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When large traders in financial markets seek to profit from private information
while keeping transactions cost low, they face a fundamental tradeoff between slow-
ing down order execution to reduce temporary price impact costs resulting from
adverse selection and speeding up order execution to profit from perishable private
information before others can do likewise. As a trader spreads order execution out
over time, large orders are often split orders into many small trades. In this pa-
per, we describe a model of continuous information-based trading which explains
why, in equilibrium, orders must be broken into small pieces and executed gradually
over time to avoid large price impact. We show that traders execute orders at an
endogenously derived rate which optimizes the trade-off between trading slowly to
minimize transitory price impact costs and trading rapidly to profit from perishable
private information.
By smoothing their trading, traders may lower execution prices by “walking the

demand schedules” of other traders. For example, in Kyle (1985), the informed
trader smooths his trading but the noise traders and market makers do not. Unlike
Kyle (1985), this paper describes a model in which all traders smooth their trading,
and no traders are willing to provide instantaneous liquidity to large blocks. When
all traders break orders into tiny pieces and spread the execution out over time, the
nature of the equilibrium changes.
We model the equilibrium as a continuous version of the auction mechanism in Kyle

(1989). Traders continuously submit demand schedules, but the schedules are for
flows—derivatives of inventories which define the speed of trading—rather than for
shares. Prices change continuously and inventories have continuous first derivatives.
Both the level of prices and the derivatives of inventories follow diffusions.1

Each trader correctly believes that the price level is a linear function of level of his
inventory and also the level of its derivative, which measures the speed of trading.
Let P0(t) denote what the market price would be if a trader had no inventories and
did not trade, and let P (t) denote the price if the trader holds inventories S(t) and
trades at the rate S ′(t). Then the price P (t) is given by

(1) P (t) = P0(t) + λS · S(t) + λx · S ′(t).

The λS term is permanent linear price impact, similar to Kyle (1985). In Kyle (1985),
the informed trader’s private information does not decay, the cost of trading does not
depend on the speed of inventory adjustment, and the equilibrium speed of inventory
adjustment is not derived from the informed trader’s maximization problem. The
λx term represents temporary price impact, which generates trading costs and price
effects absent from Kyle (1985).
In our continuous-time model, where all traders smooth out inventory adjustment,

trading a nontrivial quantity over a very short period of time can result in large
temporary price impact, consistent with a flash crash for rapidly-executed large sales.

1Our informal use the term “smooth trading” is different from the mathematical sense that im-
plies derivatives of all order exist. Sine the first derivatives of a traders inventories follow diffusions,
higher order derivatives do not exist.
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Each trader calculates a target inventory proportional to the difference between his
own valuation and the average valuation of others. Each trader optimally adjusts his
inventory towards his target level gradually. The speed of partial adjustment—which
Black (1995) calls “urgency”— arises endogenously from the trade-off between the
half-life of the private information and the resiliency of prices. In the continuous
model, quantities adjust slowly, even though information is incorporated into prices
immediately. In sharp contrast to the competitive model of Milgrom and Stokey
(1982), our imperfectly competitive traders continue to trade on information after
it has been incorporated into prices.
We develop a dynamic continuous-time infinite-horizon model of information-based

trading with overconfidence and market power. In continuous time, “smooth trad-
ing” means that traders’ inventories are differentiable functions of time.An infinite-
time horizon leads to a steady-state equilibrium with meaningful concepts of depth
and returns volatility. To model information decay, each trader is assumed to have a
continuous flow of private information about the unobserved mean-reverting growth
rate of cash flows; one trader’s information decays as other traders acquire similar
information and trade on it; it also decays as a result of public information flow.
To model market impact, each trader is assumed to optimize his trading taking into
account its dynamic effect on prices, which influence the beliefs and trading of other
traders. To keep matters simple, we assume that informed oligopolistic traders with
the same degree of risk aversion disagree in a symmetric manner.
Overconfidence motivates trade. Traders do not share a common prior; instead,

they agree to disagree about the informativeness of one another’s signals. Each trader
is “relatively overconfident” in that he believes his own signal to be more precise than
other traders believe it to be. Unlike Grossman and Stiglitz (1980) or Kyle (1985),
there are no noise traders and market makers. In the special case when traders
believe other traders’ signals are completely uninformative, the model implements
the idea of Black (1986) of “trading on noise as if it were information.” In the
more general case when traders believe other traders’ signals have some information,
each trader believes that other traders “over-trade” on the basis of their private
information, as in Kyle and Lin (2001) and Scheinkman and Xiong (2003).
In order to obtain linear trading strategies and linear information processing rules,

we assume exponential utility and linear Gaussian information processes concern-
ing future rates of dividend growth. We look for a steady-state symmetric linear
equilibrium in which each trader applies Bayes law correctly given his beliefs and
the dynamic equilibrium trading strategies of other traders. A symmetric linear
equilibrium may exist; if so, it can be characterized as a solution of six quadratic
polynomial equations in six unknowns, which we solve numerically. There also exists
an obvious no-trade equilibrium with an undefined price: If each trader believes that
all other traders will trade a zero quantity, it is optimal for them not to trade as
well.
Our model builds on the economics literature describing single period and dynamic

auctions.
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We motivate the continuous model with an extensive discussion of a one-period
model, which implements “bid-shading” in a manner similar to Kyle (1989) and
Rostek and Weretka (2012). Traders exploit their market power by trading approxi-
mately one-half of the amount they believe would fully reveal their information. To
obtain an equilibrium with positive trading volume, there needs to be “enough” dis-
agreement. For other traders will be willing to take the opposite side of trades, each
trader must believe that other traders’ signals are slightly less than half as precise
as the other traders believe their own signals to be.
Our continuous time model is closest to Vayanos (1999) and Du and Zhu (2013),

who present dynamic models with symmetric strategic oligopolistic traders who
smooth out their trading to reduce reduce market impact resulting from adverse
selection. Their models are set in discrete time. Our continuous time approach
brings out clearly the intuition that traders trade smoothly.
Their equilibria are significantly different from ours due to differences concerning

the orthogonality of private information. Vayanos (1999) assumes traders receive
orthogonal endowment shocks and trade for risk-sharing motives; the orthogonal
endowment shocks are a form of private information. Du and Zhu (2013) assume
traders’ valuations have orthogonal “private values” components; these orthogonal
private values components are also a form of private information. In our model,
traders receive noisy signals about the same underlying fundamental; thus, their sig-
nals have an underlying positive correlation. The economically important implica-
tions of this positive correlation are precisely what our model is designed to capture.
Because of the intrinsic strategic interactions resulting from positive correlation in
signals, our equilibrium is more difficult to characterize and has substantially differ-
ent properties from theirs. In Vayanos (1999) and Du and Zhu (2013), the horizon
over which traders smooth trading depends on their risk aversion, not the correla-
tion of their private signals. In our model, the horizon over which traders smooth
trading depends strongly on the rate at which their signals decay due to information
acquisition by others; risk aversion scales the size of inventories, not the urgency
with which traders trade. Our model captures an economically significant trade-off
faced by large asset managers in financial markets.
In both the one-period model and the continuous model, prices adjust immediately,

revealing the average of all traders’ valuations. Thus, each trader can infer from the
price the average of other traders’ valuations, which is all that he cares to know about
their private information. We describe an equilibrium which is always in a steady
state. Describing how the equilibrium reaches a steady state, from a starting point
in which prices are not already fully revealing, raises issues related to Ostrovsky
(2012), taking us beyond the scope of this paper.
Mathematical intuition and numerical calculations imply an existence condition

suggesting that, with continuous trading, each trader must believe that his infor-
mation is more that four times as precise as other traders believe it to be. The
contrast between the factor of four in the continuous model and the factor of two in
the one-period model is consistent with results in Vayanos (1999) and Du and Zhu
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(2013) that less frequent trading facilitates more trade.
The model explains the apparent short-term nature of trading, even though trad-

ing may be motivated by private information about long-term growth rates in cash
flows. Holding periods depend on the horizons over which the information content
of traders’ private signals become known to others, not on the horizon over which
underlying cash flows unfold. Traders build positions when they acquire new infor-
mation, and they unwind positions as other traders acquire the same information.
The model incorporates precisely the the “beauty contest” logic of Keynes (1936).

Although traders are rational investors with long-term horizons, they take into ac-
count expectations of short-term price dynamics induced by other traders whom
they perceive to “overtrade” on imprecise information. Consistent with Allen, Mor-
ris and Shin (2006) and contrary to the intuition of Keynes (1936), we show that
beauty contest intuition dampens price volatility.
Since inventory levels are differentiable functions of time, our model has a mean-

ingful concept of trading volume; in models with noise traders, trading volume is
infinite since noise traders’ inventories follow a Brownian motion. It is consistent
with the empirical observation of high trading volume in the markets.
We model formally the conventional Wall Street wisdom that speed of trading

affects prices. The empirical studies such as Chan and Lakonishok (1995), Keim and
Madhavan (1997), and Dufour and Engle (2000) uniformly support this assertion.
Holthausen, Leftwich and Mayers (1990) measure temporary and permanent price
effects associated with block trades. They find that most of the adjustment occurs
during the very first trade in a sequence, somewhat consistent with instantaneous
price adjustment in our model. Almgren et al. (2005) calibrate price impact functions
depending both on quantities traded and on the speed of trading, using a functional
form very similar to the form we derive endogenously. Kyle and Obizhaeva (2013)
further suggest that trading cost functions may be ultimately described just by a
few parameters, if market microstructure invariance principles are imposed.
There are numerous papers that incorporate the effect of fast trading into classical

finance problems. Given exogenous price impact functions explicitly or implicitly
depending on the speed of trading, Brunnermeier and Pedersen (2005) studied price
effects of a large trader unwinding his position in the presence of strategic traders,
Carlin, Lobo and Viswanathan (2007) focused on the interaction between traders
facing liquidity shocks, Longstaff (2001) analyzed the portfolio choice problem, Gri-
nold and Kahn (1995), Almgren and Chriss (2000) as well as Obizhaeva and Wang
(2013) derived optimal execution strategies for liquidation of an existing position.
Our model makes the speed of trading endogenous and suggests a good way to model
equilibrium price impact functions for those applications.
This paper is structured as follows. Section I presents a one-period model. Section

II outlines a dynamic continuous-time model. Section III examines properties of
smooth trading equilibrium. Section IV concludes. Proofs are in Appendix.
.
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I. One-period Model

To develop intuition for how equilibrium prices and quantities depend on the inter-
action between overconfidence and market power, we start with a one-period model.
There are N traders who trade a risky asset with liquidation value ṽ ∼ N(0, 1/τv)
against a safe numeraire asset with liquidation value of one. Traders maximize ex-
pected utility of terminal wealth based on utility functions with constant absolute
risk aversion (CARA) and risk aversion parameter A. Each trader n is endowed with
inventory of Sn shares of a risky asset, n = 1, . . . , N . Since a risky asset is in zero
net supply, the sum of inventories of all traders is zero.

Bayesian Updating.

All traders observe a public signal ĩ0 = ṽ + ẽ0 with ẽ0 ∼ N(0, 1/τ0). There are
also N private signals ĩn = ṽ + ẽn with ẽn ∼ N(0, 1/τn), n = 1, . . . , N . The
stock payoff ṽ, the public signal error ẽ0, and N private signal errors ẽ1, . . . , ẽN are
independently distributed. Trader n observes signal ĩn privately but the equilibrium
price, as discussed below, fully reveals the average of other traders’ signals defined
by ĩ−n := 1

N−1

∑
m̸=n ĩm.

Traders agree about the precision of the public signal τ0 but agree to disagree
about the precisions of private signals τn. Traders are “relatively overconfident” in
that each trader believes his own signal is more precise than the signals of the other
traders; specifically, each trader n believes that τn = τH and τm = τL when m ̸= n,
with τH > τL ≥ 0.
Let En and V arn denote trader n’s expectation and variance operators conditional

on observing all signals i0, i1, . . . , iN . Using standard formulas for conditional means
and variances of jointly normally distributed random variables, we define

(2) τ := V ar−1
n {ṽ} = τv + τ0 + τH + (N − 1)τL,

and obtain

(3) En{ṽ} =
τ0
τ

· ĩ0 +
τH
τ

· ĩn +
(N − 1)τL

τ
· ĩ−n.

Utility Maximization with Market Power.

Traders are imperfect competitors who explicitly take into account the effect of
their trading on prices. Suppose trader n believes the price is a function of the
quantity xn he trades, p = P (xn). He thinks that his terminal wealth W̃n = ṽ · (Sn+
xn)−P (xn) · xn will be distributed as a normal random variable with the mean and
variance given by

(4) En{W̃n} = En{ṽ} · (Sn + xn)− P (xn) · xn,

(5) V arn{W̃n} = (Sn + xn)
2 · V arn{ṽ}.



6

Each trader n maximizes the exponential utility of his wealth,

(6) En{−e−A·W̃n} = − exp
(
− A · En{W̃n}+

1

2
A2 · V arn{W̃n}

)
.

The problem is equivalent to maximizing monotonically transformed expected utility
− 1

A
ln
(
−En{−e−A·W̃n}

)
. Plugging equations (2), (3), (4) and (5) into equation (6),

the trader’s optimization problems is to choose the quantity to trade xn to solve the
maximization problem
(7)

max
xn

([τ0
τ

· ĩ0 +
τH
τ

· ĩn +
τL
τ

· (N − 1) · ĩ−n

]
· (Sn + xn)− P (xn) · xn −

1

2τ
A · (Sn + xn)

2

)
.

For a perfect competitor, P (xn) would be just a constant p which does not depend
on xn. In exercising market power, the oligopolistic trader takes into account how
his choice of quantity xn affects the price P (xn).

Conjectured Linear Strategies.

As in Kyle (1989), we assume a single-price auction in which traders submit de-
mand schedulesXn(i0, in, Sn, p) to an auctioneer, who then calculates a market clear-
ing price p. Suppose trader n conjectures that the other N − 1 traders submit
symmetric linear demand schedules

(8) Xm(i0, im, Sm, p) = α · i0 + β · im − γ · p− δ · Sm, n = 1, . . . , N, m ̸= n.

From the market clearing condition
∑N

m=1Xm(i0, im, Sm, p) = 0 and the linear spec-
ification of demand for the other traders, it follows that xn +

∑
m̸=n(α · i0 + β · im −

γ · p− δ ·Sm) = 0. Since
∑N

m=1 Sm = 0, solving for p as a function of i0, i−n, Sn, and
xn yields price impact function of the following form

(9) P (i0, i−n, Sn, xn) =
α

γ
· i0 +

β

γ
· i−n +

1

(N − 1)γ
· xn +

δ

(N − 1)γ
· Sn.

Under the assumption that trader n knows the value of i−n, we plug equation (9)
into equation (7) and use the first order condition to find his optimal demand,
(10)

xn =

(
τ0
τ̄
· i0 + τH

τ̄
· in + (N−1)τL

τ̄
· i−n

)
−
(

α
γ
· i0 + β

γ
· i−n

)
−
(

δ
(N−1)γ

+ A
τ̄

)
· Sn

2
(N−1)γ

+ A
τ̄

.

In the numerator of this equation, the first term is trader n’s expectation of the
liquidation value, the second term is the market clearing price when trader n trades
a quantity of zero and has no inventory, the last term is the adjustment for existing
inventory. In the denominator, the first and second terms reflect how trader n
restricts the quantity traded due to market power and risk aversion, respectively.
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As in Kyle (1989), even though trader n does not observe i−n explicitly, he is still
able to implement this optimal strategy by inferring i−n from the market clearing
price; as in Kyle (1989) and Du and Zhu (2013), the strategies are ex post optimal.
Define the constant C := 1/((N − 1)γ) +A/τ + τL/(τβ). Solving for i−n instead

of p in the market clearing condition with linear conjectured strategies for the other
traders, substituting this solution into equation above, and then solving for xn, we
derive a demand schedule Xn(i0, in, Sn, p) for trader n as a function of price p,
(11)

Xn(i0, in, Sn, p) =
1

C
·
[(

τ0
τ

− (N − 1)τL
τ

α

β

)
· i0 +

τH
τ

· in +
(
(N − 1)τL

τ

γ

β
− 1

)
· p−

(
τL
τ

δ

β
+
A

τ

)
· Sn

]
.

Equilibrium.

In a symmetric linear equilibrium, the strategy chosen by trader n must be the
same as the linear strategy (8) conjectured for the other traders. Equating corre-
sponding coefficients of variables i0, in, P and Sn yields the system of four equations
in terms of four unknowns α, β, γ, and δ:

(12) α =
1

C

(
τ0
τ

− (N − 1)τL
τ

α

β

)
, β =

1

C

τH
τ
,

(13) γ = − 1

C

(
(N − 1)τL

τ

γ

β
− 1

)
, δ =

1

C

(
τL
τ

δ

β
+
A

τ

)
.

The unique solution is

(14) β =
(N − 2)τH − 2(N − 1)τL

A(N − 1)
,

α =
τ0

τH + (N − 1)τL
· β, γ =

τ

τH + (N − 1)τL
· β, δ =

A

τH − τL
· β.

THEOREM 1: Define the constant ∆H := τH − 2(τH + (N − 1)τL)/N . In addi-
tion to a no-trade equilibrium, which always exists, there exists a unique symmetric
equilibrium with linear trading strategies and non-zero trade if and only if ∆H > 0.
Such an equilibrium has the following properties:

1. The equilibrium demand functions are given by equations (8) and (14).

2. The equilibrium quantity traded by trader n is

(15) x∗n =
∆H

A
·
(̃
in − ĩ−n

)
− δ · Sn,
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3. The equilibrium price is

(16) P ∗ =
τ0
τ

· ĩ0 +
τH + (N − 1)τL

τ
· 1

N

N∑
m=1

ĩm.

The second order condition for optimization (7) is equivalent to the denominator of
equation (10) being positive, i.e., 2

(N−1)γ
+A

τ
> 0. Given the solution for γ in equation

(14), this second order condition holds if and only if ∆H > 0. From equation (14),
the condition ∆H > 0 also ensures that a trader’s demand function is increasing
in the trader’s own private signal (β > 0), increasing in the public signal (α > 0),
decreasing in price (γ > 0), and decreasing in the trader’s inventory (δ > 0). From
equation (15), the trader trades in the direction of his private signal and against the
average of the signals of others.
We think of ∆H as a measure of “disagreement,” which is positive if and only

if there is an equilibrium with trade. It reflects the extent by which each trader
believes that the precision of his own private signal τH more than twice exceeds
the precision of the average private signal in the market (including his own). The
necessary condition ∆H > 0 is equivalent to the condition

(17)
τH
τL

> 2 +
2

N − 2
.

A symmetric linear equilibrium does not exist unless N ≥ 3 and τH is sufficiently
more than twice as large as τL. To obtain an equilibrium with positive trading
volume, there needs to be “enough” disagreement. As in the model of Rostek and
Weretka (2012) with “bid-shading,” traders exploit their market power by trading
approximately one-half of the amount they believe would fully reveal their informa-
tion. If N → ∞, an equilibrium exists only if each trader believes that his signal
is more than twice as precise as other traders believe it to be, so that other traders
will be willing to take the opposite side of his trades. When there is not enough
disagreement, each trader wants to shade his bid more than the others, and the
result is no trade.2

2When there is not enough disagreement to sustain an equilibrium with pure strategies, one
might imagine that it is possible to have an equilibrium with mixed strategies. For mixed strategies
to be an equilibrium, the trader must be indifferent across the various randomized choices of
quantities he trades. For example, if we add normally distributed noise to quantities traded,
symmetrically across all traders, a mixed strategy equilibrium requires the second order condition
to be exactly zero. This means that the quadratic objective function reduces to a linear function,
i.e., the denominator of equation (10) is zero. Since the trader has to be indifferent across various
randomizations, this further implies that the linear function must be a constant, independently
of the quantity traded. This assumption cannot hold, because a trader with a positive value of
in would always want to buy unlimited quantities and a trader with a negative in would always
want to sell unlimited quantities. Thus, an equilibrium with symmetric normally distributed noise
cannot exist. When noise is not normally distributed or the equilibrium is not symmetric, the
objective function is not quadratic any more, but it will still be difficult to find a mixed strategy
equilibrium given that the sensitivity of utility to a the trader’s own private information must be
well-defined.
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Equilibrium Properties.

The fully revealing equilibrium price (16) is the average of all traders’ valuations
of the risky asset, i.e., the price is the precision-weighted average of the public signal
i0 (with precision τ0) and the N private signals in (with precision [τH+(N−1)τL]/N
each). Each trader believes that signals are weighted in equilibrium price incorrectly.
Each trader believes that his own signal should receive a higher weight of τH and
the other N − 1 signals should each receive a lower weight of τL. There is no risk
adjustment, because the risky asset is in zero-net supply and there are no noise
traders.
Traders trade for both information and hedging motives. The equilibrium quantity

traded x∗n in equation (15) is a linear function of the deviation of a trader’s signal
from the average of other traders’ signals (̃in − 1

N

∑
m̸=n ĩm) and his inventory Sn.

Each trader “shades” the quantity traded relative to the quantity that a perfect
competitor would trade to exercises his market power. To quantify this shading,
define a trader’s “target inventory” STI

n as the inventory such that he does not want
to trade (x∗n = 0), given from equation (15) by

(18) STI
n =

1

A
·
(
1− 1

N

)
· (τH − τL) · (̃in − ĩ−n).

Then, his optimal demand can be written

(19) x∗n = δ · (STI
n − Sn),

where the parameter δ is defined in equation (14).
These equations have a simple intuition. A target inventory STI

n is proportional
to a trader’s risk tolerance 1/A and the difference between his valuation and the
valuation of other traders, which itself is proportional to overconfidence τH − τL and
to the difference between a trader’s signal and the average signal of others (̃in− ĩ−n).
Even if N goes to infinity, traders continue to agree to disagree and their target
inventories do not converge to zero.
The parameter δ determines the speed with which traders adjust positions towards

target levels. This parameter is always less than one, decreasing monotonically in
precision τL from δ = 1 − 1/(N − 1) < 1 when τL = 0 to δ = 0 when τL = (1 −
1/(N − 1))τH/2, which corresponds to ∆H = 0. If traders were perfect competitors,
it could be shown that the competitive equilibrium price would be still defined by
equation (16) but the optimal demand would be equal to x∗n = STI

n −Sn, i.e., traders
would move all the way from initial inventory Sn to target inventory STI

n and δ = 1
in equation (19). Thus, monopoly power reduces the amount of trading relative to
perfect competition.
Equation (9) implies that the price impact function has the form

(20) P (xn, Sn) = λ0 + λS · Sn + λx · xn.
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Using equations (13) and (14), its coefficients are

(21) λS :=
δ

(N − 1)γ
=
τH + (N − 1)τL

τ
· A

(N − 1)(τH − τL)
.

and

(22) λx :=
λS
δ

=
1

(N − 1)γ
=

A

N∆H

· τH + (N − 1)τL
τ

.

In equilibrium, traders provide liquidity to one another because they agree to dis-
agree about the quality of their respective signals. The liquidity measures λS and
λx depend on the degree of disagreement and risk aversion. In the continuous-time
model, which we consider next, the first component λS · Sn will be related to per-
manent linear impact as in Kyle (1985) and the second component λx · xn will be
related to temporary price impact determined by the speed of trading (x∗n will be
replaced by the derivative of the trader’s inventory dSn/dt). As we shall see below,
the continuous time model sharpens the insights derived from this one-period model.

II. Continuous-time Model

There are N risk-averse oligopolistic traders who trade at price P (t) a risky asset
in zero net supply against a risk-free asset which earns constant risk-free rate r.
The risky asset pays out dividends at continuous rate D(t). Dividends follow a

stochastic process with mean-reverting stochastic growth rate G∗(t), constant in-
stantaneous volatility σD > 0, and constant rate of mean reversion αD > 0,

(23) dD(t) = −αD ·D(t) · dt+G∗(t) · dt+ σD · dBD(t).

The growth rate G∗(t) follows an AR-1 process with mean reversion αG and volatility
σG:

(24) dG∗(t) = −αG ·G∗(t) · dt+ σG · dBG(t).

The dividend is publicly observable, but the growth rate G∗(t) is not observed by
any trader.
Each trader n observes a continuous stream of private information In(t) defined

by the stochastic process

(25) dIn(t) = τ 1/2n · G∗(t)

σG · Ω1/2
· dt+ dBn(t), n = 1, . . . , N.

Since its drift τ
1/2
n · G∗(t)/(σGΩ

1/2) is proportional to G∗(t), each increment dIn(t)
in the process In(t) is a noisy observation of the unobserved growth rate G∗(t). In
equation (25), the parameters σG and Ω are scaling parameters which simplify the
intuitive interpretations of the model. The “precision” parameter τn measures the
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informativeness of the signal dIn(t) as a signal-to-noise ratio describing how fast the
information flow generates a signal of a given level of statistical significance. The
precise interpretation of Ω is discussed below.3

Analogously to the one period model, we assume that each trader believes that his
own private information In(t) has “high” precision τn = τH and the other traders’
private information have “low” precision τm = τL for m ̸= n, with τH > τL ≥ 0.
Each trader’s information set at time t consists of the histories of the dividend

process D(s), the trader’s own private information In(s), and the market price P (s),
s ∈ [−∞, t]. We assume that all traders process information rationally; they apply
Bayes Law correctly given their possibly incorrect beliefs.
Using the scaling parameter Ω, we can express the information content of the

publicly observable dividend D(t) in a form consistent with the notation for private
signals In(t) in equation (25). Define dI0(t) := [αD ·D(t) · dt+ dD(t)] /σD and
τ0 := Ω · σ2

G/σ
2
D with dB0 := dBD. Then the public information I0(t) in the divided

stream (23) can be written

(26) dI0(t) = τ
1/2
0 · G∗(t)

σG · Ω1/2
· dt+ dB0(t).

Observing the process I0(t) is informationally equivalent to observing the dividend
process. The quantity τ0 measures the precision of the dividend process in units
analogous to the units of precision for private signals. This notation simplifies the
Kalman filtering formulas we are about to derive.
We assume that the values of the parameters αD, σD, αG, σG, τH , τL, and Ω

are common knowledge. It is common knowledge that BD(t), BG(t), B1(t), ...BN(t)
are independently distributed standardized Brownian motions. Traders stubbornly
believe that their beliefs τH or τL about the precision parameters τ0, . . . , τN are point
estimates with no possibility of error. This stubborn belief structure of all traders
is also common knowledge. Traders thus “agree to disagree” about the precisions
of their private signals. Regardless of the true precisions of the signals, traders are
“relatively overconfident” about the precision of their signals.
Let Sn(t) denote the inventory of trader n at time t. Since the risky asset is in zero

net supply, we have
∑N

n=1 Sn(t, P (t)) = 0. We conjecture that traders smooth out
their trading, i.e., the trajectories of their inventories Sn(t) are differentiable func-
tions of time without diffusion terms. Intuitively, infinitely fast portfolio updating
cannot be an equilibrium. If other traders traded infinitely fast, each trader would
then believe that he could lower his execution costs by trading more slowly than
the other traders—essentially by walking up or down the residual demand schedules

3In general, the units in which the signal In(t) is measured do not affect the information content
of the signal itself, as long as traders understand the scaling; thus, In(t) has the same information
content as K ·In(t) for any constantK, assuming the value of the constantK is common knowledge.
Since the innovation variance of the signal dIn(t) can be estimated arbitrarily precisely by observing
an arbitrarily large number of past signals, traders do not disagree with the hypothesis that the
innovation variance of the signal is one. Scaling the innovation variance of In(t) in equation (25)
to make it equal one is therefore a normalization without loss of generality.
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they present to him—but all traders cannot trade more slowly than average. This
is similar to Kyle (1985), where it turns out to be optimal for informed trader in
Kyle (1985) to smooth out his trading so that his inventory is a continuous function
of time. The noise traders in Kyle (1985) do not trade optimally; they generate
high transactions costs by trading infinitely impatiently, so that their inventory is
a diffusion, not a differentiable function of time. If they were modeled as hedgers
motivated by endowment shocks, they would smooth their trading as well, like in
Vayanos (1999), and this would “break” the equilibrium in Kyle (1985).
We therefore specify trading strategies and market clearing condition in terms

of rates of trading, not shares traded. Each trader’s trading strategy is assumed
to be a mapping from his information set at time t into a “flow demand schedule”
Xn(t, .) defining his “trading intensity” as a function of its price P (t). An auctioneer
continuously calculates the market clearing price P (t) such that

∑N
n=1Xn(t, P (t)) =

0. The trader’s inventory follows dSn(t)/dt = Xn(t, P (t)). Each trader takes into
account the effect of his trading on market prices.
Each trader chooses a consumption intensity cn(t) and trading strategy Xn(t, .)

to maximize an expected constant-absolute-risk-aversion (CARA) utility function.
Let Un(c(s)) := −e−A·c(s) be an exponential utility function with a constant absolute
risk aversion parameter A. Letting ρ denote a time preference parameter, trader n
solves the maximization problem

(27) max
{cn(t),Xn(t,.)}

En
t

{∫ ∞

s=t

e−ρ(s−t) · U(cn(s)) · ds
}
,

subject to the inventory constraint dSn(t) = Xn(t, P (t))dt and the budget constraint
dW = (rW (t) + Sn(t)D(t)− cn(t)−P (t)Xn(t, P (t)))dt. The superscript n indicates
that the expectation is taken with respect to the beliefs of trader n. The subscript t
indicates that the expectation is taken with respect to trader n’s information set at
time t. As shown below, in equilibrium, each trader can infer the average of other
traders’ private signals from the history of prices, so all traders act as if they are
fully informed with the same information D(t), I1(t), . . . , IN(t).
We will show numerically that if disagreement is large enough—i.e., if τH is suf-

ficiently larger than τL—there will be trade based on private information. The
perceived precisions τL and τH affect the equilibrium prices and quantities traded.
Without overconfidence—e.g., in a model with rational expectations— there would
be no trade after traders unwind their suboptimal initial endowments.

Bayesian Updating with Signals of Arbitrary Precision.

In general, discussing how beliefs of traders about the information content of sig-
nals affects the information content of prices is tricky because the discussion requires
notation which keeps track of the unobserved true values of the parameters, the be-
liefs of an economist who studies the market outcomes, and the possibly incorrect
beliefs of the traders in the market. A hypothetical economist who studies this equi-
librium may assume precisions arbitrarily different from the traders in the market,
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and the traders in the market may, in principle, assume values arbitrarily differ-
ent from other traders. Of course, by studying the equilibrium of the economy, an
economist will not change the equilibrium but the economist’s beliefs about the val-
ues of the precisions will affect how the economist interprets the information content
of prices.
We therefore first study information processing for arbitrary “generic” beliefs

τ̄0, τ̄1, ...τ̄N about the precisions.
Define G(t) = Et{G∗(t)}, where the subscript t denotes conditioning on the history

of the signals I0(s), . . . , IN(s) for s ∈ [−∞, t]. Without loss of generality, we define
Ω̄ as the error variance Ω̄ := V ar{(G∗(t)−G(t))/σG}. We assume a steady state in
which Ω̄ is a constant which does not depend on time. Like a squared Sharpe ratio,
Ω̄ measures the error variance in units of time. For example, if time is measured in
years, Ω̄ = 4 means that the estimate of G∗(t) is “behind” the true value of G∗(t)
by an amount equivalent to four years of volatility unfolding at rate σG. There are
simple and intuitive formulas for information processing:

LEMMA 1: Given generic beliefs τ̄1, . . . , τ̄N , let τ̄ denote the sum of precisions

(28) τ̄ := τ̄0 +
N∑

n=1

τ̄n.

Then Ω̄ and dG(t) satisfy

(29) Ω̄−1 := V ar−1

{
G∗(t)−G(t)

σG

}
= 2 · αG + τ̄ ,

(30) dG(t) = − (αG + τ̄) ·G(t) · dt+ σG · Ω̄1/2 ·
N∑

n=0

τ̄ 1/2n · dIn.

The error variance Ω̄ corresponds to a steady state that balances an increase
in error variance due to stochastic change dBG(t) in the true growth rate with a
reduction in error variance due to a mean-reversion of the true growth rate at rate
αG and arrival of new information with total precision τ̄ .
Note that Ω̄ is a not a “free parameter,” but is instead determined as an endogenous

function of the other parameters. Equation (29) implies that Ω turns out to be
the solution to the quadratic equation Ω̄−1 = 2 · αG + Ω̄ · σ2

G/σ
2
D +

∑N
n=1 τ̄n. In

equations (25) and (26), we scaled the units with which precision is measured by the
endogenous parameter Ω because this leads to simpler Kalman filtering expressions
which bring out more clearly intuition about signal processing.
From equation (30), the estimate G(t) can be conveniently written as the weighted

sum of N + 1 sufficient statistics Hn corresponding to information flow dIn. Define
the sufficient statistics Hn(t) by

(31) Hn(t) :=

∫ t

u=−∞
e−(αG+τ̄)·(t−u) · dIn(u), n = 0, 1, ...N,
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which implies

(32) dHn(t) = −(αG + τ̄) ·Hn(t) · dt+ dIn(t), n = 0, 1, ...N.

Then G(t) becomes a linear combination of sufficient statistics Hn(t) with weights

proportional to the square roots of the precisions τ̄
1/2
n :

(33) G(t) = σG · Ω̄1/2 ·
N∑

n=0

τ̄ 1/2n ·Hn(t).

The importance of each bit of information dIn about the growth rate G(t) decays
exponentially at a rate αG + τ̄ , which is the same for all of the signals. The half-
life of a signal, ln 2/(αG + τ̄) decreases as the “aggregate precision” τ̄ increases.
Even though the true unobserved growth rate may have a long half life (small αG),
information about this growth rate may decay rapidly if aggregate precision τ̄ is
large.
Note that equations (25), (26), and (30) imply that the estimate G(t) mean-reverts

to zero at a rate αG while moving towards the true value G∗ at rate τ :

(34) dG(t) = −αG ·G(t) · dt+ τ̄ · (G∗ −G) · dt+ σG · Ω̄1/2 ·
N∑

n=0

τ̄ 1/2n · dBn(t).

Bayesian Updating by Traders in the Model.

Asset managers who trade based on statistical models typically take raw informa-
tion and process it into “signals”. Returns forecasts are then generated as functions
of the signals. The signals are often scaled so that they have a meaningful inter-
pretation in terms of intuition or statistics. Here, we can think of the information
processes In(t) as “raw information” and the sufficient statistics Hn(t) as “signals.”
In equilibrium, traders believe that their signals forecast returns. Given the depth
of the market, they trade on the signals with a aggressiveness that depends on the
information content and the decay rate of the signals.
We next consider how traders “in the model” use their signals to update their

beliefs about the unobserved growth rate G∗(t).
Let Gn(t) := En

t {G∗(t)} denote trader n’s estimate of the unobserved growth rate
G∗(t) conditional on all information. The superscript n indicates that conditional
distributions of growth rates are calculated by trader n based on his belief that his
own signal signal has high precision τH and other traders’ signals have low precision
τL. The subscript t denotes, as before, conditioning on the history of all information
I0(s) = D(t), I1(s), . . . , IN(s), s ∈ [−∞, t].
It is common knowledge that each trader believes his own signal has high precision

τH and other traders’ signals have low precision τL. Thus, if we define

(35) τ := τ0 + τH + (N − 1)τL, Ω−1 := 2αG + τ,



15

all traders agree that the error variance is given by Ω̄ = Ω from equation (29),
total precision is given by τ̄ = τ from equation (28), with τ0 = Ωσ2

G/σ
2
D. Traders

agree that the correct way to process available information is to construct signals
Hn(t), n = 0, ..N by plugging τ and Ω into equation (31) and (32). Because they
disagree about the precisions, traders disagree about the weights used to aggregate
the signals Hn(t), n = 0, . . . , N into an estimate of a growth rate in equation (33);
each assigns a larger weight to his own signal than to others’ signals.
Let H−n(t) denote the average of the other traders’ signals m ̸= n:

(36) H−n(t) :=
1

N − 1

∑
m=1,..,N,m ̸=n

Hm(t),

Equation (33) implies that trader n’s estimate of the true growth rate Gn(t) can be
expressed as a linear combination of three signals H0(t), Hn(t), and H−n(t):

(37) Gn(t) := σG · Ω1/2 ·
(
τ
1/2
0 ·H0(t) + τ

1/2
H ·Hn(t) + (N − 1)τ

1/2
L ·H−n(t)

)
.

Trader n’s optimal trading strategy depends on trader n’s estimates of the unob-
served growth rate G∗(t) and his beliefs about the dynamic statistical relationship
between this rate and the signals H0(t), Hn(t) and H−n(t).
Define the N + 1 processes dBn

0 , dB
n
n , and dB

n
m, m = 1, . . . N , m ̸= n, by

(38) dBn
0 (t) = τ

1/2
0 (σGΩ

1/2)−1 · (G∗(t)−Gn(t)) · dt+ dBD(t),

(39) dBn
n(t) = τ

1/2
H (σGΩ

1/2)−1 · (G∗(t)−Gn(t)) · dt+ dBn(t),

and

(40) dBn
m(t) = τ

1/2
L (σGΩ

1/2)−1 · (G∗(t)−Gn(t)) · dt+ dBm(t).

Since trader n’s forecast of the error G∗(t) − Gn(t) is zero given his information
set, these N +1 processes are independently distributed Brownian motions from the
perspective of trader n. In terms of these Brownian motions, trader n thinks that
signals change as follows:

(41) dH0(t) = −(αG + τ) ·H0(t) · dt+ τ
1/2
0 · (σGΩ1/2)−1 ·Gn(t) · dt+ dBn

0 (t),

(42) dHn(t) = −(αG + τ) ·Hn(t) · dt+ τ
1/2
H · (σGΩ1/2)−1 ·Gn(t) · dt+ dBn

n(t),

(43)

dH−n(t) = −(αG+τ)·H−n(t)·dt+τ 1/2L ·(σGΩ1/2)−1 ·Gn(t)·dt+
1

N − 1

N∑
m=1,m̸=n

dBn
m(t).

Note that each signal drifts towards zero at rate αG + τ and drifts towards the
optimal forecast Gn(t) at a rate proportional related to the square root of the signal’s

precisions τ
1/2
0 , τ

1/2
H , or τ

1/2
L , respectively.
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Utility Maximization with Market Power.

We conjecture a steady state value function V (Mn, Sn, D,H0, Hn, H−n), where
Mn denote trader n’s cash holdings (measured in dollars) and Sn denote trader n’s
holdings of the traded asset (measured in shares).
In a competitive model, a trader’s value function depends on his wealth but does

not depend on the decomposition of his wealth into his various security holdings.
With imperfect competition, the decomposition of a trader’s wealth into various
security holdings does affect his value function because the trader cannot costlessly
convert one security holding into cash or another security holding by trading at
market prices. It is therefore necessary to keep track of both variables Mn and Sn

separately.
Also, we expect the asset price to be a linear combination of two components: (1)

a dividend level component linear in dividends D(t) (measured in dollars per share
per unit of time) and (2) a dividend-growth component linear in the variables H0(t),
Hn(t), and H−n(t). We will use the concept of “no-regret” pricing, based on the
intuition that by conditioning on the market price, the trader can achieve the same
outcome that could be obtained if he directly observed the average of other traders’
signals H−n(t). Therefore we include H−n(t) as a state variable in the value function
and omit the price P (t).
In deriving the equilibrium below, the problem is simplified if the three state

variables H0(t), Hn(t), and H−n(t) are replaced with two “composite” signals, which
we denote Ĥn(t) and Ĥ−n(t). Define the weighting constant Â by

(44) Â := τ
1/2
0 · (τ 1/2H + (N − 1)τ

1/2
L )−1.

Now define the two composite signals Ĥn(t) and Ĥ−n(t) by

(45) Ĥn(t) := Hn(t) + Â ·H0(t)

(46) Ĥ−n(t) := H−n(t) + Â ·H0(t)

Trader n’s estimate of dividend growth rate can now be expressed as a function of
the two composite signals Ĥn(t) and Ĥ−n(t) as

(47) Gn(t) = σG · Ω1/2
(
τ
1/2
H · Ĥn(t) + (N − 1)τ

1/2
L · Ĥ−n(t)

)
.

In terms of the composite variables Ĥn and Ĥ−n, we conjecture (and verify be-
low) a steady state value function of the form V (Mn, Sn, D, Ĥn, Ĥ−n). Letting
(cn(t), Xn(t, .)) denote the optimal consumption and investment policy, we have

(48) V (M,Sn, D, Ĥn, Ĥ−n) := max
{cn(t),Xn(t,.)}

En
t

{∫ ∞

s=t

−e−ρ(s−t)−A·cn(s) · ds
}
,
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The five state variables satisfy five stochastic differential equations

(49) dMn(t) = (r ·Mn(t) + Sn(t) ·D(t)− cn(t)− P (xt) ·Xn(t, P (t))) · dt,

(50) dSn(t) = Xn(t, P (t)) · dt,

(51) dD(t) = −αD ·D(t) · dt+Gn(t) · dt+ σD · dBn
0 (t),

dĤn(t) = − (αG + τ) · Ĥn(t) · dt(52)

+ (τ
1/2
H + Âτ

1/2
0 ) ·

(
τ
1/2
H (t) · Ĥn + (N − 1)τ

1/2
L · Ĥ−n(t)

)
· dt

+ Â · dBn
0 (t) + dBn

n(t),

dĤ−n(t) = − (αG + τ) · Ĥ−n(t) · dt(53)

+ (τ
1/2
L + Âτ

1/2
0 ) ·

(
τ
1/2
H · Ĥn(t) ·+(N − 1)τ

1/2
L · Ĥ−n(t)

)
· dt

+ Â · dBn
0 (t) +

1

N − 1

N∑
m=1,m̸=n

dBn
m(t),

The seemingly complicated dynamics of Ĥn and Ĥ−n in equations (52) and (53) can
be derived from equations (41), (42), and (43).
The value function V (. . .) satisfies the transversality condition

(54) lim
t→+∞

En{e−ρtV (Mn(t), Sn(t), D(t), Ĥn(t), Ĥ−n(t))} = 0.

Linear Conjectured Strategies.

Based on his information set, each trader submits a flow demand schedule for the
rate at which he will buy the asset at time t as a function of the market clearing
price. Trader n conjectures that the other N − 1 traders, m = 1, . . . N,m ̸= n,
submit symmetric linear demand schedules of the form

(55) Xm(t) = γD ·D(t) + γH · Ĥm(t)− γS · Sm(t)− γP · P (t).

The demand schedules are defined by the four constants γD, γH , γS, and γP .
Let xn(t) = Xn(t, P (t)) denote the quantity traded by trader n. From the market

clearing condition and the linear conjecture for demand schedules of other traders,
it follows that

(56) xn(t) +
∑
m̸=n

(
γD ·D(t) + γH · Ĥm(t)− γS · Sm(t)− γP · P (t)

)
= 0.
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Since zero net supply implies
∑N

m=1 Sm(t) = 0, solving for P (t) as a function of xn(t)
yields the following price impact function trader n conjectures that he faces:

(57) P (xn(t)) =
γD
γP

·D(t) +
γH
γP

· Ĥ−n(t) +
γS
γP

1

N − 1
· Sn(t) +

1

(N − 1)γP
· xn(t).

The key difference from Kyle (1985) is that the residual demand curve is specified
in terms of trader n’s rate of trading xn(t) rather than in terms of the number of
shares traded. This specification makes temporary price impact associated with the
speed with which traders build their positions economically relevant in a manner not
present in the model of Kyle (1985).
In the continuous model of Kyle (1985), the informed trader, who buys at rate

x(t), conjectures that price follows the process dP (t) = λ · (σU · dBU(t) + x(t) · dt),
where dBU(t) represents random noise trading. If the informed trader buys Q shares
over a period of time ∆t, he “walks up the demand schedule” and pays an expected
average price

(58) P (t) +
1

2
λ ·Q.

His permanent price impact is λ · Q. Regardless of how fast he trades, he has no
temporary price impact.
By contrast, if trader n buys Q shares over the time interval ∆t in our model,

equation (57) implies that the unconditional expected price (e.g., assumingH−n = 0)
is

(59) P (t) +
1

2

γS
γP

1

N − 1
·Q+

1

(N − 1)γP
·Q/∆t.

The permanent price impact coefficient γS/γP · 1/(N − 1) · Q corresponds to λ in
Kyle (1985). The additional term 1/(N−1) ·1/γP ·Q/∆t represents temporary price
impact. The temporary price impact cost is proportional to the speed 1/∆t with
which trader n buys Q shares. It becomes arbitrarily large if he buys that quantity
over an arbitrarily short time interval.
Plugging the price impact function (57) into the optimization problem (48), trader

n solves for his optimal consumption and demand schedule. Imperfect competition
requires trader n to take into account both his permanent and temporary price
impact in choosing how fast to change his inventory. Trader n exercises monopoly
power in choosing how fast to demand liquidity to profit from innovations in his
private information. He also exercises monopoly power in choosing how fast to
provide liquidity to the N − 1 other traders who, according to trader n’s beliefs,
trade with overconfidence and make supplying liquidity profitable.
In equilibrium, the temporary price impact cost parameter γP represents compen-

sation to the other traders for providing trader n with liquidity quickly. Intuitively,
the symmetry of equilibrium trading strategies requires traders to believe they are
being adequately compensated for both supplying and demanding liquidity in a
manner consistent with market clearing.
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Conjectured Value Function.

We conjecture and verify that the value function V (M,S,D, Ĥn, Ĥ−n) has the
specific quadratic exponential form

V (Mn, Sn, D, Ĥn, Ĥ−n) = − exp
(
ψ0 + ψM ·Mn +

1

2
ψSS · S2

n + ψSD · SnD +(60)

+ψSn · SnĤn + ψSx · SnĤ−n +
1

2
ψnn · Ĥ2

n +
1

2
ψxx · Ĥ2

−n + ψnx · ĤnĤ−n

)
.

The nine constants ψ0, ψM , ψSS, ψSD, ψSn,ψSx,ψnn,ψxx, and ψnx have values consis-
tent with a steady state equilibrium.
Notice that “wealth” does not appear in the value function because wealth is

not well-defined. Trader n is always influencing the mark-to-market value of his
risky inventory by choosing his rate of trading xn(t) = dSn(t)/dt. Instead, the
two components of wealth—cash Mn and inventories Sn—enter the utility function
directly. The term ψM measures the utility value of cash.
The terms ψSS, ψSD, ψSn,ψSx measure the utility value of risky asset holdings.

The ψnn, ψxx, and ψnx terms capture the value of future trading opportunities based
on current public and private information. The value of trading on innovations to
future information is built into the constant term ψ0.

Characterization of Steady-State Symmetric Equilibrium with Linear
Trading Strategies and Quadratic Value Functions.

To solve the trader’s optimization problem, we use the “no-regret” approach found
in Kyle (1989): Instead of solving for a demand function which depends on price, we
suppose instead that the trader observes his equilibrium residual supply schedule,
which reveals the value of H−n(t), then picks the optimal point on this residual
supply schedule. We then show that this optimal point can be implemented with a
linear demand schedule.
To solve for a steady state equilibrium, it is necessary to determine simultaneously

values for the four γ-parameters defining the optimal demand schedule in equation
(55) and the nine ψ-parameters defining the value function in equation (60). The
solution to these equations is discussed in the Appendix. We obtain the following
theorem:

THEOREM 2: Characterization of Equilibrium. There always exists a no-
trade equilibrium. In addition, there may exist a steady state equilibrium with sym-
metric linear flow trading strategies of the form conjectured in equation (55) and a
value function V (Mn, Sn, D, Ĥn, Ĥ−n) for trader n satisfying the quadratic conjecture
in equation (60). Such an equilibrium has the following properties:
The parameters ψSx, γH , γS, and γD satisfy

(61) ψSx =
N − 2

2
ψSn, γH =

NγP
2ψM

ψSn, γS = −(N − 1)γP
ψM

ψSS, γD =
γP
ψM

ψSD.
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The parameters ψM and ψSD satisfy

(62) ψM = −rA, ψSD = − rA

r + αD

,

and ψ0 satisfies equation

(63) ψ0 = 1− log{r}+ 1

r

(
−ρ+ 1

2
(1 + Â2)ψnn +

1

2

(
1

N − 1
+ Â2

)
ψxx + Â2ψnx

)
.

The six constants γP , ψSS, ψSn, ψnn, ψxx, and ψnx satisfy the six polynomial equa-
tions (109)-(114) in the Appendix. The second order condition requires downward
sloping demand schedules, implying γP > 0 and ψSS > 0, and ψSn < 0.
Define the average of traders’ expected growth rates Ḡ(t) by

(64) Ḡ(t) :=
1

N

N∑
n=1

Gn(t),

and define the constants CL and CG by

(65) CL := − ψSn

2ψSS

, CG :=
ψSn

2ψM

N(r + αD)(r + αG)

σGΩ1/2(τ
1/2
H + (N − 1)τ

1/2
L )

.

Trader n’s optimal consumption satisfies equation

(66) c∗n(t) = − 1

A
· log(ψM · V (t)/A).

Trader n’s optimal flow demand schedule x∗n(t) makes inventories Sn(t) a differen-
tiable function of time such that

(67) x∗n(t) =
dSn(t)

dt
= γS ·

(
CL · (Hn(t)−H−n(t))− Sn(t)

)
.

The equilibrium price can be written

(68) P ∗(t) =
D(t)

r + αD

+
CG · Ḡ(t)

(r + αD)(r + αG)
.

Note there is always a trivial no-trade equilibrium, as in the one-period model.
If each trader submits a no-trade demand schedule Xn(t, .) ≡ 0, then such a no-
trade demand schedule is optimal for all traders. This is not a symmetric linear
equilibrium in which an auctioneer can establish a meaningful market price.
Equations (67) and (68) imply that the equilibrium with trade has a surprisingly

simple structure in which quantities adjust to new information slowly while prices
adjust instantaneously. Equation (68) implies that each trader has a target inventory
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proportional to the difference between his own private signalHn(t) and the average of
other traders’ private signals H−n(t) inferred from prices. Each trader continuously
moves his inventory towards the target inventory so that the difference decays at rate
γS. Equation (68) implies that the price is a linear function of the weighted average
of all traders expected growth rates. Price is also the precision-weighted average

of the public signal H0(t) (with precision τ
1/2
0 ) and the N private signals Hn(t)

(with precision [τ
1/2
H + (N − 1)τ

1/2
L ]/N each). The price responds instantaneously to

innovations in each trader’s private information, so that the average of all signals
is immediately revealed. This occurs despite the fact that, to reduce trading costs
resulting from adverse selection, each trader intentionally slows down his trading to
reduce other traders’ estimates of the magnitude of his private signal.

Implied Price Impact Model.

Since we have an equilibrium model with imperfect competition, we can explicitly
calculate the effect on prices if a trader deviates from his optimal inventory policy
S∗
n(t) and instead holds inventories denoted Sn(t), assumed to be a differentiable

function of time with xn(t) := dSn(t)/dt. As a result of the deviation, the old
equilibrium price path P ∗(t) will be changed to a different price path, denoted P (t),
given by

(69) P (t) = P ∗(t) + λS · (Sn(t)− S∗
n(t)) + λx · (xn(t)− x∗n(t)) .

From equation (57), the constants λS and λx are given by

(70) λS :=
γS

(N − 1) · γp
, λx :=

1

(N − 1) · γp
.

The term λS · (Sn(t)− S∗
n(t)) represents permanent price impact, linear in the num-

bers of shares. The term λx ·(xn(t)− x∗n(t)) represents transitory price impact linear
in the rate of trading. Larger trades and faster trading result in larger permanent
and temporary price changes.

An Existence Condition.

We implement the characterization of equilibrium in Theorem 2 by attempting to
solve the equations numerically. As expected, numerical algorithms do not always
find an equilibrium with trade satisfying Theorem 2.
Although we have not been able to prove analytically the conditions under which

equilibrium exists, extensive numerical experimentation supports the following intu-
itive argument: Like the one period model, we expect equilibrium with trade to exist
only if there is enough disagreement. With continuous trading, each trader tries to
exercise monopoly power by smoothly walking along the residual demand schedules
of other traders rather than trade at one market clearing price. If ∆P denotes the
price impact of trading smoothly, then the average transactions price incorporates
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a realized price impact cost of approximately ∆P/2. Compared with a single round
of trading, the price impact cost is one-half the cost of trading the entire quantity
in one auction with impact ∆P . Each trader therefore believes that this smooth
trading strategy extracts more value from other traders than the single price of a
one-shot auction. For traders to be willing to take the other side of the smooth
trades of their competitors, traders must believe that their competitors’ signals are
only about half as precise as in the one period model. With continuous trading,
existence of an equilibrium with trade may therefore require “more disagreement”
than in the one-period model—by a factor of approximately two.
To convert this intuitive argument into mathematics, fix all of the exogenous pa-

rameters except for the number of “other” traders N − 1 and the “low” precision
of their signals τL. Now allow N − 1 and τL to vary such that the total precision
(N − 1)τL of other traders is constant. If N − 1 is very large and τL is very small,
there is a huge degree of disagreement, each trader is small relative to the market,
and an equilibrium should exist which resembles perfect competition or monopolistic
competition . As N − 1 shrinks and τL increases, eventually a point is reached such
that there is not enough disagreement to support an equilibrium. Just before this
point is reached, the parameter γP—which measures the liquidity of the market—
should fall to a value close to zero; the equilibrium should involve very little trade;
and the value function should resemble a no-trade equilibrium. The value of N − 1
such that γP = 0 defines defines a “critical” value N∗ (not necessarily an integer)
such that equilibrium exists if and only if N > N∗.
This intuitive argument leads to a mathematically precise existence condition de-

rived from the six equations in six unknowns (109)-(114) in the Appendix. Plug
γP = 0 into these equations, representing no market liquidity. Now, holding the
other exogenous parameters constant—allow N −1 and τL to vary so that (N −1)τL
is constant and the six equations have a solution. With γP = 0, it is clear that
ψnn = ψnx = ψxx = 0 solves the last three of the six equations, consistent with
the intuition that information has no value if there is no market liquidity. It is
straightforward to show that a solution to the first three equations requires that the
critical value N∗ satisfy τH/τL = (2+2/(N∗− 2))2. We therefore conjecture that an
equilibrium with trade, consistent with Theorem 2, exists if and only if

(71)
τH
τL

>

(
2 +

2

N − 2

)2

.

Our extensive examination of numerical solutions to the six equations in six un-
knowns supports this conjecture. We have found that precisely one solution with
downward sloping demand schedules (γP > 0) is discovered when existence condi-
tion (71) is satisfied, and no solution with downward sloping demand schedules is
discovered when inequality (71) is reversed.
Since the existence condition for the one-period model can be written τH/τL >

2 + 2/(N − 2), the existence condition for the continuous model in equation (71)
is the square of the existence condition for the one-period model. For relatively



23

large N , existence in the one period model requires that each trader believe the high
precision τH of his own signal to be somewhat more than twice as large as the low
precisions τL of the other N − 1 traders. In the continuous model, existence requires
that each trader believe the high precision τH of his signal to be somewhat more
that four times larger than the low precisions τL of the other N − 1 traders. These
numerical results are consistent with the spirit of Vayanos (1999) and Du and Zhu
(2013), who find that increasing the interval between rounds of trading increases
trading by providing traders with a “commitment” not to trade between trading
rounds.

Numerical Comparative Statics Results.

Next, we analyze numerically how a degree of competition and overconfidence
affect the solution. We keep the total precision τ fixed and vary the degree of over-
confidence measured by the ratio of precisions τH/τL and the degree of competition
measured by the number of traders N .
Figure 1 shows the effect of changes in degree of overconfidence τH/τL on param-

eters γS, γP , CG, CL, 1/λS and 1/λx. We assume that r = 0.01, A = 1, αD = 0.1,
αG = 0.02, σD = 0.5, σG = 0.1, τ0 = Ωσ2

G/σ
2
D = 0.0054 and N = 100. We change τH

and τL, keeping the total precision fixed at τ = 7.4. Higher values of the ratio τH/τL
correspond to higher degree of overconfidence. Note that the equilibrium exists only
when τH is sufficiently large relative to τL, as described in equation (71), otherwise
the numeric algorithm for solving the system (109)-(114) does not converge to the
solution.
The coefficient CG decreases monotonically as τH/τL increases. The more traders

disagree with each other, the more they discount actions of others and therefore
dampen the equilibrium price sensitivity to the average signal. The rate of inventory
adjustment γS and the sensitivity of trading rate to prices γP increases, as the degree
of disagreement increases. The coefficient CL related to target inventories is a non-
monotonic function of τH/τL. The price impact coefficients λS and λx decreases,
as the degree of disagreement increases, since traders are willing to provide more
liquidity to presumably less informed counterparties. As τH/τL increases, the model
converges to the market of Black (1986), in which everybody thinks that others are
noise traders with τL = 0. In the limit, λS and λx are close to zero, γS converges to
infinity, and CG converges to some fixed level.
Figure 2 shows the effect of changes in degree of competition N on parameters

γS, γP , CG, CL, 1/λS and 1/λx. In order to isolate the effect of competition from
the effect of overconfidence, we assume that τL = 0 and fix τ = 1.4. This ensures
that changes in N do not change the total precision: There is the same amount of
information, but information is dispersed among more market participants. Higher
values of N correspond to higher degree of competition. When N increases, how-
ever, the effective risk aversion of the market A/N changes as well, and the mar-
ket converges to a risk-neutral case. We assume that r = 0.01, A = 1, αD = 0.1,
αG = 0.02, σD = 0.5, σG = 0.1 and τ0 = Ωσ2

G/σ
2
D = 0.0279.
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Figure 1. Coefficients γS, γP , CG, CL, 1/λS and 1/λx against τH/τL while fixing τ = 7.4.

Figure 2 shows that the speed of adjusting positions γS towards targets increases
with the number of traders N , as each trader thinks that the risk bearing capacity
of the market in aggregate increases and it becomes less and less costly for traders
to trade aggressively towards their target inventories. The coefficient CL defining
target inventories increases withN and converges to the constant level afterN = 150.
The coefficient CG is monotonically decreasing with N . The sensitivity of investors’
order to market price γP increases with N . Both price impact coefficients λS and λx
decrease, as the number of traders N increases, keeping the total precision fixed.
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Figure 2. γS, γP , CG, CL, 1/λS and 1/λx against N while fixing τ = 1.4 and τL = 0

.

III. Implications

This section discusses properties of prices, quantities, and trading strategies in
more detail.

“Dampened” Prices Reflect a Keynesian Beauty Contest.

Define the “fundamental value” of the risky asset as the expected present value
of all future dividends based on all information, discounted at the risk-free rate r.
From the perspective of trader n, it can be shown that the fundamental value of
the risky asset is given by a version of Gordon’s growth formula based on trader n’s
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expected growth rate Gn(t):

(72) Fn(t) =
D(t)

r + αD

+
Gn(t)

(r + αD)(r + αG)
.

Since the risky asset is in zero net supply, intuition might suggest that the equilib-
rium price is the average estimate of fundamental value

∑
n Fn(t)/N obtained by

replacing Gn(t) with Ḡ(t) in equation (72). This intuition is precisely consistent
with the one period model. Surprisingly, in the model with continuous trading, this
intuition turns out to be wrong! A comparison of equations (68) and (72) reveals
that the equilibrium price would be equal to the average of the N traders’ estimates
of fundamental value only if CG = 1. In our numerical calculations, we always find
0 < CG < 1; thus, we conjecture that CG must always be less than one. This con-
jecture implies that, with continuous trading, the equilibrium price is “dampened”
version of Gordon’s growth formula, with dampening factor 0 < CG < 1. Even if all
N traders unanimously agree on the same expected growth rate Gn(t) = Ḡ(t), the
equilibrium price will reflect a dampened implied growth rate CG · Ḡ(t).

time

Positive Fundamentals of Trader n

Negative Fundamentals of Trader n

P*

P*

Fundamentals of Others

Fundamentals of Others

0

F

F

Prices

Prices

Figure 3. Dynamics of Prices and Fundamentals From Perspective of a Trader.

Figure shows the projected dynamics of a trader’s estimate of the fun-
damental value in dark blue, the projected dynamics of other traders’
estimates of the fundamental value in light blue, and the resulting equi-
librium prices in red; all three variables are from perspective of a trader.
All traders agree on fundamental value F and its dynamics, but each
trader thinks that his forecast will differ from forecasts of others in the
future and the equilibrium price P ∗ differs from fundamental value F .
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Since the dampening result 0 < CG < 1 contrasts with our one-period model
of imperfect competition, the intuitive explanation must be based on having many
rounds of trading, not imperfect competition. Indeed, Kyle and Lin (2001) find a
similar dampening result in a competitive model of continuous trading.
To understand the intuition, suppose that all traders happen to have the same

optimistic growth rate estimates Gn(t) = Ḡ(t) > 0. If there were no future rounds of
trading, all traders would be happy to hold market clearing inventories of zero if the
price reflected CG = 1. Now suppose that traders believe there will be many future
rounds of trading but—contrary to equilibrium—believe that the market clearing
price will be based on CG = 1, both currently and the the future, rather than
CG < 1. Trader n believes that his own growth estimate Gn(t) will decay to zero at
rate αG, consistent with the discount factor 1/(r+αG) in equation (72). But trader
n also believes that the growth estimates of the other N − 1 traders, Gm(t), m ̸= n,
will decay to zero at a rate faster than αG, because other traders will become more
bearish due to misinterpreting the precision of their signals. Thus, trader n believes
that, in the short run, other traders will become more bearish, driving down prices,
even though current prices reflect an appropriate consensus buy-and-hold valuation.
Since trader n believes that prices will fall in the short run, he will start selling now,
with the intention of buying later when prices offer a more attractive value. Since
all traders have the same beliefs, all traders will want to sell at prices reflecting
CG = 1, and this breaks an equilibrium with the incorrect conjecture CG = 1. A
symmetrically similar argument also breaks the equilibrium conjecture CG = 1 if
all traders have pessimistic beliefs Gn(t) = Ḡ(t) < 0. This intuition suggests the
conjecture 0 < CG < 1.
Figure 3 highlights informally patterns in the evolution of trader’s expectations.

The dark dashed (blue) horizontal lines represent the cumulative expected returns
trader n believes he would realize if prices reflected his own expected growth rate
Gn(t) and not the average of others’ expected growth rates. Since the line is hori-
zontal, trader n would be comfortable holding a target inventory of zero, consistent
with clearing the market for the zero-net-supply asset. The light dashed (blue) line
represents the cumulative expected returns trader n believes he would realized if
prices reflected the average of all traders beliefs about expected growth rates and
all N traders started with the same expected growth rate Gm(t) = Ḡ(t). The line
first moves towards zero and then moves back to its initial level, consistent with the
interpretation that trader n believes that the other traders’ estimate of expected
growth rates will first move towards zero (since they were based on signals with less
precision that other traders thought they had), then move back towards the initial
value (since trader n believes his own estimate will be proven correct in the long
run). Since all traders expect prices to deviate apart from the long term mean in the
short run, traders will not want to hold inventories of zero. They will want to sell
if the consensus growth estimate is positive (top of figure) and buy if the consensus
growth estimate is negative (bottom of figure). This leads to an equilibrium price
depicted by the dard solid (red) lines. In equilibrium, when traders have positive
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expected growth rates, they expect returns to be slightly negative in the short run
but positive in the long run, eventually reflecting the traders’ common expected
growth rates Gm(t) = Ḡ(t).
Our model bears a resemblance to the beauty contest described by Keynes (1936):4

“For most of these persons are, in fact, largely concerned, not with mak-
ing superior long-term forecasts of the probable yield on an investment
over its whole life, but with foreseeing changes in the conventional basis
of valuation a short time ahead of the general public. They are concerned
not with what an investment is really worth to a man who buys it ‘for
keeps,’ but with what the market will value it at, under the influence of
mass psychology, three months or a year hence.”

As in Keynes (1936), traders in our model trade based on short-term price dynam-
ics rather than hold-to-maturity values. As Keynes puts it, “it is not sensible to pay
25 for an investment of which you believe the prospective yield to justify value of
30, if you also believe that the market will value it at 20 three months hence.”
Keynes also believed that since financial markets are dominated by short-term

speculation rather than long-term enterprise, they are not too different from a casino
and exhibit excessive volatility. In contrast to Keynes, short-term trading dynamics
dampens price volatility in our model relative to the volatility of fundamental value.
This result is similar to Allen, Morris and Shin (2006), who also find that prices in
a beauty contest exhibit inertia and react sluggishly to changes in the fundamen-
tal value. While Allen, Morris and Shin (2006) consider a model with differential
information and their result is based on the idea that the average of martingales is
not a martingale, the results in our model are based on disagreement about whether
expected growth rate estimates imply martingale returns or not.
To summarize, each trader believes that equilibrium prices usually differ from

fundamentals, prices do not follow a martingale, and price changes are predictable.
Kyle, Obizhaeva and Wang (2013) explore implications for the equilibrium returns
in more detail.

Trading Strategies Follow A Partial Adjustment Process.

With continuous trading, the equilibrium trading strategies have a simple form
similar to the one-period model. Let STI

n (t) denote the “target inventory” of trader

4“. . . Professional investment may be likened to those newspaper competitions in which the
competitors have to pick out the six prettiest faces from a hundred photographs, the prize being
awarded to the competitor whose choice most nearly corresponds to the average preferences of the
competitors as a whole; so that each competitor has to pick, not those faces which he himself finds
prettiest, but those which he thinks likeliest to catch the fancy of the other competitors, all of
whom are looking at the problem from the same point of view. It is not a case of choosing those
which, to the best of ones judgment, are really the prettiest, nor even those which average opinion
genuinely thinks the prettiest. We have reached the third degree where we devote our intelligences
to anticipating what average opinion expects the average opinion to be. And there are some, I
believe, who practise the fourth, fifth and higher degrees.”
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n, defined as the inventory level STI
n (t) such that the informed trader chooses not to

trade x∗n(t) = 0. From equation (67), the target inventory STI
n (t) is given by

(73) STI
n (t) = CL · (Hn(t)−H−n(t)) .

Trader n targets a long position if his own signal Hn(t) is greater than the average
signal of other traders H−n(t) and targets a short position if his own signal is less
than the average signal of others. Trader n follows a partial adjustment strategy,
with his inventory Sn(t) converging towards its optimal level STI

n (t) at rate γS:

(74) x∗n(t) =
dSn(t)

dt
= γS ·

(
STI
n (t)− Sn(t)

)
.

While the target inventory levels STI
n (t) and therefore the speed of trading x∗n(t)

change like a diffusion of order dt1/2 due to arrival of new information, the actual
inventories change differentiably at rate of order dt.
When a trader observes a new signal, he updates his estimate of the growth rate,

recalculates his target inventory, and immediately adjusts the rate of trading towards
the new target. Since block trades are infinitely expensive, a trader does not trade
immediately to the new target but rather adjusts his inventories slowly, taking into
account his market power. As soon as a trader changes the speed of trading, the
price of a risky asset instantaneously moves to a new equilibrium level, even though
a trader has not traded a single share yet.
Equations (73) and (74) imply that inventories Sn(t + s) have the integral repre-

sentation

(75) S∗
n(t+ s) = e−γs·T ·

(
S∗
n(t) +

∫ t+s

u=t

e−γs·(t−u) · γS ·CL · (Hn(u)−H−n(u)) · du
)
.

The equation has a simple intuition. Traders accumulate inventories gradually based
on their current level of disagreement Hn(t)−H−n(t); inventories accumulated based
on past disagreement are gradually liquidated at rate γS. If signals Hn(t) and H−n(t)
do not change, the price does not change, but trader n will continue to trade based
on the level of his “past” disagreement with the market Hn(t)−H−n(t).

Transaction Costs Depend on Quantities and Speed of Trading.

Equation (69) can also be used to to calculate the out-of-equilibrium price effect
of a “new” trader n = N +1 who silently enters the market and acquires inventories
S̄N+1(t), unbeknownst to the other N traders. Since the new trader does not actu-
ally trade in equilibrium, we plug SN+1(t) = xN+1(t) = 0 into equation (69). By
affecting prices, the new trader incurs permanent and temporary price impact costs,
denoted C̃. We measure these costs using the concept of implementation shortfall,
as described by Perold (1988). The expected price impact costs are given by

(76) E{C̃} = E

{∫ ∞

u=t

(P (u)− P ∗(u)) · x̄(u) · du
}
.
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The actual expected implementation shortfall depends on how the new trader trades.
Here are two simple examples.

Example 1 : Suppose the new trader N + 1 enters the market at date t = 0 and
acquires a random block of shares B̃, uncorrelated with signals Hn(t), n = 1, . . . , N ,
by trading at the constant rate x̄(t) = B̃/T over the interval [0, T ]. Using λS = γS ·λx
from equation (70), new trader N +1’s expected “implementation shortfall” is given
by

(77) E{C} =
(
λS +

λx
T/2

)
· B̃

2

2
= λS ·

(
1 +

1

γS
· 1

T/2

)
· B̃

2

2
.

Example 2 : Suppose instead that the new trader enters the market at date t = 0
and acquires the random inventory B̃ by trading at rate xN+1(t) = γ · (B̃− S̄N+1(t)).
Then his inventory evolves as S̄(t) = B̃ · (1− e−γ·t), with S̄(t) → B̃ as t→ ∞. The
implementation shortfall is given by

(78) E{C} =
(
λS + γ · λx

)
· B̃

2

2
= λS ·

(
1 +

γ

γS

)
· B̃

2

2
.

If the new trader chooses a speed of execution γ equal to the equilibrium speed
of execution γS, then the permanent cost λS · S̄2/2 is equal to the temporary cost
λS · S̄2/2 · γ/γS; thus, both are equal to a half of the total cost E{C} = λS ·
S̄2. The intuition for this result is the same as the intuition for traders “in the
model.” Since each trader is trying to walk up the demand schedule of the other
traders by slowing down his trading, all traders cannot trade simultaneously as price
discriminating monopolists. In a symmetric equilibrium, each trader expects to
break even providing liquidity to other traders. This requires each trader to pay out
his potential monopoly profit from walking the demand curve, λS · S̄2/2 (exactly half
the costs incurred due to permanent impact), to others in the form of temporary
price impact. Note that each trader n = 1, . . . , N still expects to make a profit
because traders disagree with one another about the fundamental value of the asset.

In both examples, faster execution leads to larger temporary price impact but has
no effect on permanent price impact. Infinitely fast block trades with T → 0 or
γ → ∞ become infinitely expensive due to temporary price impact costs. Infinitely
slow trades with T → ∞ or γ → 0, which new trader executed slowly walking up
the demand schedule as a price discriminating monopolist, incur only the permanent
impact cost λS · B̃2/2 and no temporary impact costs. If the new trader unwinds
his position at a later date, the trader recovers the permanent costs but he incurs
the temporary impact costs again.
The functional form of the price impact function (69) is not entirely new. The

same price impact model can be found in Grinold and Kahn (1995) and Almgren and
Chriss (2000). These researchers specify the price impact functions exogenously, not
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based on an equilibrium model, but rather based on empirical practitioner wisdom
that fast trading increases temporary price impact costs. Our contribution is to show
that this price impact model, considered reasonable in practitioner-oriented research
based on empirical applicability, actually arises as an equilibrium implication of
a model in which traders optimize their trading strategies rationally taking into
account their price impact.
The price impact model in equation (69) contrasts with other models in the finance

literature. Obizhaeva and Wang (2013) suggest an alternative model in which—
rather than decaying instantaneously—the temporary price impact decays gradually
over time at an exponential rate.
The temporary impact implicitly exists in most models, in which large orders can

be executed as sequences of many small trades. For example, the temporary impact
implicitly exists in Kyle (1985), where smooth trading of informed traders does not
incur any temporary costs but block trades of noise trader do induce temporary
costs. Informed traders submit many small autocorrelated trades X of order dt at
price increments of λ · X of order dt, and their bid-ask spread cost of order dt2 is
economically inconsequential. Noise traders submit large block trades X of order
dB at price increments of λ ·X of order dB, and continuously pay a bid-ask spread
of order dt1/2 to market makers. Block trades of noise traders effectively make prices
deviate from equilibrium levels for short periods of time dt. In some sense, the
model of Kyle (1985) is of a binary nature: Block trades are penalized with finite
temporary bid-ask costs, but as long as trading is smoothed out it does not incur any
temporary costs, even when the speed of smooth trading is very high. Our model
does not inherit that binary nature: The temporary impact is proportional to the
speed of trading for smooth trading and infinite for any block trade.

Fast Execution Can Lead To Flash Crashes.

Equation (69) can also be used to describe what happens if trader n “in the model,”
1 ≤ n ≤ N , silently deviates from his optimal trading strategy. Suppose that at
date T , trader n, instead of trading towards his target inventory at equilibrium rate
γS, deviates from his optimal strategy by trading towards his target inventory at
some arbitrarily faster or slower rate γ ̸= γS and implements the strategy

(79) x̄n(T + t) = γ · (STI
n (T + t)− S̄n(T + t)), t ≥ 0.

Equation (79) becomes the equilibrium strategy when γ = γs. The inventory level
S̄n(t) then coincides with the equilibrium inventory level Sn(t) before date T , but
deviates afterwards, so that for any t ≥ 0,

(80) S̄n(T + t) = e−γ·t ·
(
Sn(T ) +

∫ T+t

u=T

e−γ·(T−u) · γ · CL · (Hn(u)−H−n(u)) · du
)
.

To consider an analytically tractable example, suppose that just before date T ,
the values of Hn(T

−) > 0 and H0(T
−) = H−n(T

−) = 0 and trader n happens to
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hold his positive target inventory, i.e.,

(81) Sn(T ) = STI
n (T−) = CL ·Hn(T

−) > 0,

(82) P (T−) =
γS

(N − 1)γP
· Sn(T ) > 0.

Suddenly, the signals change so that Hn(T ) = 0 whereas H0(t) and H−n(t) remain to
be zero. As a result, trader n begins to liquidate his inventory, moving from inventory
Sn(T ) towards a new target inventory of zero. Trader n’s expected inventories at
dates T + t, t > 0, conditional on information at date T , are given by

(83) En
T{S̄n(T + t)} = e−γ·t · Sn(T ).

Using En
T{P (T + t)} = 0, equation (69) implies that expected prices are given by

(84) En
T{P̄ (T + t)} = − γ − γS

(N − 1)γP
· e−γt · Sn(T ).

If trader n, like other traders, follows the equilibrium strategies with γ = γS, then
the price immediately falls to zero and is expected to stay there.
Figure 4 shows expected paths of future prices based on equation (84) in panel A

and future inventories based on equation (80) in panel B for different horizons, as
trader n sells Sn(T ) = 1, 000 shares over time.
We consider the two cases. Trader n implements his execution at a rate five

times faster than the equilibrium rate (γ = γS · 5, dotted lines) and at a rate five
times slower than the equilibrium rate (γ = γS/5, solid lines). Also, since dynamics
depends on the total precision in the economy, we consider two models: (1) the model
with low total precision τ = 9.95 with τ0 = 0.004, τL = 0.05 and τH = 5, implying
equilibrium price P1(T

−) = and equilibrium γS1 = 35.8 (light color) and (2) the
model of high total precision τ = 14.09 with τ0 = 0.0028, τL = 0.0708 and τH = 7.08,
implying equilibrium price P2(T

−) = and equilibrium γS2 = 50.6 (dark color). The
other parameters r = 0.01, A = 1, αD = 0.1, αG = 0.02, σD = 0.5, σG = 0.1, and
N = 100; D(T ) = 0.
When a trader sells at a rate five times slower than the equilibrium rate, γ = γS/5,

the price is expected to drop immediately, but only about 1/5 as much as in the
equilibrium. Slowing down execution reduces transitory price impact, but the price
eventually converges to the equilibrium level. Saving on transactions costs by selling
at higher-than-equilibrium prices at the beginning is more than offset by losing later
on being unable to trade on the information quickly enough.
When a trader sells at a rate five times faster than the equilibrium rate, γ = γS ·5,

the price is expected to drop sharply, by about five times as much as in equilibrium.
Speeding up execution exacerbates transitory price impact and elevates transactions
costs. As the price converges to the equilibrium, the price path exhibits a distinct
V-shaped pattern. The figure shows that the price gap disappears as time passes,
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Figure 4. The expected price and inventories dynamics.

The figure shows En
T{P (T + t)} and En

T{Sn(T + t)} for horizons T + t,
t ≥ 0. The parameters are r = 0.01, A = 1, αD = 0.1, αG = 0.02, σD =
0.5, σG = 0.1, N = 100, Sn(T ) = STI

n (T ) = 1, 000, and STI
n (T+) = 0.

Paths during fast trading, γ = γS · 5, are in dotted lines. Paths during
slow trading, γ = γS/5, are in solid lines. Low total precision case (light
color): τ = 9.95 with τ0 = 0.004, τL = 0.05 and τH = 5. High total
precision case (dark color): τ = 14.0882 with τ0 = 0.0028, τL = 0.0708
and τH = 7.08.

and this adjustment is quicker when the total precision and therefore price resilience
is higher.
This calibrated price response is very similar to the price pattern observed during

the flash crash of May 6, 2010, when the E-mini S&P 500 futures price plunged
by 5% over a five-minute period and then quickly recovered all of the earlier losses
after the CME’s pre-programmed circuit breakers triggered a five-second pause in
futures trading. Staffs of the CFTC and SEC (2010a,b) reported that the flash
crash was triggered by an automated execution algorithm that sold S&P 500 E-mini
futures worth approximately $4 billion. Kyle and Obizhaeva (2013) note that market
microstructure invariance would imply a price impact of only 0.61% and attributed
the difference from actual price changes to unusually fast execution of the order.
Indeed, the entire order was executed over a twenty-minute period, while orders of
similar magnitude would normally expected to be executed over horizons of at least
several hours. Our model implies that the selling should occur after prices crash,
while the market recovers. This is reasonably consistent with the pattern observed
during the Flash Crash, since most of the $4 billion in selling took place after the
market had crashed and while prices were recovering.



34

The Value Function and Marking to Market.

The value function of each trader is such that the implied valuation of his risky
position reflects its illiquidity as well as the potential disagreement between a trader
and the rest of the market about its fundamental value.
In trader n’s value function (60), the value of inventories can be expressed in

monetary units by scaling by ψM . Letting Pn(t) denote the dollar value of one unit
of inventories in trader n’s value function, we have

(85) Pn(t) =
ψSD

ψM

·D(t) +
ψSn

ψM

· Ĥn(t) +
ψSx

ψM

· Ĥ−n(t) +
ψSS

2ψM

· Sn(t).

The ψSS term adjusts the value of inventories for their riskiness. The ψSD term, with
ψSD/ψM = 1/(r+αD) from equation (62), measures the cash-flow value of dividends.
Intuitively, the ψSn and ψSx terms average together in some manner—influenced by
the level of market liquidity—both trader n’s expectation of the value of cash flows
and the market price P (t).
If the market has almost no liquidity, the trader’s value of inventories Pn(t) will be

close to a no-trade value reflecting only trader n’s estimate of the expected present
value of cash flows, discounted for risk . Using equations (37) and (72), the expected
present value of cash flows is given by
(86)

Fn(t) =
1

r + αD

·D(t) +
σGΩ

1/2 · τ 1/2H

(r + αD)(r + αG)
· Ĥn(t) +

σGΩ
1/2 · (N − 1)τ

1/2
L

(r + αD)(r + αG)
· Ĥ−n(t).

If the market is almost perfectly competitive, implying that trader n can convert his
inventories into cash at current market prices with no market impact costs, then the
value of inventories Pn(t) will correspond closely to the mark-to-market value P (t),
which is given using equation (57) by

(87) P (t) =
ψSD

ψM

·D(t) +
ψSn

ψM

· 1
2
· Ĥn(t) +

ψSn

ψM

· N − 1

2
· Ĥ−n(t).

Using ψSx = (N − 2)ψSn/2 from equation (61), it can be shown from equations (85)
and (87) that

(88) Pn(t) = P (t) +
ψSn

ψM

· 1
2
· (Hn(t)−H−n(t)) +

ψSS

2ψM

· Sn(t).

The difference between trader n’s private valuation Pn(t) and the market price P (t)
has an interesting economic interpretation. Trader n’s target inventory is STI

n (t) =
CL · (H(n(t) − H−n(t)). Using definitions of parameters ψSn, ψSS, γS, and λS from
equations (61), (65), (70), it can be shown that

(89) Pn(t) = P (t)− 1

2
λS · Sn(t) + λS · STI

n (t).
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In privately valuing his risky inventories at Pn(t), trader n makes two adjustments to
market prices P (t). First, he marks the market price downwards by 1

2
λS · Sn(t), the

average permanent impact cost of that he would incur if he liquidated his current
inventories Sn(t) at the slowest rate possible. Second, he marks the price upward
by λS ·STI

n (t), the marginal permanent impact cost of acquiring his target inventory
STI
n (t) in the market. For example, if trader n values the asset at $40 in his value

function, but the market price is $30, then trader n may think that he will make on
average $15 per each share he hold based on his favorable information but lose $5
per share when liquidating that position.
From trader n’s value function (60), the dollar value of future trading opportunities

based on current information is given by

(90)
1

2
· ψnn

ψM

· Ĥ2
n +

1

2
· ψxx

ψM

· Ĥ2
−n +

ψnx

ψM

· Ĥn · Ĥ−n

Intuition suggests that the value of trading opportunities should always be non-
negative: a trader will not trade on information unless the trader expects the trades
to be profitable. Consistent with this intuition, our numerical results always find
that (90) is a positive definite quadratic form. The symmetry of this quadratic form
about zero is consistent with the symmetry of the zero-net-supply model about zero;
long positions are just as profitable as short positions.

Market Liquidity.

Practitioners often observe that market liquidity is ephemeral. The mathematics
of our model suggests related hypotheses concerning the stability or continuity of
liquidity.
Equations (104) result from imposing symmetry on symmetric linear strategies.

While intuition suggests that these equations might determine the four gamma-
parameters γD, γH , γS and γP as functions of the nine psi-parameters, these equa-
tions do not actually determine γP as a function of the psi-parameters; instead,
they determine the three gamma-parameters γD, γH , and γS and generate the psi-
parameter restriction ψSx = (N/2− 1)ψSn. The sensitivity of trading to price γP is
left undetermined.
The intuition for this result is that the objective function is a quadratic function

of xn(t)/((N − 1)γP ). The first order condition determines only this ratio, i.e., the
optimal strategy xn(t) for each level of market liquidity (N − 1)γP , and the implied
value function is linear in the level of market liquidity (N − 1)γP .
Mathematically, the level of market liquidity (N − 1)γP must be such that the

values of the psi-parameters in the value function remain constant over time at just
the right ratio consistent with equilibrium. If the equilibrium were not in a steady
state, the six equations (109)-(114) in the Appendix would not be polynomials but
would instead be differential equations with the zeros on the right-hand-side changed
to derivatives of the corresponding psi-parameters with respect to time. If market
liquidity (N−1)γP is different from its equilibrium level, the values of psi-parameters
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such as ψSn and ψSx will over time wander away from their equilibrium levels. Indeed,
the modified equations (110) and (111) will imply that ψSn and ψSx will change by the
same margin proportional to γP (N − 1)ψSnψSS/(rA) but in the opposite directions,
and the equality ψSx = (N/2 − 1)ψSn would eventually be violated. The economic
intuition for this is the following: If the equality ψSx = (N/2 − 1)ψSn becomes an
inequality, then (depending on the direction of the inequality) either traders will
want to supply liquidity more aggressively than they demand it or traders will want
to demand liquidity more aggressively than they supply it—for any level of market
liquidity (N − 1)γP .
Thus, the level of market liquidity (N − 1)γP is pinned down at a value consistent

with the steady-state dynamics in equations (109)-(114) and the equilibrium psi-
parameter restriction. At the same time, traders choose an intensity of trading
which is consistent with the equilibrium market depth.
A somewhat analogous delicacy in determination of equilibrium arises in the con-

tinuous model of Kyle (1985), where the optimization problem of the informed trader
is linear in the intensity with which the informed trader trades. This linearity does
not place a restriction on the trading strategy of the informed trader by itself, but in-
stead requires market depth to be constant. If market depth were not constant, then
either the informed trader would try to destabilize prices and generate unbounded
profits or would want to incorporate information into prices aggressively. The in-
formed trader’s optimal trading strategy must be consistent with a constant level
of market depth, but this consistency condition comes from the conditions deter-
mining market depth, not the conditions determining the optimal trading strategy.
In equilibrium, the informed trader ultimately does not care how aggressively he
incorporates his private information into prices. Nevertheless, to sustain the equilib-
rium, the informed trader must choose to trade with an intensity that incorporates
information into prices at a constant rate, consistent with constant market depth.
When we think about how this delicate relationship between the level of market

liquidity and desire to supply and demand liquidity plays out in actual markets,
we are left with the intuition that the level of liquidity is probably somewhat in-
determinate over very short period of time. The model says literally that private
information is manufactured at a constant rate over time. As a practical matter,
more private information might be manufactured on trading days than weekends,
more during the day than overnight. The spirit of the model is that, at any time
during the week, market liquidity is in some sense proportional to the rate at which
private information is being manufactured. But what happens if this proportionality
is violated? For example, what happens if private information is manufactured at a
constant rate twenty-four hours per day, seven days per week, while market liquidity
is much greater during business hours than in the evenings? In this case, the equality
ψSx = (N/2 − 1)ψSn will be violated, but perhaps in an economically insignificant
manner. Traders will be just about as happy with constant market liquidity twenty-
four hours per day and three times higher liquidity during eight business hours with
closed markets the rest of the day. Whether this intuition is correct is an interesting
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issue for further research.

IV. Conclusion

We develop a model with overconfidence and market power where traders agree
to disagree based on the flow of public and private information and trade with each
other, taking into account their market power. This model provides a framework for
thinking about intertemporal properties of market liquidity, transaction costs, and
market prices.
The idea that securities markets offer a flow equilibrium rather than a stock equi-

librium may seem far-fetched at first glance. Yet recent trends in the way liquidity
is supplied and demanded in electronic markets are in many ways consistent with
the way our model predicts liquidity to be supplied and demanded.
Relative to order processing by human clerks, electronic processing of orders has

dramatically reduced the fixed costs of executing an order. The result has been
a dramatic reduction in the average size of the trades “printed” in price reporting
systems and a correspondingly large increase in the number of orders and messages
routed to various trading venues. In previous decades, a trader may have purchased
100,000 shares of stock in a single block trade for 100,000 shares. Nowadays, a
trader might execute 1,000 orders for 100 shares each, over a matter of several hours.
Although the trader’s inventory would not theoretically be a differentiable function
of time, there is a small economic difference between purchasing continuously at
the constant rate of 100 shares per minute and an “order shredding” strategy of
purchasing numerous 100 share increments at random (poisson) time intervals spaced
about one minute apart.
Our model predicts that there should be vanishingly small market depth available

at a given point in time; instead, market depth is predicted to be made available
only over time. In today’s markets, the actual level of market depth available at
the “top of the book”—i.e., at the best bid and the best offer—is influenced by tick
size (the smallest units in which prices are allowed to fluctuate) and by rules for
time and price priority. Since time priority mandates execution of the older resting
limit orders before newer ones with the same limit price, time priority encourages
traders to place bids and offers into the limit order book in order to have their
orders executed ahead of others who want to trade at the same price at around
the same time. Relative to our model, time priority creates an externality among
traders which results in more depth in the limit order book than would otherwise
be present. This microstructure externality may be more important when minimum
tick size is large. Between 1997 and 2001, the minimum tick size in the U.S. equity
markets was reduced by a factor of 12.5 from one-eighth of a dollar to one cent. Our
model implies an infinitesimal tick size. Thus, today’s markets probably have more
instantaneous market depth available than our theory would imply, but they may
have less instantaneous depth available than they would have if tick size were larger.
Our model of smooth order flow implements in a precise mathematical manner

ideas about market liquidity describe informally by Black (1995). Black envisioned
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a future frictionless market for exchanges as “an equilibrium in which traders use
indexed limit orders at different levels of urgency but do not use market orders
or conventional limit orders.” In that equilibrium, there will be no conventional
liquidity available for market orders and conventional limit orders. Placement of
indexed orders onto the market will move the price by an amount increasing in
level of urgency. Our model implements Black’s intuition in a precise mathematical
manner.
Algorithms for executing orders to trade stocks and futures contracts have for years

been incorporating the idea of urgency. For example, algorithms based on VWAP
(“Volume Weighted Average Price”) have become popular. In a VWAP trade, a
trader chooses a target number of shares to trade, a time frame (say one day) and a
participation rate (say 5% of volume). The higher the participation rate, the greater
the trader’s impatience.
In the future, exchanges might change order matching rules to implement limit

orders conforming to the intuition of our model. For example, exchanges might
approximate our flow model by having frequent batch auctions, say once per second,
consistent with Budish, Cramton and Shim (2013). Limit orders could easily be
implemented with a time parameter. For example, at trader who might in today’s
market place a limit order to buy 10,000 shares at a price of $40 per share might
instead enter an order to purchase one share per second for at a price of $40 or
better. The order would be filled over 10,000 seconds if the price moved below $40
per share and stayed there. It would take longer, or perhaps never be fully executed,
if the price moved above $40 per share and stayed there. Clearly, such orders would
reduce the high levels of message traffic which attempt to similar strategies using
thousands of conventional limit orders.
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Scheinkman, José A., and Wei Xiong. 2003. “Overconfidence and Speculative
Bubbles.” Journal of Political Economy, 111: 1183–1219.

Staffs of the CFTC and SEC. 2010a. Preliminary Findings Regarding the Market
Events of May 6, 2010. Report of the Staffs of the CFTC and SEC to the Joint
Advisory Committee on Emerging Regulatory Issues. May 18, 2010. “Preliminary
Report”.

Staffs of the CFTC and SEC. 2010b. Findings Regarding the Market Events of
May 6, 2010. Report of the Staffs of the CFTC and SEC to the Joint Advisory
Committee on Emerging Regulatory Issues. September 30, 2010. “Final Report”.

Vayanos, Dimitri. 1999. “Strategic Trading and Welfare in a Dynamic Market.”
Review of Economic Studies, 66(2): 219–254.



41

Appendix

Proof of Theorem 1

For the second order condition to be positive, we need to have 2
(N−1)γ

+ A
τ
> 0,

i.e.,

(91)
A

τ

NτH
(N − 2)τH − 2(N − 1)τL

> 0.

Therefore, the second order condition holds if and only if (N−2)τH−2(N−1)τL > 0.
Substituting (14) into (11), we get trader n’s optimal demand x∗n. Substituting it
into the market clearing condition

∑N
m=1Xm(i0, im, p) = 0 , we get the equilibrium

price P ∗. Q.E.D.

Proof of Lemma 1

Applying Kalman-Bucy filter to the filtering problem summarized by equation (24)
for signals and equations (25) and (26) for observations, we find that the filtering
estimate is defined by Itô differential equation:

(92) dG(t) = −αG ·G(t) · dt+
N∑

n=0

σ2
G · Ω̄ · τ̄

1/2
n

σG · Ω̄1/2

(
dIn(t)−G(t) · τ̄

1/2
n

σG · Ω̄1/2
· dt
)
.

and the mean-square filtering error of the estimate G(t), denoted as σ2
G ·Ω, is defined

by Riccati differential equation:

(93) σ2
G
˙̄Ω = −2αG · σ2

G · Ω̄ + σ2
G − σ4

GΩ̄
2

N∑
n=0

( τ̄
1/2
n

σGΩ̄1/2

)2
.

Rearranging the terms in the first equation yields equation (30). Using the steady-

state assumption that ˙̄Ω = 0 and solving the second equation for Ω̄ yield (29).
Q.E.D.

Proof of Theorem 2

One might expect that the solution of the maximization problem will yield solu-
tions for the nine ψ-parameters as functions of the four γ-parameters. One might
also expect that imposing symmetry by equating the four optimal γ-parameters,
implied by trader n’s optimal trading strategy, to the four conjectured γ-parameters
will yield solutions for the four γ-parameters as functions of the nine ψ-parameters.
In principle, one could then expect a solution to the thirteen equations in thirteen
unknowns to describe a steady-state equilibrium, if one exists.
Although this is the intuition for the solution methodology, the solution does not

work in this straightforward manner. The four equations for the γ-parameters do
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not determine γP as a function of the nine psi parameters. Instead, the solution
to the four γ-equations implies a restriction on the ψ-parameters which must hold
in a steady state equilibrium. Since this restriction has an interesting economic
interpretation, we discuss it in some detail below.
Suppressing a subscript n for notational simplicity, the Hamilton-Jacobi-Bellman

(HJB) equation corresponding to the conjectured value function V (Mn, Sn, D, Ĥn, Ĥ−n)
in equation (48) is

(94)max
c,x

{
U(c)− ρV +

∂V

∂Mn

(rMn + SnD − c− P (x) · x) + ∂V

∂Sn

x

}
+

+
∂V

∂D
(−αDD + σGΩ

1/2√τHĤn + σGΩ
1/2(N − 1)

√
τLĤ−n)+

+
∂V

∂Ĥn

(
−(αG + τ)Ĥn(t) + (

√
τH + Â

√
τ0)(

√
τHĤn + (N − 1)

√
τLĤ−n)

)
+

+
∂V

∂Ĥ−n

(
−(αG + τ)Ĥ−n(t) + (

√
τL + Â

√
τ0)(

√
τHĤn + (N − 1)

√
τLĤ−n)

)
+
1

2

∂2V

∂D2
σ2
D+

+
1

2

∂2V

∂Ĥ2
n

(1+Â2)+
1

2

∂2V

∂Ĥ2
−n

(
1

N − 1
+Â2)+

(
∂2V

∂D∂Ĥn

+
∂2V

∂D∂Ĥ−n

)
ÂσD+

∂2V

∂Ĥn∂Ĥ−n

Â2 = 0.

For the specific quadratic specification of the value function in equation (60), the
Hamilton-Jacobi-Bellman (HJB) equation becomes
(95)

min
c,x

{
−e

−Ac

V
− ρ+ ψM(rMn + Sn ·D − c− P (x) · x) + (ψSSSn + ψSDD + ψSnĤn + ψSxĤ−n)x

}
+

+ψSDSn(−αDD + σGΩ
1/2√τHĤn + σGΩ

1/2(N − 1)
√
τLĤ−n)+

+(ψSnSn+ψnnĤn+ψnxĤ−n)
(
−(αG + τ)Ĥn(t) + (

√
τH + Â

√
τ0)(

√
τHĤn + (N − 1)

√
τLĤ−n)

)
+

+(ψSxSn+ψxxĤ−n+ψnxĤn)
(
−(αG + τ)Ĥ−n(t) + (

√
τL + Â

√
τ0)(

√
τHĤn + (N − 1)

√
τLĤ−n)

)
+

+
1

2
ψ2
SDS

2
nσ

2
D +

1

2

(
(ψSnSn + ψnnĤn + ψnxĤ−n)

2 + ψnn

)
(1 + Â2)+

+
1

2

(
(ψSxSn + ψxxĤ−n + ψnxĤn)

2 + ψxx

)
(

1

N − 1
+ Â2)+

+
(
(ψSn + ψSx)Sn + (ψnn + ψnx)Ĥn + (ψxx + ψnx)Ĥ−n

)
ψSDSnÂσD

+((ψSnSn + ψnnĤn + ψnxĤ−n)(ψSxSn + ψxxĤ−n + ψnxĤn) + ψnx)Â
2 = 0.

The solutions for optimal consumption is

(96) c∗n(t) = − 1

A
· log

(ψM · V (t)

A

)
.
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In the HJB equation (95), the price P (x) is linear in x based on equation (57).
Plugging P (x) from equation (57) into the HJB equation (95) yields a quadratic
function of x which captures the effect of trader n’s trading rate xn on prices. Because
the conjectured value function is a quadratic of the state variables, the optimal
trading strategy is a linear function of the state variables given by

x∗n(t) =
(N − 1)γP

2ψM

·
[(
ψSD − ψMγD

γP

)
·D(t) +

(
ψSS − ψMγS

(N − 1)γP

)
· Sn(t)(97)

+ ψSn · Ĥn(t) +

(
ψSx −

ψMγH
γP

)
· Ĥ−n(t)

]
.

The derivation of this optimal trading strategy assumes that trader n observes the
values ofD(t), Sn(t), Ĥn(t), and Ĥ−n(t). Although trader n does not actually observe
Ĥ−n(t), he can implement the optimal quantity x∗n by submitting an appropriate
linear demand schedule. We can think of this demand schedule as a linear function
of P (t) whose intercept is a linear function of D(t), Sn(t), and Ĥn(t). Trader n can
infer from the market-clearing condition (56) that Ĥ−n is given by

(98) Ĥ−n(t) =
γP
γH

(
P (t)−D(t) · γD

γP

)
− 1

(N − 1)γH
· x∗n(t)−

γS
(N − 1)γH

· Sn(t).

Plugging equation (98) into equation (97) and solving for x∗n(t) implements the
optimal trading strategy x∗n(t) as a linear demand schedule which depends on the
price P (t) and state variables Ĥn, Sn(t), D(t), which the trader directly observes.
This schedule is given by

x∗n(t) =
(N − 1)γP

ψM

·
(
1 +

ψSx

ψM

γP
γH

)−1

(99)

·
[(
ψSD − ψSx

γD
γH

)
·D(t) +

(
ψSS − ψSx

γS
(N − 1)γH

)
· Sn(t)

+ ψSn · Ĥn(t) +

(
ψSx

γP
γH

− ψM

)
· P (t)

]
.

Symmetry requires that this demand schedule be the same as the demand schedule
conjectured for the N − 1 other traders. Equating the coefficients of D(t), Ĥn(t),
Sn(t), and P (t) in equation (99) to the conjectured coefficients γD, γH , −γS, and
−γP places four restrictions that the values of the γ-parameters and ψ-parameters
must satisfy in a symmetric equilibrium with linear trading strategies.

(100)
(N − 1)γP

ψM

·
(
1 +

ψSx

ψM

γP
γH

)−1

·
(
ψSD − ψSx

γD
γH

)
= γD,

(101)
(N − 1)γP

ψM

·
(
1 +

ψSx

ψM

γP
γH

)−1

· ψSn = γH ,
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(102)
(N − 1)γP

ψM

·
(
1 +

ψSx

ψM

γP
γH

)−1

·
(
ψSS − ψSx

γS
(N − 1)γH

)
= −γS,

(103)
(N − 1)γP

ψM

·
(
1 +

ψSx

ψM

γP
γH

)−1

·
(
ψSx

γP
γH

− ψM

)
= −γP ,

Solving this system, we obtain the four equations in terms of the four unknowns,
ψSx, γH , γS, and γD. The solution is

(104) ψSx =
N − 2

2
ψSn, γH =

NγP
2ψM

ψSn, γS = −(N − 1)γP
ψM

ψSS, γD =
γP
ψM

ψSD.

Plugging the last equation into equation (97) implies that traders will not trade
on public information. It is intuitively obvious that traders cannot trade on the
basis of the public information D(t) because all traders would want to trade in the
same direction. Substituting equation (104) into equation (97) yields the solution
for optimal strategy.

(105) x∗n(t) = γS ·
(
CL · (Hn(t)−H−n(t))− Sn(t)

)
.

Plugging (96) and (97) back into the Bellman equation and setting the constant
term, coefficients of Mn, SnD, S2

n, SnĤn, SnĤ−n, Ĥ
2
n, Ĥ

2
−n, and ĤnĤ−n to be zero,

we obtain nine equations. There are in total nine equations in nine unknowns γP ,
ψ0, ψM , ψSD, ψSS, ψSn, ψnn, ψxx, and ψnx.
By setting the constant term, coefficient of M , and coefficient of SD to be zero,

we get

(106) ψM = −rA,

(107) ψSD = − rA

r + αD

,

(108) ψ0 = 1−log{r}+1

r

(
−ρ+ 1

2
(1 + Â2)ψnn +

1

2

(
1

N − 1
+ Â2

)
ψxx + Â2ψnx

)
.

In addition, by setting the coefficients of S2
n, SnĤn, SnĤ−n, Ĥ

2
n, Ĥ

2
−n and ĤnĤ−n

to be zero, we get the following six polynomial equations about six unknowns
γP , ψSS, ψSn, ψnn, ψxx, and ψnx:
(109)

S2
n : −1

2
rψSS−

γP (N − 1)

rA
ψ2
SS+

r2A2σ2
D

2(r + αD)2
+
1

2
(1+Â2)ψ2

Sn+
1

2

(
1

N − 1
+ Â2

)
(N − 2)2

4
ψ2
Sn

− rA

r + αD

ÂσD
N

2
ψSn + Â2N − 2

2
ψ2
Sn = 0,
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(110)

SnĤn : −rψSn−
γP (N − 1)

rA
ψSSψSn−

rA

r + αD

σGΩ
1/2√τH+a1ψSn+

N − 2

2
a4ψSn+(1+Â2)ψnnψSn+

+
N − 2

2

(
1

N − 1
+ Â2

)
ψnxψSn−

rA

r + αD

ÂσD (ψnn + ψnx)+Â
2ψnxψSn+

N − 2

2
Â2ψnnψSn = 0,

(111)

SnĤ−n : −rN − 2

2
ψSn+

γP (N − 1)

rA
ψSSψSn−

rA

r + αD

σGΩ
1/2(N−1)

√
τL+

(
a3+

N − 2

2
a2

)
ψSn+(1+Â2)ψSnψnx+

+
N − 2

2

(
1

N − 1
+ Â2

)
ψxxψSn−

rA

r + αD

ÂσD (ψxx + ψnx)+Â
2ψxxψSn+

N − 2

2
Â2ψnxψSn = 0,

(112)

Ĥ2
n : −r

2
ψnn−

γP (N − 1)

4rA
ψ2
Sn+a1ψnn+a4ψnx+

1

2
(1+Â2)ψ2

nn+
1

2

(
1

N − 1
+ Â2

)
ψ2
nx+Â

2ψnnψnx = 0,

(113)

Ĥ2
−n : −r

2
ψxx−

γP (N − 1)

4rA
ψ2
Sn+a2ψxx+a3ψnx+

1 + Â2

2
ψ2
nx+

1

2

(
1

N − 1
+ Â2

)
ψ2
xx+Â

2ψxxψnx = 0,

(114)

ĤnĤ−n : −rψnx+
γP (N − 1)

2rA
ψ2
Sn+a3ψnn+a4ψxx+(a1+a2)ψnx+(1+Â2)ψnnψnx+

+

(
1

N − 1
+ Â2

)
ψxxψnx + Â2

(
ψnnψxx + ψ2

nx

)
= 0,

where a1 = −αG−τ+
√
τH(

√
τH+Â

√
τ0), a2 = −αG−τ+(N−1)

√
τL(

√
τL+Â

√
τ0),

a3 = (
√
τH + Â

√
τ0)(N − 1)

√
τL, a4 = (

√
τL + Â

√
τ0)

√
τH .

If this system of equations has a solution, then the solution defines a “flow equilib-
rium” with symmetric linear trading strategies. We find that solution numerically.
Note there is always a trivial no-trade equilibrium, as in one-period model. If each
trader submits a demand schedule Xn(t, .) ≡ 0, then such a no-trade demand sched-
ule is optimal for all traders. This is not a symmetric linear equilibrium in which an
auctioneer can establish a meaningful market price.
The transversality condition is equivalent to r > 0: From the HJB equation and

equations (109)-(114), we have
(115)
En

t {dV (Mn(t), Sn(t), D(t), Ĥn(t), Ĥ−n(t))} = −(r−ρ)V (Mn(t), Sn(t), D(t), Ĥn(t), Ĥ−n(t))dt.

This yields
(116)
En

t {e−ρ(T−t)V (Mn(T ), Sn(T ), D(T ), Ĥn(T ), Ĥ−n(T ))} = e−r(T−t)V (Mn(t), Sn(t), D(t), Ĥn(t), Ĥ−n(t)),



46

which implies that the transversality condition (54) is satisfied if r > 0. The second
order condition is equivalent to γP > 0: For the minimum in the optimization
problem (95) to exist, the second order condition requires the 2× 2 matrix

(117)

(
−A2

V
0

0 2·r·A
(N−1)γP

)

be positive definite. Since value function V is negative, this condition holds when
demand schedules are downward sloping (γP > 0). Q.E.D.


