , q

b
· ) converges uniformly to (θs· , θ

b
· , p

s
· , p

b
· ) as F

p→ F ∗. When both players

use threshold strategies, no player wants to deviate to a different acceptance strategy.

Proof. To prove the first part, the convergence of s· and b· is by construction. Next, rewrite
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equation (A.13) as follows

1− e−r∆

∆
(v(bn)−qsn)−e−r∆

qsn − qsn+1

∆
=
F (sn+1|bn)− F (sn|bn)

∆(1− F (sn|bn))
(e−r∆s(v(bn)−qbn)−e−r∆(v(bn)−qsn+1)).

Since θ̇s· is positive and bounded uniformly on [0, T ), by the construction of sn, there is an

upper bound c0 on 1
∆ |sn+1 − sn| for n < N . Choose F sufficiently close to F ∗ so that

sup(θs,θb):|θb−θs|>ε/` f(θs|θb) < ε/`. Then since sn ≤ sN = θsT < θbT − ε/` = bN − ε/` ≤ bn − ε/`, we

have

0 ≤ F (sn+1|bn)− F (sn|bn)

∆(1− F (sn|bn))
≤ |sn+1 − sn|ε

∆`(1− ε/`)
≤ c0ε

`(1− ε/`)
≡ Cε,

for n < N . Thus,
1− e−r∆

∆
(v(bn)− qsn)− e−r∆

qsn − qsn+1

∆
= C(ε) (A.15)

where C(ε) is some function that is bounded in absolute value by Cε. This implies that qs·

converges pointwise to ps· as F
p→ F ∗, and also uniformly by the continuity of qs· and ps· on

a compact [0, T ]. Moreover, the left-derivative of qs· equals to
qsn−qsn+1

∆ for some n, and from

equation (A.15), it converges uniformly to ṗs· as F
p→ F ∗. This implies that qs· is strictly

decreasing for F sufficiently far in the sequence. The uniform convergence of qb· and its left-

derivative is proven analogously.

To prove the second part, first observe that we can follows the same line of argument as the

proof of the single crossing difference condition in Lemma 8 (Claim 1) to prove the following

claim.

Claim 2. Buyer’s types θb > bn and seller’s types θs < sn, strictly prefer to accept in round

n − 1 to accepting in round n. Buyer’s types θb < bn and seller’s types θs > sn, strictly prefer

to accept in round n+ 1 to accepting in round n.

Claim 2 implies that no player wants to deviate from the threshold strategy in the acceptance

decision.

Construction of the Punishing Path: We now construct punishing path for deviations to

offers that are off the equilibrium path and show that such are not profitable. Suppose that the

seller deviates from the price-offer path qs· in round n (the construction of the punishing path

for the buyer is symmetric). Then specify that the buyer assigns probability 1 to the lowest

remaining seller’s type, sn−1. The next lemma states that there is a continuation equilibrium

that is efficient in deterring deviations to off-path offers.

Lemma 12 (Coasian Property). Let s < θsT and b > θbT . Suppose after some history, the

buyer assigns probability 1 to type s and the seller’s beliefs are F (θb|θs, θb < b). Then for any
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ε0 > 0 there is ∆ (that does not depend on s and b) such that for all ∆ < ∆ , there is a

continuation PBE strategies in which the seller’s initial offer is below p(s, 0) + ε0.

Proof. We construct the continuation PBE in which the buyer’s types pool on the unacceptable

offer above p(1) and the seller (with commonly known type s) makes offers to screen the buyer’s

type. We can follow the step in the proof of Proposition 1 in Fudenberg et al. (1985) to construct

the screening path of the seller in which the last seller’s offer equals p(s, 0). By the Uniform

Coase Conjecture in Ausubel and Deneckere (1989), there is ∆ (that does not depend on s and

b) such that for all ∆ < ∆ , there is a PBE in which the seller’s initial offer is below p(s, 0) + ε.

To guarantee that the buyer does not have incentives to make acceptable offers, we specify that

if the buyer deviates from making the unacceptable offer, the seller assigns probability 1 to type

b. Specify that after histories in which the seller assigns probability 1 to a certain type of the

buyer (there are two possibilities: either 0 or b), the continuation play is as in the complete

information game.38 Thus, if the buyer deviates, he trades at price at best p(s, b) which is

strictly higher than p(s, 0) + ε0 when b > θbT > s and ε is small. Therefore, such a deviation is

not profitable for sufficiently small ∆.

We now show that players do not have incentives to deviate to off-path price offers. By

Lemma 12, if such a type deviates in round n, she trades at a price at best p(sn, 0) + ε0.

Thus, the price of the punishing path converges uniformly to p(θst ) as ∆ → 0 by Lemma

11. On the other hand, on the equilibrium path the buyer offers pbn converge uniformly to

pst = p(θst ) + (1− α)ε > p(θst ) by Lemmas 9 and 10. Therefore, any deviation from the on-path

offers is not profitable when ∆ is sufficiently small. This completes the construction of the PBEs

in G(F,∆) and completes the proof of part 2 of Theorem 1.

A.2 Proofs for the OTC Model

Steady-State Distribution

Proof of Lemma 1. We first derive the steady-state distribution of times spent in the match.

For θ ∈ ΘL ∪ ΘM and u ∈ [0, t(θ)], let G(θ, u) be the mass of sellers that have spent time

u negotiating the price of an asset with quality θ. During the time interval du, a fraction

(yu+ yd)du of matches is destroyed due to the switching of intrinsic types, and for an asset with

quality θ, a mass λMbu(φ)µsu(θ)σ(θ)du of agents enters the bargaining stage. Hence, the change

in the mass of sellers that have spent in the match less than u is (1−yudu−yddu)G(θ, u−du)+

λMbu(φ)µsu(θ)σ(θ)du−G(θ, u), which equals 0 in the steady-state. Thus,

∂

∂u
G(θ, u) = −(yu + yd)G(θ, u) + λMbu(φ)µsu(θ)σ(θ), (A.16)

38 This is the only place where we use the weakening of the support restriction on beliefs.
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which together with G(θ, 0) = 0 gives:

G(θ, u) =
1− e−(yu+yd)u

yu + yd
λMbu(φ)µsu(θ)σ(θ).

The total mass of sellers in the bargaining stage for asset θ is equal to µsm(θ) which translates

into G(θ, t(θ)) = µsm(θ) or equivalently

µsm(θ) =
1− e−(yu+yd)t(θ)

yu + yd
λMbu(φ)µsu(θ)σ(θ). (A.17)

Let γ(θ) be the intensity with which agents leave the match. During the time interval du,

sellers that have already spent time [t(θ)−du, t(θ)] in the bargaining stage complete their trades.

Thus, γ(θ) = ∂
∂uG(θ, t(θ)) or

γ(θ) = λMbu(φ)µsu(θ)e−(yu+yd)t(θ)σ(θ). (A.18)

Now, we derive the distribution M . For θ ∈ ΘI , µsu(θ) = yd
yu+yd

, µbu(θ) = yu
yu+yd

, µsm(θ) =

µbm(θ) = 0 and we only consider θ ∈ ΘL∪ΘM . In the steady state, µsu(θ), µbu(θ),Mbu(φ),Msu(φ)

stay constant over time:

ydµsm(θ) + ydµbu(θ) = yuµsu(θ) + λMbu(φ)µsu(θ)σ(θ),

yuµsm(θ) + yuµsu(θ) + γ(θ) = ydµbu(θ),

yuMbm(ΘL ∪ΘM ) + yuMsu(φ) = ydMbu(φ) + λMbu(φ)
´ 1

0 µsu(θ)σ(θ)dθ,

ydMbm(ΘL ∪ΘM ) + ydMbu(φ) +
´ 1

0 γ(θ)dθ = yuMsu(φ),

(A.19)

where the left-hand sides are the inflows into and the right-hand sides are the outflows from

µsu(θ), µbu(θ),Mbu(φ),Msu(φ), respectively. Combining the system (A.19) with the balance

conditions (2.5)− (2.7) and (A.17)− (A.18), we get:

ydµsm(θ) + ydµbu(θ)− yuµsu(θ)− λMbu(φ)µsu(θ)σ(θ) = 0,

yuµsm(θ) + yuµsu(θ)− ydµbu(θ) + λMbu(φ)µsu(θ)e−(yu+yd)t(θ)σ(θ) = 0,

µsu(θ) + µbu(θ) + µsm(θ) = 1,

yuMsm(ΘL ∪ΘM ) + yuMsu(φ)− ydMbu(φ)− λMbu(φ)
(´ 1

0 µsu(θ)σ(θ)dθ
)

= 0,

Msu(φ) +Mbu(φ) +Msm(ΘL ∪ΘM ) = a− 1,

(yu + yd)µsm(θ)− (1− e−(yu+yd)t(θ))λMbu(φ)µsu(θ)σ(θ) = 0,

ydMsm(ΘL ∪ΘM ) + ydMbu(φ)− yuMsu(φ) + λMbu(φ)
´ 1

0 µsu(θ)e−(yu+yd)t(θ)σ(θ)dθ = 0.

(A.20)
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The rank of the system is five and we eliminate the last two equations to make the system have

a full rank. From the first three equations in (A.20),

µsu(θ) =
yd

yu + yd + λMbu(φ)σ(θ)
,

µbm(θ) =
λMbu(φ)σθ(1− e−(yu+yd)t(θ))yd

(yu + yd)(yu + yd + λMbu(φ)σ(θ))
,

µbu(θ) =
yu(yu + yd) + λMbu(φ)σ(θ)(yu + yde

−(yu+yd)t(θ))

(yu + yd)(yu + yd + λMbu(φ)σ(θ))
.

(A.21)

From the forth and fifth equations in (A.20),yuMsm(ΘL ∪ΘM ) + yuMsu(φ)− ydMbu(φ)− λMbu(φ)
´

ΘL∪ΘM
µsu(θ)σ(θ)dθ = 0,

Msu(φ) +Mbu(φ) +Msm(ΘL ∪ΘM ) = a− 1.
(A.22)

In (A.22), subtracting the first equation from the second equation multiplied by yu, plugging in

µsu(θ) from the first line of (A.21), and making the change of variables Mbu(φ) = Λs
λ , we get the

equation (4.1). The left-hand side of (4.1) is strictly increasing in Λs and the right-hand side is

strictly decreasing in Λs unless σ(θ) = 0 for all θ which does not hold in equilibrium. At Λs = 0,

the left-hand side is zero and the right-hand side equals yu
yu+yd

(a − 1) > 0. Thus, equation

(4.1) has a unique positive solution. This completes the characterization of M . Quantities

µsu(θ), µbu(θ), µbm(θ), µsm(θ) are given by (A.21), Mbu(φ) = Λs
λ and Msu(φ) is found from

(A.22). Finally, using the expression for µsu(θ) in the first line of (A.21), we find that Λb is

given by (4.2) and that FL(θ) =

´
[0,θ]∩ΘL

µsu(θ)dθ

Msu(ΘL) is uniform conditional on θ ∈ ΘL .

By definition, γ(θ) gives the trade volume and since each asset is in the unit supply, it is

also the asset turnover. Using (A.18) and the characterization of M above, we get that γ(θ) is

given by (2.8).

Analysis of Value Functions

I first express value functions through Λs,Λb, σ and x.

Denote by Us the utility of the seller who owns an asset and does not participate in the

search market. Us can be found from equation (4.6) by setting σ(θ) = 0:

Us(θ) =
1

r

(
kθ − r + yd

r + yu + yd
`

)
. (A.23)

The utility of sellers of illiquid assets is given by Vsu(θ) = Us(θ) for θ ∈ ΘI . The next lemma

simplifies equations (4.3), (4.4), (4.5), (4.6) and shows that Vbu and Vsu(φ) can be expressed

through Vbu(φ) and Vsu.
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Lemma 13. For all θ ∈ [0, 1],

Vbu(θ) =
kθ + ydVsu(θ)

r + yd
, (A.24)

Vsu(φ) =
yuVbu(φ)

r + yu
, (A.25)

Vbu(φ) = Λb
r + yu
rρ

(E [Vbm(θ)|θ ∈ ΘL]− Vbu(φ)) , (A.26)

Vsu(θ) = Us(θ) + σ(θ)Λs
r + yd
rρ

(Vsm(θ)− Vsu(θ)) . (A.27)

I next turn to the outcome of the bargaining stage and express value functions Vbm and Vsm

of matched agents through Vbu(φ) and Vsu. In Subsection 4.2, we introduced functions v̂ and

ĉ(θ) as the value functions of the buyer and the seller who remain in the match and never trade

with the current partner. By the definition, ĉ(θ) is given by the Bellman equation

rĉ(θ) = kθ − `+ yu(Vbu(θ)− ĉ(θ)) + yd(Vsu(θ)− ĉ(θ)),

and so, using (A.23) and (A.24),

ĉ(θ) =
1

ρ
(v(θ) + yuVbu(θ) + ydVsu(θ)) =

r

r + yd
Us(θ) +

yd
r + yd

Vsu(θ).

Analogously, v̂ is given by the Bellman equation

rv̂ = yu(Vbu(φ)− v̂) + yd(Vsu(φ)− v̂),

and so, using (A.25),

v̂ =
1

ρ
(yuVbu(φ) + ydVsu(φ)) =

yu
r + yu

Vbu(φ).

Therefore, functions v and c introduced in (4.8) and (4.7) are given by

c(θ) =
r

r + yd
Us(θ) +

yd
r + yd

Vsu(θ)− yu
r + yu

Vbu(φ), (A.28)

v(θ) =
kθ

r + yd
+

yd
r + yd

Vsu(θ)− yu
r + yu

Vbu(φ). (A.29)

Observe that v(θ) − c(θ) = `
ρ . The next lemma expresses value functions of matched agents

through x, Vsu and Vbu(φ).
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Lemma 14. For any θ ∈ [0, 1],

Vbm(θ) = αξx(θ) +
yu

r + yu
Vbu(φ), (A.30)

Vsm(θ) = (1− α)ξx(θ) +
r

r + yd
Us(θ) +

yd
r + yd

Vsu(θ). (A.31)

Proof. Given that the trade at the bargaining stage is not immediate, the utility of matched

agents depends on time and for τ ∈ {bm, sm} we index Vτ (t, θ) by time t. Observe that

Vbm(t(θ), θ) = Vbu(θ)− p(θ) and Vsm(t(θ), θ) = p(θ) + Vsu(φ). Moreover, the following Bellman

equation holds for Vbm(t, θ):

rVbm(t, θ) = yu(Vbu(φ)− Vbm(t, θ)) + yd(Vsu(φ)− Vbm(t, θ)) + ∂
∂tVbm(t, θ).

I solve this differential equation to get

Vbm(t, θ) = (Vbu(θ)− p(θ)) e−ρ(t(θ)−t) +
yuVbu(φ)

r + yu

(
1− e−ρ(t(θ)−t)

)
.

Using (2.1), (A.24), and Vbm(0, θ) = Vbm(θ), we get (A.30). Symmetrically, the Bellman equation

for Vsm(t, θ) is

rVsm(t, θ) = kθ − `+ yu(Vbu(θ)− Vsm(t, θ)) + yd(Vsu(θ)− Vsm(t, θ)) + ∂
∂tVsm(t, θ),

which has solution

Vsm(θ) = (p(θ) + Vsu(φ)) e−ρ(t(θ)−t) +
1

ρ
(kθ − `+ yuVbu(θ) + ydVsu(θ))

(
1− e−ρ(t(θ)−t)

)
.

Using (2.1), (A.24), (A.25), and Vsm(0, θ) = Vsm(θ), we get (A.31).

Proof of Lemma 2. Combining (A.24) and (A.30), we get (4.10). The buyer prefers to trade

with the seller of asset θ if and only if Vbm(θ) ≥ Vbu(φ), or combining (A.30) and (4.10), we get

the condition (4.9).

It follows from (A.27) and (A.31) that for θ ∈ ΘL ∪ΘM function Vsu is given by

Vsu(θ) = Us(θ) + (1− α)
r + yd
r

σ(θ)Λ

ρ+ σ(θ)Λ
ξx(θ) (A.32)

Equation (A.32) implies that Vsu(θ) > Us(θ) whenever x(θ) > 0 and so, sellers always prefer to

trade.
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Solution of the Model

I first derive equilibrium strategy σ and liquidity profile x.

Lemma 15. x is given by (4.11).

Proof of Lemma 15. we first show that (2.2) and (2.3) implies (4.11). Consider θ > θ∗ and

rewrite the maximization problem in (2.2) as follows

θ ∈ arg max
θ′∈[θ∗,1]

x(θ′)(v(θ)− p(θ′)). (A.33)

By the envelope theorem (Milgrom and Segal (2002)), function x(θ)(v(θ) − p(θ)) is absolutely

continuous and at differentiability points satisfies

x′(θ)(v(θ)− p(θ))− x(θ)p′(θ) = 0, (A.34)

or using (2.1),
x′(θ)

x(θ)
=
v′(θ)

αξ
. (A.35)

Together with the x(1) = 1, (A.35) implies (4.11). The argument for θ < θ∗ is analogous. In

this case, x is given by
x′(θ)

x(θ)
= − c′(θ)

(1− α)ξ
, (A.36)

which together with x(0) = 1 implies (4.11).

Corollary 1. For differentiability points θ > θ∗ of v, x′(θ) = 0 if and only if v′(θ) = 0, and for

differentiability points θ < θ∗ of c, x′(θ) = 0 if and only if c′(θ) = 0.

Proof. Follows immediately from (A.35) and (A.36).

Proof of Lemma 3. The analysis proceeds in a series of claims.

Claim 3. If x(θ) = x for some set (θ′, θ′′), then σ(θ) ∈ (0, 1) for almost every θ ∈ (θ′, θ′′).

Proof. Suppose that x(θ) = x, but σ(θ) = 0 for θ ∈ (θ′, θ′′) (the argument is identical for

σ(θ) = 1). By (A.32), Vsu is strictly increasing on (θ′, θ′′) and so, by (A.28) and (A.29), v and

c are strictly increasing, which contradicts Corollary 1. q.e.d.

Claim 4. There exist θ̌ ≤ θ ≤ θ∗ ≤ θ ≤ θ̌ such that ΘL = [0, θ̌] ∪ [θ̂, 1], ΘM = (θ̌, θ] ∪ [θ, θ̂), and

ΘI = (θ, θ).

Proof. By Lemma 2, buyers accept only asset qualities with x(θ) ≥ x. By Lemma 15, x

has a U-shape and so, there exist θ̌ ≤ θ ≤ θ∗ ≤ θ ≤ θ̌ such that x(θ) ≥ x on [0, θ] ∪ [θ, 1] and

x(θ) > x on [0, θ̌] ∪ [θ̂, 1], which combined with Claim 3 gives the result. q.e.d.
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Claim 5. θ̌ < θ̂ implies θ̌ < θ.

Proof. Suppose to contradiction there exists θ̌ = θ < θ̂. Then there is an increasing sequence

of {θ′i} ⊂ [0, θ̌] and a decreasing sequence {θ′′i } ⊂ ΘI both converging to θ′. From (A.28) and

(A.32), this implies that c(θ′i) > c(θ′′i ) while θ′i < θ′′i , which contradicts the monotonicity of c.

q.e.d.

Claim 6. θ = θ̂.

Proof. Suppose to contradiction there exists θ = θ̂. Then there is a decreasing sequence of

{θ′i} ⊂ [θ̂, 1] and an increasing sequence {θ′′i } ⊂ ΘM both converging to θ′. Corollary 1 implies

that {v(θ′′i )} is constant, and so, from (A.29) and (A.32), {σ(θ′′i )} is decreasing. On the other

hand, σ(θ′i) = 1 which contradicts the continuity of v at θ′. q.e.d.

It follows from Claims 1-4 that the only possibilities are: a) θ̌ = θ = θ = θ̌, b) θ̌ < θ = θ = θ̌,

c) θ̌ < θ < θ = θ̌.

Lemma 16.

θ = 1 +
r

k
αξ lnx(θ) +

yd
k

(1− α)ξ
Λs

ρ+ Λs
(1− x(θ)), for θ ≥ θ̂, (A.37)

θ = − r
k

(1− α)ξ lnx(θ) +
yd
k

(1− α)ξ
Λs

ρ+ Λs
(1− x(θ)), for θ ≤ θ̌. (A.38)

Moreover, v and c are strictly increasing on ΘL.

Proof. For almost every θ > θ̂, plugging v′(θ) from (A.29) into (A.35), we get

x′(θ)

x(θ)
=
v′(θ) + ydV

′
su(θ)

αξ(r + yd)
.

By (A.32),

V ′su(θ) =
k

r
+ (1− α)

r + yd
r

Λs
ρ+ Λs

ξx′(θ) (A.39)

and so,

x′(θ) =
k

ξr
(

α
x(θ) −

yd
r

Λs
ρ+Λs

(1− α)
) , (A.40)

which together with x(1) = 1 gives (A.37). From (2.4), the denominator of (A.40) is positive.39

Therefore, x′(θ) > 0 and so (A.35) implies v′(θ) > 0.

Analogously, plugging in c′(θ) from (A.28) into (A.36),

39Indeed,
α

x(θ)
≥ α ≥ yd

r
(1− α) >

yd
r

Λs
ρ+ Λs

(1− α).
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x′(θ)

x(θ)
= −rU

′
s(θ) + ydV

′
su(θ)

(1− α)ξ(r + yd)
,

and using (A.39) for V ′su(θ), we get

x′(θ) = − k

ξr(1− α)
(

1
x(θ) + yd

r
Λs
ρ+Λs

) , (A.41)

which together with x(0) = 1 gives (A.38). From (A.41), x′(θ) < 0 and so (A.36) implies

c′(θ) < 0.

It next to find conditions to determine thresholds θ̂, θ̌, θ. By Lemma 16 and the fact that

x = x(θ̌) = x(θ̂):

θ̂ = 1 +
r

k
αξ lnx+

yd
k

(1− α)ξ
Λs

ρ+ Λs
(1− x), (A.42)

θ̌ = − r
k

(1− α)ξ lnx+
yd
k

(1− α)ξ
Λs

ρ+ Λs
(1− x). (A.43)

For each θ ∈ ΘM , x(θ) = x and so, c(θ) = c(θ̌) by Corollary 1. Therefore, by (A.28),

Vsu(θ) = Vsu(θ̌)− r

yd
(Us(θ)− Us(θ̌)). (A.44)

Using (A.32) and x(θ̌) = x,

Vsu(θ)− Us(θ) =
r + yd
r

(
k

yd
(θ̌ − θ) + (1− α)

Λs
ρ+ Λs

ξx

)
. (A.45)

Threshold θ is determined as the minimum of θ̂ and the solution to the equation Us(θ) = Vsu(θ)

and so, from (A.45),

θ = min

{
θ̂, θ̌ + (1− α)

yd
k

Λs
ρ+ Λs

ξx

}
. (A.46)

This completes the description of x for given Λs and x. The next lemma determines σ.

Lemma 17. For given Λs and x,

σ(θ) =


1, if θ ∈ [0, θ̌] ∪ [θ̂, 1],

0, if θ ∈ [θ, θ̂),

ρ
Λs

(1−α) Λs
ρ+Λs

ξx− k
yd

(θ−θ̌)

(1−α) ρ
ρ+Λs

ξx+ k
yd

(θ−θ̌) , if θ ∈ (θ̌, θ).

(A.47)
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Proof. I only need to determine σ(θ) for θ ∈ ΘM . It follows from (A.32), (A.45) and x(θ) = x:

σ(θ) =
ρ

Λs

r
r+y (Vsu(θ)− Us(θ))

(1− α)ξx− r
r+y (Vsu(θ)− Us(θ))

=
ρ

Λs

(
(1− α) Λs

ρ+Λs
ξx− k

yd
(θ − θ̌)

(1− α) ρ
ρ+Λs

ξx+ k
yd

(θ − θ̌)

)
.

Proof of Theorem 2. For given Λs and x, we can determine equilibrium strategy σ from Lemma

17 and x from Lemma 16 where θ̌, θ, and θ̂ are expressed from (A.42), (A.43), and (A.46).

Lemma 1 describes the steady-state distribution for given σ and x. Hence, we need to show that

there is unique pair of Λs and x that satisfies the equilibrium.

Lemma 19 in the Online Appendix shows that equation (4.1) implies equation (4.13). Next,

we derive (4.12). Combining (4.2) and (4.9), we get

ρ ≥ λyd
yu + yd + Λs

ˆ
x(θ)>x

(
x(θ)

x
− 1

)
dθ, (A.48)

which holds as equality whenever L < 1. It follows from (A.42) and (A.43) that

L = 1− θ̂ + θ̌ = −rξ
k

lnx (A.49)

From (A.49) it follows that alternatively the equilibrium is pinned down by the pair Λs and L.

Given (A.37) and (A.38), we can explicitly calculate

X =

ˆ
x(θ)>x

x(θ)dθ =

ˆ 1

θ̂
x(θ)dθ +

ˆ θ̌

0
x(θ)dθ =

ˆ 1

x
x
dθ(x)

dx
dx−

ˆ 1

x
x
dθ(x)

dx
dx =

rξ

k
(1− x)

(A.50)

and combined with (A.49) and (A.48) this gives (4.12). Therefore, equilibrium Λs and L are

pinned down by (4.12) and (4.13). Denote by Λ1
s, Λs as a function of L expressed from equation

(4.12), and by Λ2
s, Λs as a function of L expressed from equation (4.13). Lemma 21 in the Online

Appendix shows that there is a unique solution to this system.

Proof of Proposition 2. To get (5.1), plug functions c and v from (A.28) and (A.29) into (2.1)

and then substitute Vbu(φ) and Vsu(θ) from (4.10) and (A.32).

Comparative Statics

Proof of Proposition 3. Suppose k increases. The equilibrium is characterized by (4.12) and

(4.13). Consider functions Λ1
s and Λ2

s introduced in the proof of Theorem 2. Since
(
ξr
k

(
e
k
ξr
L − 1

))′
k

=

ξr
k2

(
1 + e

k
ξr
L
(
k
ξrL− 1

))
> 0, Λ1

s is increasing in k and so, an increase in k leads to the upward
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shift of Λ1
s and as a result, to an increase in Λs and a decrease in L. To show that x decreases,

we use (A.49) to reformulate equilibrium conditions in terms of (Λs, x):Λs = ξrλyd
kρ

(
1
x − 1 + lnx

)
− (yu + yd),

− lnx = k(yu+yd+Λs)
rξydΛs

(
yu(a− 1)− (yu + yd)

Λs
λ − h(Λs)

)
.

(A.51)

Let functions Λ̃1
s and Λ̃2

s by such that Λs = Λ̃1
s(x) solves the first equation in the system and

Λs = Λ̃2
s(x) solves the second equation. It follows from the monotonicity of Λ1

s and Λ2
s that Λ̃1

s

is decreasing and Λ̃2
s is increasing. Since the right-hand side of the first equation is decreasing

in k and the right-hand side of the second equation is is increasing in k, an increase in k leads

to a downward shift of Λ̃1
s and an upward shift of Λ̃2

s and so, to a decrease in x. From (A.49)

and (A.50), x = 1−x
− lnx is increasing in x, and so, also decreases with an increase in k.

To derive the comparative statics in λ, we express equilibrium conditions (4.12) and (4.13)

in terms of variables L and Mbu(φ) as follows40

Mbu(φ) = yd
ρ

(
ξr
k

(
e
k
ξr
L − 1

)
− L

)
− yu+yd

λ ,

L = (yu+yd)/λ+Mbu(φ)
ydMbu(φ) (yu(a− 1)− (yu + yd)Mbu(φ)− h(λMbu(φ))) .

(A.52)

The right-hand side of the first equation in (A.52) is increasing in L and increasing in λ, while

the right-hand side of the second equation in (A.52) is decreasing in Mbu(φ) and decreasing in

λ. Therefore, an increase in λ leads to a decrease in L and so, an increase in x by (A.49).

Proof of Proposition 5. Consider functions Λ1
s and Λ2

s introduced in the proof of Theorem 2.

Consider an increase in yd and a decrease in yu so that yd + yu does not change. This leads to

an upward shift of Λ1
s and a downward shift of Λ2

s, and so, a decrease in L.

Proof of Proposition 9. Since (4.12) and (4.13) do not depend on α, L and Λs are independent

of α. From (A.42) and (A.43), θ̂ and θ̌ are decreasing in α.

Proof of Proposition 6. An increase in a leads to an upward shift of Λ2
s and so, an increase in

Λs and L, and by (A.49), decrease in x.

Two-Class Extension

Proof of Theorem 3. Under the assumption of the theorem, equilibrium quantities (Λs,1, x1) and

(Λs,2, x2) are determined by the unique solution to the system (A.51) with a = a1 and a = a2,

respectively. Denote by x(a) the equilibrium threshold of the buyer’s strategy given that the

40Again we consider only cases where before and after an increase in λ, L < 1, as other cases are
straightforward to show from (4.1).
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mass of agents is a. Equations in the system (A.51) are continuous in parameters and so, the

solution (Λs, x) varies continuously with a and an increase in a leads to a decrease in x by

Proposition 6. Thus, x(·) is continuous and decreasing in a. By (6.1), a1 is determined by

x(a1) = x(a− a1) which has a unique solution.

Proof of Proposition 7. Suppose k1 increases and/or k2 decreases. We show that as a result a1

decreases and a2 increases. Suppose to contradiction that a1 increases and a2 decreases. By

Propositions 3 and 6, x1 decreases and x2 increases which contradicts the indifference of buyers

(6.1).
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B Online Appendix (Not for Publication)

Example of F

Here, we provide an example of a sequence of F approximating F ∗ that satisfies our assumptions.

Fix γ > 0. Suppose θ normally distributed with zero mean and variance γ2− 1
γ , and εb and εs are

independent normals with zero mean and variance 1
γ . Let F be the distirbution of (θ+εs, θ+εb)

conditional on (θ + εs, θ + εb) ∈ [0, 1].

Proposition 8. 1. F is affiliated;

2. F
p→ F ∗ as γ →∞;

3. for any ε > 0, there is γ so that for all γ > γ,

sup
(θs,θb):|θs−θb|>ε

max{f(θb|θs), f(θs|θb)} < ε. (B.1)

Proof. 1) By definition, F is a bivariate normal distribution with zero mean and covariance ma-

trix Σ =

(
γ2 γ2 − 1

γ

γ2 − 1
γ γ2

)
conditional on (θs, θb) ∈ [0, 1]2. Since the density of the positively

correlated bivariate normal distribution is log-supermodular so is f . Thus, F is affiliated.
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2) The densify f is given by

f(θs, θb) =
exp

(
− (θs)2+(θb)2−2(1−γ−3)θsθb

2γ2(1−(1−γ−3)2)

)
´ 1

0

´ 1
0 exp

(
− (θs)2+(θb)2−2(1−γ−3)θsθb

2γ2(1−(1−γ−3)2)

)
dθsdθb

=
exp

(
−γ(θs−θb)2+2γ−2θsθb

2(2−γ−3)

)
´ 1

0

´ 1
0 exp

(
−γ(θs−θb)2+2γ−2θsθb

2(2−γ−3)

)
dθsdθb

.

After the change of variables x = θs − θb, y = θsθb, we have

f(x, y) =
exp

(
−γx2+2γ−2y

2(2−γ−3)

)
2
´ 1

0

´ 1−x
0 exp

(
−γx2+2γ−2y

2(2−γ−3)

)
dydx√
x2+4y

.

We next construct upper and lower bounds on the nominator and the denominator of f . For

the nominator, the bounds are

exp
(
−1

3γx
2 − 2

3γ
−2
)
≤ exp

(
−γx

2 + 2γ−2y

2(2− γ−3)

)
≤ exp

(
−1

5γx
2
)
.

For the denominator, for any ε0 ∈ (0, 1
2) the upper bound is

ˆ 1

0

ˆ 1−x

0
exp

(
−γx

2 + 2γ−2y

2(2− γ−3)

)
dydx√
x2 + 4y

≤
ˆ 1

0

ˆ 1−x

0
exp

(
−γx

2

5

)
dydx√
x2 + 4y

=

ˆ 1

0
exp

(
−1

5γx
2
)

(1− x)dx

≤
ˆ 1

0
exp

(
−1

5γx
2
)
dx

≤ exp
(
−1

5γ
2ε0
)

(1− γ−1/2+ε0) + γ−
1/2+ε0

≤c1γ
−1/2+ε0 ,

and the lower bound is

ˆ 1

0

ˆ 1−x

0
exp

(
−γx

2 + 2γ−2y

2(2− γ−3)

)
dydx√
x2 + 4y

≥
ˆ 1

0

ˆ 1−x

0
exp

(
−1

3γx
2 − 2

3γ
−2
) dydx√

x2 + 4y

=

ˆ 1

0
exp

(
−1

3γx
2 − 2

3γ
−2
)

(1− x)dx

≥γ−1/2 exp
(
−2

3

)
(1− γ−1/2)

≥c2γ
−1/2.
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Thus,

1

c1
γ

1/2−ε exp
(
−1

3γx
2 − 2

3γ
−2
)
≤ f(x, y) ≤ 1

c2
γ

1/2 exp
(
−1

5γx
2
)
,

and so,

• for all |x| > γ−1/4, f(x, y) < 1
c2
γ1/2 exp

(
−1

5γ
1/2
)
→
γ→∞

0;

• for all |x| < γ−1, f(x, y) > 1
c1
γ1/2−ε0 exp

(
−1

3γ
−1 − 2

3γ
−2
)
→
γ→∞

∞ ;

• for any x,

1 ≤
maxy∈[0,|x|] f(x, y)

miny∈[0,|x|] f(x, y)
=

maxy∈[0,|x|] exp
(
−γx2+2γ−2y

2(2−γ−3)

)
miny∈[0,|x|] exp

(
−γx2+2γ−2y

2(2−γ−3)

) ≤ exp

(
γ−2

2− γ−3

)
→
γ→∞

1.

This implies that F
p→ F ∗ as γ →∞.

3) For |θs − θb| > γ−1/4,

f(θs|θb) =
f(θs, θb)´ 1

0 f(θs, θb)dθs
=

exp
(
− (θs)2+(θb)2−2(1−γ−3)θsθb

2γ2(1−(1−γ−3)2)

)
´ 1

0 exp
(
− (θs)2+(θb)2−2(1−γ−3)θsθb

2γ2(1−(1−γ−3)2)

)
dθs

≤
exp

(
− (θs)2+(θb)2−2(1−γ−3)θsθb

2γ2(1−(1−γ−3)2)

)
´ min{1,θb+γ−1/4}

max{0,θb−γ−1/4}
exp

(
− (θs)2+(θb)2−2(1−γ−3)θsθb

2γ2(1−(1−γ−3)2)

)
dθs

≤
1
c2
γ1/2 exp

(
−1

5γ(θs − θb)2
)

2
c1
γ1/2−ε0 exp

(
−1

3γ
−1/2 − 2

3γ
−2
)
γ−1/4

=
c1

2c2
γ

1/4+ε0 exp
(
−1

5γx
2 + 1

3γ
−1/2 + 2

3γ
−2
)

≤ c1

2c2
γ

1/4+ε0 exp
(
−1

5γ
1/2 + 1

3γ
−1/2 + 2

3γ
−2
)
→
γ→∞

0,

and the symmertic argument holds for f(θb|θs). Thus, (B.1) obtains.

B.1 Proofs for OTC Model

Lemma 18.
´ θ
θ̌

Λsσ(θ)
yu+yd+Λsσ(θ)dθ = h(L,Λs).
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Proof. Expressing σ(θ) from (A.47), θ̌ from (A.43), and θ from (A.46), we get

´ θ
θ̌

Λsσ(θ)
yu+yd+Λsσ(θ)dθ

=
´ θ̌+min{1+ rξ

k
lnx,(1−α)

yd
k

Λs
ρ+Λs

ξx}
θ̌

(1−α) Λs
ρ+Λs

ξx− k
yd

(θ−θ̌)
yu+yd
ρ

((1−α) ρ
ρ+Λs

ξx+ k
yd

(θ−θ̌))+(1−α) Λs
ρ+Λs

ξx− k
yd

(θ−θ̌)
dθ

=
´ min

{
1+

rξ
k

ln x

(1−α)
yd
k

Λs
ρ+Λs

ξx
,1

}
0

1−s
1+

yu+yd
Λs

s−(1− yu+yd
ρ

)s
ds,

where in the second line we make a change of variables s =
k
yd

(θ−θ̌)

(1−α)
yd
k

Λs
ρ+Λs

ξx
. After expressing x

from (A.49) we get the desired conclusion.

Lemma 19. Equations (4.1), (A.47), (A.42), (A.43), (A.46) imply equation (4.13)

Proof. From (4.1),

Λs
λ

=
yu

yu + yd
(a− 1)− yd

yu + yd

ˆ 1

0

Λsσ(θ)

yu + yd + Λsσ(θ)
dθ. (B.2)

Expressing σ from (A.47),

Λs
λ

=
yu

yu + yd
(a− 1)− yd

yu + yd

(
ΛsL

yu + yd + Λs
+

ˆ θ

θ̌

Λsσ(θ)

yu + yd + Λsσ(θ)
dθ

)
,

which together with Lemma 18 gives equation (4.13).

Denote by Λ1
s, Λs as a function of L expressed from equation (4.12), and by Λ2

s, Λs as a

function of L expressed from equation (4.13).

Lemma 20. Λ2
s is strictly decreasing.

Proof. Consider an increase in L to L′ so that before and after the increase θ < θ̂. It is easy to see

that in this case the right-hand side of (4.13) is strictly decreasing in Λs and so Λ2
s(L) < Λ2

s(L
′).

Now, suppose that before and after an increase in L to L′, θ̂ = θ > θ̌. We use equation

(A.49) to rewrite equations (A.42), (A.43), (A.46), (A.47) in terms of L as follows:

θ̌(L) = (1− α)

(
L+

yd
k
ξ

Λs
ρ+ Λs

(1− e−
k
rξ
L

)

)
, (B.3)

θ̂(L) = θ̌ + 1− L, (B.4)

θ(L) = θ̌ + min

{
1− L, (1− α)

yd
k

Λs
ρ+ Λs

ξe
− k
rξ
L
}
, (B.5)
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Λsσ(θ, L) =


Λs, if θ ∈ [0, θ̌] ∪ [θ̂, 1],

0, if θ ∈ [θ, θ̂),

ρ
(1−α) Λs

ρ+Λs
ξe
− k
rξ
L− k

yd
(θ−θ̌)

(1−α) ρ
ρ+Λs

ξe
− k
rξ
L

+ k
yd

(θ−θ̌)
, if θ ∈ (θ̌, θ).

(B.6)

Let θ̌ ≡ θ̌(L), θ̂ ≡ θ̂(L), θ ≡ θ(L) and θ̌′ ≡ θ̌(L′), θ̂′ ≡ θ̂(L′), θ′ ≡ θ(L′). The fact that θ̂ = θ > θ̌

implies that

1− L < (1− α)
yd
k

Λs
ρ+ Λs

ξe
− k
rξ
L

(B.7)

and the same inequality holds for L′, as θ̂′ = θ′ > θ̌′.

Recall that Λ2
s(L) solves equation (B.2). We next show that after the increase in L, the

integral in (B.2) increases. We first show the following claim

Claim 7. Then σ(θ̂ − y, L) ≤ σ(θ̂′ − y, L′) for y ∈ (0, 1 − L) with a strict inequality for y ∈
(0, 1− L′).

Proof: Observe that for y ∈ [1 − L′, 1 − L), σ(θ̂′ − y, L′) = 1. Now, using (B.4) and (B.6),

for y ∈ (0, 1− L′)

σ(θ̂ − y, L) =
ρ

Λs

yd
k (1− α) Λs

ρ+Λs
ξe
− k
rξ
L − 1 + L+ y

yd
k (1− α) ρ

ρ+Λs
ξe
− k
rξ
L

+ 1− L− y
.

Differentiating σ(θ̂ − y, L) with respect to L, we get

sgn

(
∂σ(θ̂ − y, L)

∂L

)
= sgn

(
rξ

k
− 1 + L+ y

)
.

It follows from (B.7) and (2.4) that

1− L < (1− α)
yd
k

Λs
ρ+ Λs

ξe
− k
rξ
L

< (1− α)
yd
k
ξ

≤ α
rξ

k
,

and so, ∂σ(θ̂−y,L)
∂L > 0. Thus, σ(θ̂ − y, L) < σ(θ̂′ − y, L′) for y ∈ (0, 1− L′).

q.e.d.

Outside the interval (θ̌, θ̂), σ(θ, L) = 1, and outside (θ̂′ − 1 + L, θ̂′), σ(θ, L′) = 1. Together

with Claim 7 this implies that the integral in (B.2) is larger for L′ and so, the right-hand side

of (B.2) strictly decreases when L increases to L′.
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It follows from (B.6) that Λsσ(θ) is strictly increasing in Λs and so, the right-hand side of

(B.2) is strictly decreasing in Λs, while the left-hand side of (B.2) is strictly increasing in Λs.

Combined with the fact that the right-hand side of (B.2) is strictly decreasing with L, we get

that Λ2
s(L) < Λ2

s(L
′).

Lemma 21. There is a unique solution (Λs, L) to (4.12) and (4.13).

Proof. I show that Λ1
s is strictly increasing and Λ2

s is strictly decreasing, which implies that the

solution is unique. Lemma 20 implies that Λ2
s is strictly decreasing. The right-hand of equation

(4.12) is increasing in L, as
(
ξr
k

(
e
k
ξr
L − 1

)
− L

)′
L

= e
k
ξr
L − 1 > 0. Therefore, Λ1

s is strictly

increasing.

Surplus Share Here, we explore the effect of the split of the surplus.

Proposition 9. An increase in α does not change L, x and Λs, but leads to an increase in θ̂

and θ̌.

Notice that even though the market liquidity does not depend on α, the composition of liquid

assets depends on the split of surplus. The greater the share of the buyer, the higher the fraction

of high-quality assets (above θ∗) in the set of liquid assets. The higher share of the surplus makes

an agent more impatient and increases for him the costs of delay. As a result, higher α gives the

buyer additional incentives to accept faster in the SBS which in turn increases the liquidity of

high-quality assets. For low-quality assets (below θ∗), the logic is the opposite. The seller bears

a smaller fraction of the delay costs, which increases his incentives to wait longer, and hence,

decreases the liquidity of such asset qualities.
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