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Abstract

Incentive problems make securities’ payoffs imperfectly pledgeable, limiting agents’ ability to issue

liabilities. We analyze the equilibrium consequences of such endogenous incompleteness in a dynamic

exchange economy. Because markets are endogenously incomplete, agents have different intertemporal

marginal rates of substitution, so that they value assets differently. Consequently, agents hold different

portfolios. This leads to endogenous markets segmentation, which we characterize with Optimal Trans-

port methods. Moreover, there is a basis going always in the same direction: the price of a security

is lower than that of replicating portfolios of long positions. Finally, equilibrium expected returns are

concave in factor loadings.
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1 Introduction

One of the key functions of financial markets is to enable agents to share risk. For example, relatively risk

tolerant market participants can sell puts or Credit Default Swaps to more risk averse agents, or agents with

larger risk exposure. We study risk sharing in general equilibrium in a dynamic exchange economy. At each

period agents receive heterogeneous endowments of consumption good (labor income), as well as the output

or “dividends” of the assets, or “trees”, they hold. At each period there is also a complete set of Arrow

securities, spanning endowments and dividends, in zero net supply.

Agents’ liabilities, modeled as sales of Arrow securities, are backed by the assets they can pledge as

collateral. Should these participants default, however, seizing their collateral could prove difficult and costly.

This has been documented for variety of collateral assets, for example residential homes backing mortgages

(Campbell, Giglio and Pathak, 2011), productive assets backing firms’ liabilities (Andrade and Kaplan,

1998), and traded assets backing financial firms liabilities (Fleming and Sarkar, 2014).

That seizing collateral is difficult and costly creates scope for opportunistic debtors’ behaviour. In

Kiyotaki and Moore (1997), strategic debtors use the threat of costly bankruptcy to negotiate debt down to

liquidation values. We consider a similar mechanism. Suppose an agent issued Arrow securities, promising

to pay a given amount should a given state occur. When that state realizes, the agent can threaten to default

on her promise. Suppose that, in case of default, the buyer of the security can only seize a fraction 1 − θ

of the assets of the defaulting agent, while the fraction θ is deadweight bankruptcy cost. In this context, if

the agent can make a take-it-or-leave-it offer to the Arrow security buyer, she can renegotiate her liability

to a fraction 1 − θ of the value of her asset holdings. We refer to this value as the pledgeable income of

the agent, and to the constraint that the agent cannot promise more than her pledgeable income as the

incentive constraint. Imperfect pledgeability implies over-collateralization and limits agents’ ability to sell

Arrow securities, which generates endogenous market incompleteness. The goal of this paper is to study the

consequences of incentive constraints and imperfect collateral pledgeability for risk sharing, portfolio choice,

and asset and derivative pricing.

Because, in addition to classical budget constraints, agents face incentive constraints in which prices
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enter, standard equilibrium existence proofs based on Welfare Theorems do not apply in our framework. In

particular, the approach pioneered by Negishi (1960) cannot be used. Yet, we prove equilibrium existence,

extending the price-player proof of Arrow and Debreu (1954) to our setting.

In a frictionless complete market equilibrium, intertemporal marginal rates of substitution are equalized

across agents. This yields a valuation operator (or pricing kernel), common to all agents, which prices all

securities. In contrast, when incentive constraints limit risk sharing, agents have different intertemporal

marginal rates of substitution and thus have different private valuations for imperfectly pledgeable assets.

In equilibrium, each tree is held by the agent who values it most. Because agents value trees differently,

they hold strictly different portfolios, i.e., there is endogenous segmentation. Intuitively, agents choose tree

portfolios that, in combination with their labor income, come close to replicate their desired consumption

profile. Then, to further approach their desired consumption, agents either buy Arrow securities, or they

use their tree portfolios as collateral to sell Arrow securities. Theoretically, we show that the equilibrium

allocation of trees to agents solves the classical Optimal Transport problem of drawing power diagrams

(Galichon, 2016, Chapter 5). Empirically, equilibrium segmentation is in line with evidence from household

finance. For example, Catherine, Sodini and Zhang (2020) find that “workers facing higher left-tail income

risk when equity markets perform poorly are less likely to participate in the stock market.”

In our framework as in previous models of endogenously incomplete markets (notably Alvarez and Jer-

mann, 2000), only agents whose incentive constraint does not bind in a given state have intertemporal

marginal rate of substitution, i.e., private valuations, equal to the Arrow security price of that state. And

it is those agents who in equilibrium buy these Arrow securities. In contrast, the other agents’ intertempo-

ral marginal rates of substitution for that state are lower than the Arrow security price. They sell Arrow

securities until their incentive constraint binds.

Therefore, as soon as an agent’s incentive constraint binds in at least one state, this agent’s private

valuation for a tree paying off in that state is lower than the price of a replicating portfolio of Arrow

securities. When this is true for all agents, the tree is priced below its replicating portfolio, i.e., there is a

basis. More generally, any asset is priced below any portfolio of long positions in assets or securities that

replicates its payoff. Such deviations from the Law of One Price are equilibrium phenomena, which cannot
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be arbitraged. To engage in arbitrage, one would have to sell the expensive leg of the arbitrage, i.e., sell

Arrow securities. Such sales, however, would violate incentive constraints.

A tree can be viewed as a bundle of imperfectly pledgeable payoffs in different states. It is priced

below any replicating portfolio of long positions in assets and securities because each asset in the replicating

portfolio can be held by the agent who values it most, whereas the tree must be held by a unique agent.

The inequality is strict when there is no agent who has the highest private valuation for all the assets in the

replicating portfolio.

For example, the payoff of a convertible bond is identical to the payoff of a portfolio combining a straight

bond and a call option. In line with empirical evidence (Mitchell and Pulvino, 2012), our model implies that

in equilibrium convertible bonds can be priced strictly below the replicating portfolio of straight bond and

call. In practice, to take advantage of that arbitrage opportunity, market participants such as hedge funds

buy convertibles and issue straight bonds and calls. Such arbitrage is constrained, however, both in practice

as in our model, by the limited ability of hedge funds to issue the replicating securities.

The observation that trees are less valuable than replicating portfolios suggests that equilibrium outcomes

are not invariant to changes in the tree supply, holding aggregate tree dividend and everything else the same.

In particular, breaking up trees into replicating portfolios changes the tree supply in a way that relaxes

incentive constraints and improves risk sharing. In contrast, when trees are fully pledgeable, the manner in

which aggregate dividends are split across trees is irrelevant.

The basis between trees and replicating portfolios has a prediction for the cross-section of expected

returns. Project the returns of the trees on a set of factors. If the residual of this projection are orthogonal

to the agents’ private valuations (which is the case, in particular, when the factors are themselves the

agents’ private valuation), then expected returns are concave in factor loadings. Our theoretical result that

equilibrium returns are concave in factor loadings, i.e., betas, is consistent with the empirical finding that

the security market line is concave (Frazzini and Pedersen, 2014; Hong and Sraer, 2016).
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Related literature

Our analysis of dynamic general equilibrium and endogenous incompleteness is in line with the seminal

analyses of Kehoe and Levine (1993), Alvarez and Jermann (2000), Chien and Lustig (2009) and Gottardi

and Kubler (2015).1 The main difference between our model and theirs is that we consider assets that are,

at the same time, imperfectly pledgeable and tradeable. Thus, we import in a limited enforcement asset

pricing model similar to Chien and Lustig (2009), the assumption that assets are imperfectly pledgeable, as in

Rampini and Viswanathan (2010). The main difference between our analysis and Rampini and Viswanathan

(2010) is that they analyze a production economy with investment, but take asset prices as exogenously

given, while we consider an exchange economy, but endogenize prices. The main difference between our

results and Kehoe and Levine (1993), Alvarez and Jermann (2000), Chien and Lustig (2009) and Gottardi

and Kubler (2015) is that we obtain equilibrium deviations from the Law of One Price and endogenous

segmentation.

Our result that market imperfections lead to deviations from the Law of One Price is in line with Hindy

and Huang (1995), Gromb and Vayanos (2002, 2017), Gârleanu and Pedersen (2011). One difference is

that we provide a micro-foundation for financial constraints in terms of imperfect collateral pledgeability.

This leads to our new result that markets are endogenously segmented. In Gromb and Vayanos (2002) in

contrast, segmentation is exogenous. Also, while Gârleanu and Pedersen (2011) study bases among assets and

securities with different exogenous margin constraints, in our model all assets and securities have identical

pledgeability, yet bases for different assets are endogenously different.

Geanakoplos and Zame (2014), Fostel and Geanakoplos (2008), Brumm, Grill, Kubler and Schmed-

ders (2015), Geerolf (2015), and Lenel (2017) also analyze general equilibrium under collateral constraints.

In that literature, each financial promise must be backed by its own collateral, which gives rise to over-

collateralization as shown by Araújo, Kubler and Schommer (2010).2 In our framework, by contrast, the

constraint applies to the portfolio of assets and Arrow securities of an agent, in line with the practice of

portfolio margining.3 Yet, imperfect pledgeability generates over-collateralization.

1Lustig and Van Nieuwerburgh (2010) analyze empirical implications of this framework.
2For example, the same asset generating strictly positive output in two states, cannot be used to collateralize the issuance

of two Arrow securities, promising payments in these two states.
3For example, on http://www.cboe.com/products/portfolio-margining-rules, one can read: “The portfolio margining

rules have the effect of aligning the amount of margin money ... to the risk of the portfolio as a whole, calculated through
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In our model pledgeable payoffs are discounted less than non-pledgeable ones. This is in line with the

collateral premium analyzed by Geanakoplos and Zame (2014), Fostel and Geanakoplos (2008), and the

liquidity premium derived by the new monetarist literature (see, for example, Lagos, 2010; Li, Rocheteau

and Weill, 2012; Lester, Postlewaite and Wright, 2012; Venkateswaran and Wright, 2013; Jacquet, 2015).

Moreover, while the pricing of pledgeable payoffs is linear and based on a single stochastic discount factor, the

pricing of non-pledgeable payoffs is non-linear and convex, based on multiple stochastic discount factors. This

implies that equally pledgeable payoffs are priced differently depending on their state-contingent structure,

leading to bases between assets and replicating portfolios, and to concave factor pricing.

Methodologically, our paper shows that the incentive-constrained allocation of assets across agents can

be characterized with techniques from Optimal Transport theory. This means that the problem of pricing

and allocating assets (bundles of risk) to heterogenous agents is economically similar to that of compensating

and assigning workers (bundles of skills) to heterogenous firms. See Rosen (1983), Heckman and Scheinkman

(1987) and, more recently, Edmond and Mongey (2020). We contribute to the analysis of this problem by

considering state-contingent borrowing, in effect an imperfect technology to unbundle risks, and by making

the assignment problem dynamic. Another difference is that, in our setting, Welfare Theorems do not hold,

so existence cannot be established via optimization.

The remainder of this paper has two parts: Section 2 describes the model and Section 3 analyzes the

equilibrium. The main proofs are in the appendix, and secondary ones are in the online appendix.

2 Model

2.1 Assets and agents

There is a finite number of time periods t ∈ {0, 1, . . . , T}. Every period a new state is drawn from some

finite set S. We let st ∈ S denote the state in period t, st = (st−1, st) the history of states until t, and St

the set of time-t histories starting from s0. The probability of history st, conditional on s0, is denoted by

πt(s
t) and is assumed to be strictly positive. A node in the event tree is a pair (t, st) of time t ≤ T and

history st ∈ St.

simulating market moves up and down, and accounting for offsets between and among all products held...”
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Figure 1: The set ∆ when there are two periods, t ∈ {0, 1}, and two states, S = {1, 2}.

At every node (t, st), t < T , there is a complete set of Arrow securities in zero net supply. In addition

to Arrow securities, there are trees in positive supply. A tree is defined by its dividend stream δ ≡ {δt(st) :

t ≥ 0, st ∈ St}, i.e., the collection of its dividend payouts for all nodes. We do not impose any restriction

on the set ∆ of dividend streams except that δt(s
t) ∈ [0, δ̄].4 Figure 1 illustrates. For example, the set ∆

can contain short-lived trees with payoffs identical to Arrow securities, long-lived trees, bonds of arbitrary

maturity, and so on.

We represent the supply of trees by some positive and finite measure N̄ over the set ∆, endowed with its

Borel σ-algebra. A special case is the standard model with a finite number of trees in positive supply. But

our results apply equally to arbitrary supplies over ∆, defined by continuous measures, discrete measures,

or mixtures of both. This added generality serves several purposes. First, it clarifies the analysis of market

segmentation, by providing simple geometrical representations for the equilibrium allocation trees, and es-

tablishing connections with classical results in Optimal Transport theory. Second, it demonstrates that our

results are not driven by some form of tree-market incompleteness.

To facilitate the proof of equilibrium existence, we assume that the distribution of tree supplies is such

that the aggregate dividend is strictly positive at all nodes, that is:

∫
δt(s

t) dN̄(δ) > 0, (1)

4The upper bound δ̄ is arbitrary and can be viewed as a normalization, since agents can always increase the dividend payout
of a tree proportionally at all nodes by scaling up their holdings. Technically, the upper bound facilitates the analysis because
it makes both the set of trees, ∆, and the set of positive measure over ∆, compact in appropriate topologies (for the latter, see
Chapter 15 in Aliprantis and Border, 2006).
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for all (t, st), where the integral is taken over ∆ and dN̄(δ) is the supply of trees with dividend streams δ.5

On the other side of the market there is a finite number of agent’s types indexed by i, with a measure

one of each, who order consumption plans ci ≡ {cit(st), 0 ≤ t ≤ T, st ∈ St} according to the intertemporal

utility: ∑
(t,st)

βtπt(s
t)ui(cit(s

t)), (2)

where ui(c) is strictly increasing, concave, continuous and continuously differentiable over c > 0. We also

assume continuity at c = 0 unless ui(c) is unbounded below, for example in the case of log utility. Agent i

starts at time zero with no endowment of Arrow securities and with a tree endowment equal to a fraction

αi > 0 of the market portfolio, Ni,−1 ≡ αiN̄ where
∑
i αi = 1. The agent also receives at every node (t, st),

an endowment of eit(s
t) ≥ 0 consumption good which we will refer to as labor income.

2.2 Agents’ budget and incentive constraints

With Arrow securities. At each node (t, st), t < T , agent i consumes cit(s
t) ≥ 0, takes long tree positions

represented by a positive and finite measure over ∆, denoted by Nit(s
t), and takes net positions (long minus

short) ait+1(st, s) in Arrow securities paying off in state s, for all s ∈ S. We show later, in Corollary 1, that

the short-selling constraint for trees is not binding. Letting Pt(δ | st) denote the continuous price functional

for trees and Qt+1(st, s) the price of Arrow securities at node (t, st), the sequential budget constraint for

t < T writes:

cit(s
t) +

∫
Pt(δ | st) dNit(δ | st) +

∑
s

Qt+1

(
st, s

)
ait+1(st, s) (3)

= eit(s
t) +

∫ [
δt(s

t) + Pt(δ | st)
]
dNit−1(δ | st−1) + ait(s

t),

5If there is a finite number of trees, the measure-theoretic notation dN̄(δ) can be replaced with n̄(δ), the mass of trees with
dividend stream δ, and equation (1) writes as

∑
δ∈∆ δt(st) n̄(δ) > 0.
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where ai0(s0) = 0 and Ni,−1 = αiN̄ and dNit(δ | st) denotes the number of trees with dividend stream δ

purchased by agent i at node (t, st). At t = T , the constraint writes:

ciT (sT ) = eiT (sT ) +

∫
δT (sT ) dNiT−1(δ | sT−1) + aiT (sT ). (4)

We assume that, at each node starting at t = 1, an agent can threaten to default, in which case its

creditors obtain fraction 1− θ of all long positions, for some θ ∈ (0, 1).6 If the agent can make a take-it-or-

leave-it offer to its creditors, the maximum amount it can credibly promise when selling Arrow securities is

given by:

a−it+1(st, s) ≤ (1− θ)
{
a+it+1(st, s) +

∫ [
δt+1(st, s) + Pt+1(δ | st, s)

]
dNit(δ | st)

}
. (5)

for all (t, st), t < T , and s, where a−it+1(st, s) = max{−ait+1(st, s), 0} is the short position in Arrow security,

and a+it+1(st, s) = max{ait+1(st, s), 0} is the long position. Thus, we assume two-sided limited commitment

in that the agent who sold Arrow securities cannot commit not to renegotiate her liabilities and the agent

who bought Arrow securities cannot commit to reject take-it-or-leave-it offers.

Since (5) always holds if ait+1(st, s) ≥ 0, it can be simplified into:

−ait+1(st, s) ≤ (1− θ)
∫ [

δt+1(st, s) + Pt+1(δ | st, s)
]
dNit(δ | st). (6)

In other words, an agent’s liability cannot be larger than a fraction 1− θ of its tree portfolio, the maximum

amount it would repay given that it can threaten to default. We will refer to equation (6) as the incentive

constraint, and to the right-hand side of (6) as the agent’s pledgeable income.

The incentive constraint (6) generalizes that of Chien and Lustig (2009) by allowing collateral to be

imperfectly pledgeable: we assume that θ > 0 while Chien and Lustig assumed that θ = 0. While we have

derived the incentive constraint (6) based on ex-post renegotiation, online Appendix XI offers an alternative

micro-foundation based on limited-enforcement and cash diversion, using the optimal contracting argument

6In the appendix, we study the agent’s problem and prove equilibrium existence in a more general case: we assume that the
parameter θ is both agent and tree specific.
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of Rampini and Viswanathan (2010).

With cash on hand. Some of the analysis can be simplified with the following change of variable:

Wit(s
t) ≡ eit(st) +

∫ [
δt(s

t) + Pt(δ | st)
]
dNit−1(δ | st−1) + ait(s

t).

In words, Wit(s
t) represents the agent’s cash-on-hand: the combined value of the endowment, the tree

portfolio and the Arrow security payoff. One advantage of the cash-on-hand formulation is to simplify

notations by suppressing any explicit reference to Arrow securities. Indeed, with cash-on-hand, the sequential

budget constraint becomes:

cit(s
t) +

∫
Pt(δ | st) dNit(δ | st) +

∑
s

Qt+1

(
st, s

)
Wit+1(st, s) (7)

= Wit(s
t) +

∑
s

Qt+1(st, s)eit+1(st, s) +
∑
s

Qt+1(st, s)

∫ [
δt+1(st, s) + Pt+1(δ | st, s)

]
dNit(δ | st),

for all (t, st), and with the convention that time T + 1 variables and time T tree prices are equal to zero.

Likewise, the incentive constraint (6) can be written:

Wit+1(st, s) ≥ eit+1(st, s) + θ

∫ [
δt+1(st, s) + Pt+1(δ | st, s)

]
dNit(δ | st), (8)

for all (t, st), t < T , and s. Equation (8) states that agents’ cash-on-hand in all successor nodes must be

larger than the non-pledgeable income stemming from their labor endowment and tree payoff. This limits

an agent’s ability to hold trees whose payoff is high in the states in which she is constrained.

2.3 Definition of equilibrium

A price system is some (P,Q), where P ≡ {Pt(δ | st), 0 ≤ t < T, st ∈ St} is a sequence of positive and

continuous price functionals for trees, and Q ≡ {Qt+1(st, s), 0 ≤ t < T, st ∈ St, s ∈ S} is a sequence

of Arrow security prices. Given (P,Q), an agent chooses plans for consumption, ci = {cit(st), 0 ≤ t ≤

T, st ∈ St}, and for tree portfolios, Ni = {Nit(st), 0 ≤ t < T, st ∈ St}. A plan for consumption and tree
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portfolios, (ci, Ni), is budget feasible and incentive compatible if there exists some plan for cash-on-hand

Wi = {Wit(s
t), 0 ≤ t ≤ T, st ∈ St} such that (ci, Ni,Wi) satisfies the budget constraint (7) at all nodes, the

incentive constraint (8) at all nodes, and the initial condition:

Wi0(s0) = ei0(s0) + αi

∫ [
δ0(s0) + P0(δ | s0)

]
dN̄(δ). (9)

The agent’s problem is to choose a budget feasible and incentive compatible plan, (ci, Ni), in order to

maximize the intertemporal utility (2).

An allocation is a collection (ci, Ni)i∈I of plans for consumption and tree portfolio. An allocation is

feasible if, at all nodes (t, st):

∑
i

cit(s
t) =

∑
i

eit(s
t) +

∑
i

∫
δt(s

t) dNit−1(δ | st−1) (10)

∑
i

Nit(s
t) = N̄ . (11)

The feasibility condition for trees (11) states that the demand for dividend stream δ,
∑
i dNit(δ | st), is equal

to the supply, dN̄(δ).

An equilibrium is a price system (P,Q) and a feasible allocation (ci, Ni)i∈I such that, for all i ∈ I, (ci, Ni)

solves the problem of agent’s i given (P,Q).

This definition is formulated in the spirit of a classical time-zero Arrow-Debreu equilibrium, in the sense

that it suppresses any explicit reference to agents’ positions in Arrow securities.7 There is one important

difference however, which sets our model apart from earlier work in the endogenous incomplete market

literature, such as Alvarez and Jermann (2000), Chien and Lustig (2009) and Gottardi and Kubler (2015).

In the Arrow-Debreu equilibria defined in these earlier works, agents do not explicitly trade trees: indeed no-

arbitrage implies that it is equivalent for agents to only trade claims to consumptions at all future nodes. Our

definition, in contrast, must be explicit about agents’ trades in trees. This is because trees are imperfectly

pledgeable, implying, as shown below, that standard no-arbitrage relationships do not apply and trading

7See, for example, Chapter 8 in Ljungqvist and Sargent (2012). It is routine to verify that the definition is equivalent to
the corresponding one with Arrow securities. For example, using the sequential budget constraints (3), one can recover agents’
implied Arrow securities positions, and verify that the market for Arrow securities clears.

11



trees is no longer equivalent to trading consumption claims.8

3 Equilibrium Analysis

3.1 No-arbitrage relationships

We first establish key no-arbitrage relationships that have to hold in our setting:

Lemma 1 Let (P,Q) and (ci, Ni)i∈I be an equilibrium. Then:

1. The price of consumption is strictly positive at all (t, st), t < T :

Qt+1(st, s) > 0; (12)

2. Trees are priced at most at the value of their total payoff at all (t, st), t < T :

Pt(δ | st) ≤
∑
s

Qt+1(st, s)
[
δt+1(st, s) + Pt+1(δ | st, s)

]
, (13)

N̄ -almost everywhere in ∆.

3. Trees are priced at least at the value of their pledgeable payoff:

Pt(δ | st) ≥ (1− θ)
∑
s

Qt+1(st, s)
[
δt+1(st, s) + Pt+1(δ | st, s)

]
, (14)

everywhere in ∆, with a strict inequality if the continuation dividend stream is non zero.

For the first no-arbitrage relationship, suppose that the price of consumption were zero for some (t, st):

then all agents would find it optimal to increase their consumption at that node, violating the market clearing

condition for consumption.

8To be clear, Chien and Lustig (2009) and Gottardi and Kubler (2015) define Arrow Debreu equilibria differently from us. In
particular, they do not re-define incentive constraints based on a notion of cash-on-hand, but instead they show how to replace
the collateral constraints by what they call “solvency constraints”: namely at all nodes, the present value of consumption must
be larger than that of the labor endowment. The key point is that, in Chien and Lustig (2009) and Gottardi and Kubler (2015),
agents’ tree portfolios do not enter these solvency constraints. We can derive solvency constraints in our setting as well, by
iterating the incentive constraints (8) forward. But, in contrast to Chien and Lustig (2009) and Gottardi and Kubler (2015),
imperfect pledgeability implies that these solvency constraints now depend on agents’ tree portfolios.
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For the second no-arbitrage relationship, suppose that at node (t, st), the price of some tree in positive

supply were strictly larger than the present value of its total future payoffs. Then all agents holding this

tree could sell it and purchase instead a replicating portfolio of Arrow securities, making a risk-free profit

without violating their incentive constraint: indeed equation (8) shows that replacing a tree with a replicating

portfolio of Arrow securities keeps cash-on-hand the same but reduces the non-pledgeable income stemming

from the tree payoff. Hence, if the second no-arbitrage relationship did not hold, the market could not clear.9

Finally, for the third no-arbitrage relationship suppose that at some node (t, st), the price of some tree

with non-zero continuation dividend stream were lower than the value of its pledgeable future payoffs. Then

an agent could finance the purchase of the tree by selling a replicating portfolio of its pledgeable payoff, and

consume the non pledgeable payoff next period, which must be strictly positive in at least some state. This

would imply infinite demand at some node and violate the market clearing conditions.

While (13) also holds in frictionless markets, (14) is specific to our model as it involves the parameter θ

reflecting that trees’ payoffs are imperfectly pledgeable. Taken together, the second and third no-arbitrage

relationships show that, in our model, the Law of One Price may only fail in one direction: trees can be

priced below, but not above, the portfolio of Arrow securities replicating their payoff. Below we show that

strict violations of the Law of One Price arise in equilibrium.

3.2 Equilibrium existence

Establishing existence is challenging in part because some equilibrium objects are infinite-dimensional: tree

portfolios are represented by finite measures and, correspondingly, tree prices are represented by continuous

functionals. Moreover, since prices enter incentive constraints, we cannot apply existence arguments based

on Welfare Theorems (Negishi, 1960). Instead, we use the classical price-player proof of Arrow and Debreu

(1954), with two changes. First, since agents face incentive constraints that depend on prices, we must revisit

the proof that constraint sets are lower hemi-continuous with respect to prices. Second, the constraint set of

the price player must allow deviations from the Law of One Price and, correspondingly, its objective must

account for the arbitrage revenues generated by agents’ net trades in the market for trees (see Appendices

9Notice that this reasoning only applies to trees in positive supply, which is why it only holds almost everywhere according
to N̄ . For trees in zero supply, the only restriction is that the price must be large enough so that agents do not find optimal to
hold them.
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A.1 and A.4). One advantage of the “cash on hand” formulation of budget and incentive constraints is to

help coping with these difficulties.10

The proof of existence proceeds in two steps. We first consider tree supplies with finite support, a

simpler case because it can be handled with finite-dimensional vector space methods. In particular, we can

first determine finitely many tree prices, in the support of the supply distribution, and then provide a natural

extension of this price vector to a continuous price functional valuing all dividend streams in ∆. Next, we

rely on the fact that the set of positive measures on ∆ with finite support is dense in the set of all positive

measures on ∆, endowed with the weak topology. Given a sequence of discrete measures converging weakly

to any arbitrary finite measure N̄ , and an associated sequence of equilibria, we can extract a subsequence

converging to an equilibrium given supply N̄ . In sum:

Theorem 1 There exists an equilibrium.

While our analysis so far relied on the assumption that agents cannot short trees, it turns out that

this constraint is not binding. Suppose indeed that, in addition to Arrow securities, agents are allowed to

short trees: then agent i’s tree portfolio can be written as the difference between two positive measures,

Ni = N+
i −N

−
i , where N+

i represents long and N−i short positions. Since short-positions are liabilities, they

must be subject to some incentive constraint. Going through the same reasoning as before, we obtain:

a−it+1(st, s) +

∫ [
δt+1(st, s) + Pt+1(δ | st, s)

]
dN−it (δ | st)

≤ (1− θ)
{
a+it+1(st, s) +

∫ [
δt+1(st, s) + Pt+1(δ | st, s)

]
dN+

it (δ | st, s)
}
. (15)

We then establish:

Corollary 1 An equilibrium arising when agents can only short Arrow securities remains an equilibrium

when agents can short both trees and Arrow securities.

To see why the result obtains, consider an equilibrium when agents can only short Arrow securities. In

equilibrium, as stated in Lemma 1, trees are priced below (but not above) replicating portfolios of Arrow

10Indeed, by suppressing the need to clear the market for Arrow securities this formulation makes it easier to formulate
Walras Law and define the price-player objective. Moreover, cash-on-hand can be used as state variable for a recursive proof of
lower hemi-continuity.
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securities. Hence, agents do not find it optimal to short trees: they prefer instead to short replicating

portfolios of Arrow securities.11

Of course, while tree short selling constraints do not bind, incentive constraints could bind. We now

examine conditions under which it is the case. Let (Q, c) be the price system and consumption allocation

of a complete market equilibrium, i.e., with complete market and no incentive constraints. Now consider a

corresponding economy with incentive constraints.12 We say that (Q, c) is IC-implementable if there exists

an equilibrium with incentive constraints, (P̂ , Q̂) and (ĉ, N̂) such that Q = Q̂ and c = ĉ. In Appendix D we

derive necessary and sufficient conditions for IC implementability, leading to:

Proposition 1 Let θ? be the largest θ such that a given complete market equilibrium is IC-implementable:

1. θ? > 0 if e is small and Inada conditions hold for all agents;

2. θ? < 1 if N̄ is small, e� 0 and marginal rate of substitutions evaluated at e are not equalized;

3. θ? < 1 if agents have heterogenous CRRA utility, e is small, and there is one tree;

4. θ? is weakly increasing in tree supply dispersion.

Notice that if an allocation is IC implementable for a given θ, it remains IC implementable if θ is lower.

The first two points of the proposition highlight that complete market outcomes obtain when the supply

of collateral is sufficiently large and pledgeable.

Under the assumptions stated in the first point, agents want their cash-on-hand to remain large enough

at every node: otherwise, since they do not have much labor income, they would be forced to consume little,

which is not optimal under Inada conditions. This means that agents do not find it optimal to issue large

liabilities. Hence, incentive constraints are slack as long as trees are sufficiently pledgeable, i.e., for all θ

small enough.

11An earlier draft of this paper showed a stronger result. Namely, in a two-periods version of the model, any equilibrium with
short-selling is essentially equivalent to an equilibrium with no short-selling, with identical consumption allocation and price
system.

12Formally, in a corresponding economy with incentive constraints, agents have the same preference and consumption-good
endowment as in the complete-market economy, that is, at all nodes, the sum of their labor and tree income endowment is
equal to their consumption endowment in the complete-market economy. Notice that there are many possible such economies,
differing in terms of their pledgeability parameter and of the break down of consumption good endowment between labor and
tree income.
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In the second point, intertemporal marginal rates of substitution evaluated at e are not equalized, so

agents would benefit from risk sharing to smooth consumption. But such risk sharing is ruled out by the

scarcity of collateral, N̄(∆) ' 0.

The last two points of the proposition emphasize that the implementability of complete market outcomes

not only depend on size and pledgeability of the collateral supply, but also on its distribution.

To gain intuition about the third point recall that, in a complete market equilibrium with heterogenous

CRRA utility, agents’ consumption shares are not constant: they depend on the current realization of

the aggregate endowment. But if there is just one tree and little labor income, aggregate ressources are all

bundled in a single tree. As a result, when agents trade the tree, they can only attain approximately constant

consumption shares. Hence agents need to issue liabilities to attain their complete-market state-dependent

consumption shares. Correspondingly, a complete market equilibrium is not IC-implementable as long as θ

is close enough to one, i.e., as long as agents cannot issue much liabilities.

For the fourth point, suppose as a special case that e = 0, and that the distribution of tree supply

is maximally dispersed. Specifically, assume that all trees in positive supply are Arrow securities, in the

sense that they only pay dividend at one node. Then, it is clear that the complete market outcome is

IC-implementable: all agents can synthetize their complete-market consumption profile by purchasing these

Arrow trees only, while respecting market clearing in the aggregate. Our proof generalizes this example:

it shows that IC implementation becomes easier if one increases supply dispersion by breaking up existing

trees into replicating portfolios.

3.3 First-order conditions

We now state the first-order necessary and sufficient conditions for the agent’s problem (the formal derivation

is in Appendix A.3). Let λit(s
t) ≥ 0 denote the multiplier for the sequential budget constraint (7) at node

(t, st) and µit+1(st, s) ≥ 0 the multiplier for the incentive constraint (8). The first-order conditions with
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respect to cit(s
t) and Wit+1(st, s) write:

βtπt(s
t)u′i(cit(s

t)) = λit(s
t) (16)

λit+1(st, s) + µit+1(st, s) = λit(s
t)Qt+1(st, s). (17)

where we have assumed strictly positive consumption for simplicity. The first condition states that the agent

chooses consumption to equate marginal utility with marginal cost, which is equal to the multiplier of the

budget constraint, λit(s
t). The second condition equates the marginal value and marginal cost of increasing

cash-on-hand next period, Wit+1(st, s). It reveals that the marginal value of increasing cash-on-hand next

period has two components: it relaxes both the budget constraint, with marginal value λit+1(st, s), and the

incentive constraint, with marginal value µit+1(st, s). The intuition for the latter is that higher cash-on-hand

reduces the agent’s incentive to default. Combining the two we obtain that

Qt+1(st, s) = βπt+1(s | st)u
′
i(cit+1(st, s))

u′i(cit(s
t))

+
µit+1(st, s)

λit(st)
. (18)

Condition (18) is familiar from the limited-commitment literature (see, e.g. Alvarez and Jermann, 2000),

and means that Arrow securities are priced by those agents whose incentive constraints are not binding,

for example, agents who are long Arrow securities. When an agent’s incentive constraint is not binding,

µit+1(st, s) = 0 and the agent’s intertemporal marginal rate of substitution is equal to the corresponding

Arrow security price. By contrast, for the agents whose incentive constraint is binding, µit+1(st, s) > 0

and the agent’s intertemporal marginal rate of substitution is strictly lower than the corresponding Arrow

security price. This, however, does not prompt the agent to sell the Arrow security because this would

violate her incentive constraint.

New to our setting is the first-order condition with respect to tree holdings, which can be stated as:

∑
s

Qit+1(st, s)
[
δt+1(st, s) + Pt+1(δ | st, s)

]
≤ Pt(δ | st), (19)
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with an equality if the agent holds the tree, that is, if dNit(δ | st) > 0, and where

Qit+1(st, s) ≡ (1− θ)Qt+1(st, s) + θ βπt+1(s | st)u
′
i(cit+1(st, s))

u′i(cit(s
t))

(20)

is the private valuation of agent i for an Arrow security paying off in state s at time t + 1. The economic

interpretation is that the payoff has both a pledgeable and a non-pledgeable component, which are valued

differently. While the agent values the pledgeable component using the price of Arrow securities (first term

on the right-hand side of (20)), it values the non-pledgeable component using its own intertemporal marginal

rate of substitution (second term). To the extent that different agents’ incentive constraints bind in different

states, marginal rates of substitution and therefore private valuations differ across agents.

3.4 Segmentation

Optimal payoff sets. For each node (t, st), each agent i, and any vector of one-period ahead payoff

x ∈ RS+, the left-hand side of equation (19) defines a private valuation operator:

Qit+1(st) · x =
∑
s

Qit+1(st, s)x(s), (21)

the dot-product between the vector of private valuations for Arrow securities, and the vector of one-period

ahead payoffs. Correspondingly, there is a set of one-period ahead payoffs for which agent i is the best

holder:

Xit(s
t) ≡

{
x ∈ RS+ : Qit+1(st) · x ≥ Qjt+1(st) · x, for all j

}
. (22)

Agent i only holds trees whose vector of one-period ahead payoffs (i.e., the vector of the cum-dividend price)

lies in Xit(s
t). In what follows, we will refer to Xit(s

t) as the optimal payoff set of agent i. We show below

that, in general, because agents have different private valuations, they have distinct optimal payoff sets, and

so hold different trees in equilibrium. Hence, the tree market is endogenously segmented.13

13Of course, for trees, one-period ahead payoffs depend on future prices and so are endogenous. In Section 3.6, we show how
to characterize segmentation in the set of dividend streams as opposed to the set of payoffs.
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Characterizing the collection of optimal payoff sets, {Xit(s
t), i = 1, . . . , I}, is a classical problem in Opti-

mal Transport theory, studied in Chapter 5 of Galichon (2016): the problem of drawing “power-diagrams.”

Although this problem does not have an analytical solution in general, it has simple geometrical properties.

Moreover, numerical calculations are facilitated by the observation that optimal payoff sets solve a convex

optimization problem. See Online Appendix IX for more mathematical details. The proposition below states

some key properties of optimal payoff sets.

Proposition 2 The collection of optimal payoff sets {Xit(s
t), i = 1, . . . , I}, has the following properties:

1. Optimal payoff sets are convex polyhedral cones covering RS+.

2. For any two pairs of agents, the optimal payoff sets are either identical (Xit(s
t) = Xjt(s

t)) or have

disjoint interiors (X̊it(s
t) ∩ X̊jt(s

t) = ∅).

3. If no incentive constraint binds in the next period, then Xit(s
t) = RS+ for all i. Otherwise, if there

exists an agent i whose incentive constraint binds in some state in the next period, then Xit(s
t) is a

strict subset of RS+ and there exists another agent j such that X̊it(s
t) ∩ X̊jt(s

t) = ∅.

The first bullet point of the proposition follows because optimal payoff sets are defined by linear inequal-

ities. The payoff vector of a tree is represented by a point in RS+. The direction of the vector represents the

tree’s risk exposure, i.e., the distribution of its payoff across states. That optimal payoff sets are cones means

that if an asset is in the set, any asset with proportional payoff, i.e. with the same risk exposure, is also in

the set. To illustrate this, Figure 2 displays a convex polyhedral cone in the payoff space when there are

three states. The rightmost facet of the polyhedron is the intersection of the cone with the simplex, which

will be useful for the analysis.

The interpretation of the second bullet point is the following. If two agents have the same private

valuations, Qit+1(st, s) = Qjt+1(st, s) for all s ∈ S, then they must have the same optimal payoff sets.

Otherwise, if two agents have different private valuations, the set of payoffs for which they have the same

private valuations is an hyperplane, thus its interior is zero.

Finally, we turn to the third bullet point. If no incentive constraint binds, all private valuations are the

same, so equation (22) implies that agents’ have the same optimal payoff sets, which must be RS+. If an
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Figure 2: A polyhedral cone with three successor states.

incentive constraint binds for some agent i in some state s, it means agent i has large liabilities in state s,

created by short positions in Arrow securities paying off in this state. By market clearing, there is another

agent j 6= i who has long positions in these Arrow securities and therefore no liabilities in state s. Thus,

agent j’s incentive constraint is slack in state s. Hence, agents i and j have different private valuations. In

particular, agent i has a lower valuation than j for trees with large payoff in state s. Therefore, agents i and

j have different optimal payoff sets and correspondingly different holdings, i.e., there is segmentation.

To illustrate how segmentation in the market for trees is related to the demand for Arrow securities,

consider agents who want to hedge against the risk of a given state s occurring. These agents purchase Arrow

securities paying off in that state. But the supply of Arrow securities is limited by incentive constraints,

hence insurance is imperfect and these agents have high marginal utility in that state and therefore high

private valuations for trees with a high payoff in that state. Therefore, they buy trees lying in a cone that

is close to the axis corresponding to that state.

While we have a characterization of optimal payoff sets given the vector of private valuations, it is

difficult to solve analytically the general equilibrium problem of finding the private valuations. To sidestep

this difficulty, we consider the limiting case of an economy with no collateral, N̄ = 0.14 In that case,

the marginal rates of substitution are easy to characterize because the agents just consume their labor

endowments. Equipped with those marginal rate of substitutions, we can solve the Optimal Transport

14The economy with no collateral does not satisfies our maintained assumption (1) that the aggregate dividend is strictly
positive at all nodes, so Theorem 1 does not apply. However, it is easy to show by hand that an equilibrium exists, that the
allocation is unique, and that an equilibrium price system is obtained from the same first-order conditions as in the rest of the
paper. See Online Appendix VIII.
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problem and characterize the collection of optimal payoff sets.15 Of course, when N̄ = 0, there are no trees

around that agents can use as collateral to issue Arrow securities. But we establish a continuity argument

in Online Appendix VIII: the N̄ = 0 marginal rates of substitution, as well as the corresponding optimal

payoff sets, approximate those arising in an economy with little collateral, N̄ ' 0.16 This implies that, when

N̄ ' 0, agents will purchase the trees whose payoffs lie in the interior of their N̄ = 0 optimal payoff set, and

use them as collateral to sell Arrow securities whose N̄ = 0 price is strictly larger than their marginal rate

of substitution.

A first parametric example. We consider an economy populated by many log utility agents, who are

hit by heterogeneous endowment growth shocks i.i.d. over time. Suppose there are three states (see Online

Appendix IX for assumptions and computations). To represent graphically the collection of optimal payoff

sets, we plot their intersection with the simplex, as shown in Figure 3. These intersections fully characterize

the optimal payoff sets, since these are cones. The figure reveals that some agents only hold assets near

corners, i.e., assets which are approximately Arrow securities. These agents have the highest intertemporal

marginal rate of substitutions corresponding to that state. Other agents hold assets away from corners.

These agents do not have a maximal intertemporal marginal rate of substitution for any state, and so they

do not hold any Arrow security. However, they can be the best holders of some other interior trees, with

positive payoff in all states. In equilibrium, these agents buy these interior trees and use them as collateral

to sell Arrow securities conditional on all states.17

A second parametric example. Our second example provides a full characterization of equilibrium

allocations in an economy log utility agents and with two states. We parameterize the endowment growth

15In an economy with no collateral N̄ = 0, borrowing constraints are “maximally tight” in the sense of Krusell, Mukoyama
and Smith (2011). As a result, the allocation becomes trivial: it is “hand-to-mouth.” This property makes an economy with
no collateral as tractable as a representative agent economy: optimal payoff sets and asset prices can be characterized in closed
form.

16To be clear, our arguments establish continuity for allocations and price systems, and upper hemi continuity for optimal
payoff sets.

17Figure 3 also suggests that optimal payoff sets have other geometrical properties than the ones noted in Proposition 2,for
example they are “face to face”. Indeed, it turns out that the properties of Proposition 2 are only necessary: the geometry
of power diagrams places additional restrictions on optimal payoff sets (see Aurenhammer, 1987a,b; Ziegler, 1995, and our
summary in Online Appendix IX) but these do not have obvious economic interpretations.
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state 1 state 2

state 3

Figure 3: First parametric example: intersections of optimal payoff sets with the simplex.

of agents by α1 = 0 < α2 < . . . < αI . In state 1 occurring with probability π1, the endowment growth is

g1(α) = g (1 + k1α)
−φ

(23)

while in state 2 occurring with probability π2, it is

g2(α) = g (1− k2α)
−φ

, (24)

where g > 0, 0 < k1π1 < k2π2 and k2αI < 1. For all agents, g1(α) ≤ g2(α), meaning that s = 1 is the “bad

state” while s = 2 is the “good state”. Agents with higher α have a higher exposure to the risk of the bad

state. The payoff of a tree in the simplex is (x, 1− x) where x is the payoff in the bad state.

Proposition 3 In the parametric example above, if φγ < 1, there exists a strictly increasing sequence

x0 = 0 < x1 < . . . < xI = 1 such that the intersection of the optimal payoff set of agent αi with the simplex

is Xi = [xi−1, xi].

Therefore, agents with higher exposure to risk of the bad state (with higher α) hold trees with large payoffs

in the bad state, which hedge them better. Extreme agents α1 = 0 and αI hold assets in the neighborhood
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Figure 4: Second parametric example: intersection of optimal payoff sets with the unit square.

of Arrow securities, while intermediate agents hold other assets. Figure 4 represents the optimal payoff sets

as shaded areas, in an example economy with I = 5 agents. The cones further to the northwest correspond

to lower values of α. The sequence xi is represented as the tick labels of the x axis.18.

3.5 Asset pricing

From equation (19), it follows that the recursion

Pt(δ | st) = max
i

∑
s

Qit+1(st, s)
[
δt+1(st, s) + Pt+1(δ | st, s)

]
(25)

defines an equilibrium price functional for all trees δ ∈ ∆.19 Equation (25) means that the price of the tree

is the maximum of the private valuations of all agents for that tree. In this section we study the implications

of this asset pricing formula.

18Online Appendix X covers the other case. We show that when φγ ≥ 1, assets are only held by extreme agents, α1 and αI .
In that case, the optimal payoff sets of intermediate agents are either empty or singleton (i.e., have an empty interior), two
properties consistent with Proposition 2.

19In all equilibria, this equation holds with equality for trees in positive supply, and otherwise with inequality. We assume
from now on that it holds with equality for all trees in ∆, which is natural and without much loss of generality: indeed, this
equation determines the equilibrium price of tree δ as soon as it s supply outstanding is arbitrarily small.
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Deviations from the Law of One Price. Because the pricing operator (25) is convex and linearly

homogenous in payoffs, a tree must be priced below any replicating portfolio of long positions, comprised of

trees or Arrow securities. For example, considering three trees with time t+ 1 payoffs x, y, and z = x+ y,

respectively, we have

max
i
Qit+1 · z ≤ max

i
Qit+1 · x+ max

i
Qit+1 · y,

that is, z is valued below its replicating portfolio x+ y. The inequality is strict if there is no agent who has

the highest valuation for both x and y. This is stated more generally in the next proposition.

Proposition 4 Consider tree δ in node (t, st) and a replicating portfolio M , that is,

δt+1(st, s) + Pt+1(δ | st, s) =

∫
[δ′t+1(st, s) + Pt+1(δ′ | st, s)] dM(δ′)

for all s ∈ S. If there exists no agent whose optimal payoff set includes the payoffs of (almost) all assets in

the replicating portfolio, then tree δ is priced strictly below its replicating portfolio:

Pt(δ | st) <
∫
Pt(δ

′ | st) dM(δ′). (26)

Note that the replicating portfolio M can include trees, or Arrow securities, or both. The economic

intuition of Proposition 4 is that a tree is a bundle of risks that cannot be traded separately from one

another, whereas the portfolio of securities with the same payoff as the tree is a bundle of risks that can

be traded separately. If there is no agent whose valuation for all the securities in that portfolio is the

highest among agents, then no agent wants to hold all the securities in the replicating portfolio and bear the

corresponding bundle of risks. Instead, all agents prefer to pick and choose among the risks in the bundle,

retaining only those they want to bear. Therefore, the tree is priced below its replicating portfolio, that is,

there is a basis.

A specific implication of our model is that the basis always goes in the same direction. Consistent with

the no-arbitrage relationships in Lemma 1, the price of a tree can be lower than that of the replicating

portfolio of trees and/or Arrow securities, but it cannot be higher. If it was higher, an agent holding the

24



tree could sell it and buy the replicating portfolio. That arbitrage trade would be feasible because i) market

clearing implies there is at least one agent holding the tree, and ii) replacing a tree by its replicating portfolio

does not tighten the incentive constraint. In contrast with i), when the price of the tree is lower than that of

the replicating portfolio, there does not exist an agent holding the replicating portfolio (since holding that

portfolio is dominated). Hence arbitrage trades would require the issuance of liabilities, which would tighten

the incentive constraint (in contrast with ii)).

The literature has shown that pledgeable payoffs should be priced higher than non-pledgeable ones,

which also holds in our model as is clear from equation (20). Thus, the literature has identified the collateral

premium, i.e., pledgeable trees should be priced higher than non-pledgeable ones. In contrast, we show there

is a basis between a tree and a replicating portfolio of identically pledgeable securities, to the extent that

the payoffs of these securities are differently bundled across states than the tree.

For example, a convertible bond is a bundle of a straight bond and a call option on the issuer’s stock. In

the language of our model, a convertible bond is a tree with the same payoff as a combination of another tree

(the straight bond) with a portfolio of Arrow securities (the call option). Our model implies that, if there are

no agents who hold simultaneously the straight bond and the call, then the convertible bond should be priced

strictly below the price of the straight bond plus the price of the call. In line with our theory, convertible

bonds are in fact priced below the replicating portfolio. This deviation from the Law of One Price is at the

root of a popular hedge fund strategy (“convertible arbitrage”), which consists in stripping the convertible

bond (Mitchell and Pulvino, 2012). Hedge funds buy the convertible bond, issue the set of securities that

replicate the convertible bond, and sell the different securities to different clienteles: debt securities are

distributed through prime brokers to money market funds and other buyers of safe securities, while equity

risk is distributed to equity investors. The convertible arbitrage strategy is constrained, both in practice and

in our theory, because the hedge funds realizing the arbitrage have a limited ability to issue the securities

replicating the convertible bond. As a result, convertible bond cheapness increases when arbitrageurs have

greater difficulties issuing liabilities, such as during the 1998 LTCM crisis, the 2005 convertible arbitrage

meltdown, and the 2008 credit crisis.
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Concave beta pricing. Denote tree return as Rt+1(δ | st+1) ≡ δt+1(s
t+1)+Pt+1(δ | st+1)
Pt(δ | st) and consider any K

factors with expected returns normalized to zero. By linear projection onto the factors, we can write the

tree returns as

Rt+1(δ | st+1) = Et
[
Rt+1(δ | st+1)

]
+

K∑
k=1

βk(δ | st)Fk,t+1(st+1) + εt+1(δ | st+1), (27)

with

0 = Et
[
Fk,t+1(st+1)

]
= Et

[
εt+1(δ | st+1)

]
= Et

[
Fk,t+1(st+1) εt+1(δ | st+1)

]
. (28)

The next proposition states that if the factors orthogonalize tree returns with respect to all agents’ private

valuation operators (i.e., agents’ stochastic discount factors), then a tree expected return is concave in the

factor exposures.

Proposition 5 Let Mit+1(st+1) ≡ Qit+1(st+1)/πt+1(st+1 | st) denote the stochastic discount factor for agent

i. If

Et
[
Mit+1(st+1) εt+1(δ | st+1)

]
= 0 for all δ and i, (29)

then the expected return, Et
[
Rt+1(δ | st+1)

]
, is a concave function of factor exposures (βk(δ | st))Kk=1.

Condition (29) holds in particular if the factors correspond to the stochastic discount factors of the

different agents. The intuition for the concavity of expected returns in betas is similar to the intuition for

the result that a tree is priced below a replicating portfolio of long positions in other trees (Proposition 4).

Consider a tree with a vector β(δ | st) of factor exposures. That tree can be replicated, up to unpriced risk

εt+1(δ | st+1), with a portfolio of long positions in other trees such that a linear combination of their factor

exposures are equal to β(δ | st). In line with Proposition 4, Proposition 5 states that the replicated tree has

lower price and higher expected return than the replicating portfolio. Our theoretical result that expected

returns are concave in factor betas is in the spirit of empirical evidence of concavity of the security market

line (Frazzini and Pedersen, 2014; Hong and Sraer, 2016).
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3.6 Optimal payoff sets vs. optimal tree sets

In the analysis above, we have studied segmentation and asset pricing in terms of one-period ahead payoffs.

However, these payoffs are in general endogenous since they depend on next-period prices. We now show

that our analysis applies to the set of exogenous dividend streams instead of endogenous one-period-ahead

payoffs, and discuss new insights.

When viewed as a Bellman equation, the recursive pricing formula (25) reveals that tree prices solve an in-

tertemporal optimization problem: find the state-contingent sequence of asset holders with the highest valua-

tion for the tree. More formally, define a sequence of agents as J = {jt(st) ∈ {1, . . . , I} : 0 ≤ t < T, st ∈ St},

and let J denotes the set of all such sequences. Any sequence J generates a private-valuation for node (t, st)

consumption defined recursively as

qt+1(st+1 | J) = qt(s
t | J)×Qjt(st),t+1(st+1 | st),

with the convention that q0(s0 | J) = 0 for all J . Then, a standard optimality verification argument (in

Online Appendix X.1) shows that:

Pt(δ | st) = max
J∈J

∑
(u,su)�(t,st)

qu(su | J)

qt(st | J)
δu(su). (30)

This formula reveals that the pricing functional is the maximum of a family of linear functions of δ, each

corresponding to a particular sequence of agents, J . Hence our earlier characterization of optimal payoff

sets carries over to trees, but with one key difference: instead of characterizing the optimal payoff set of

an individual agent, j, the Optimal Transport problem now characterizes the optimal tree set of a sequence

of agents. The optimal tree set of agent j is the union of optimal tree sets over all sequences J of agents

starting with agent j. Hence, the optimal tree set of agent j is not necessarily convex.

Now turning to pricing, one immediate implication of (30) is that the pricing functional is a piecewise

linear and convex function of dividend streams δ. Another implication, that has been highlighted in prior

work on asset pricing with heterogenous beliefs (Harrison and Kreps, 1978; Scheinkman and Xiong, 2003), is

that the functional prices the option to re-sell the tree to a different type of agent at a later date. Formally,
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the price of the tree has to be greater than the buy-and-hold value that would be derived by a constant

sequence of agents, and strictly so if the optimum of (30) is not attained by a constant sequence.

4 Conclusion

This paper offers a dynamic general equilibrium analysis of risk sharing and asset pricing when collateral is

imperfectly pledgeable. This yields a rich set of implications on asset holdings (endogenous segmentation)

and asset pricing (basis, concavity of expected returns in factor loadings).

While our model is set in the context of a pure exchange economy, it would be interesting to extend the

analysis to study investment in production technologies. In our theoretical framework, these technologies

have a dual role: they expand production possibilities but, at the same time, they can be used as collateral

and thus improve risk-sharing and consumption smoothing. One would expect that, in some cases, there

would be a tradeoff between technological and collateral efficiency, breaking standard separation results in

classical theories. That is, a technology that leads to a large increase in production efficiency may be a poor

collateral, and vice versa. The tradeoff between collateral and technological efficiency may have implications

for international trade and for the nexus between technological and financial development.
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Araújo, Alóısio, Felix Kubler, and Susan Schommer, “Regulating collateral-requirement when markets are

incomplete,” Journal of Economic Theory, 2010, 147, 450–476. 5

Arrow, Kenneth J. and Gérard Debreu, “Existence of an Equilibrium for a Competitive Economy,” Economet-

rica, 1954, 22 (265-290). 3, 13

Aurenhammer, Franz, “A Criterion for the Affine Equivalence of Cell Complexes in Rd and Convex Polyhedra in

Rd+1,” Discrete Computational Geometry, 1987, 2, 49–64. 21, 54

, “Power Diagrams: Properties, Algorthms, and Applications,” SIAM Journal on Computing, 1987, 16 (1), 78–96.

21, 54

Brumm, Johannes, Michael Grill, Felix Kubler, and Karl Schmedders, “Collateral Requirements and Asset

Prices,” International Economic Review, 2015, 56, 1–25. 5

Campbell, John Y., Stefano Giglio, and Parag Pathak, “Forced Sales and House Prices,” American Economic

Review, 2011, 101, 2108–2131. 2

Catherine, Sylvain, Paolo Sodini, and Yapei Zhang, “Countercyclical Income Risk and Portfolio Choice:

Evidence from Sweden,” 2020. Working paper University of Pennsylvania. 3

Chien, Yili and Hanno Lustig, “The Market Price of Aggregate Risk and the Wealth Distribution,” Review of

Financial Studies, 2009, 23, 1596–1650. 5, 9, 11, 12

Edmond, Chris and Simon Mongey, “Unbundling Labor,” 2020. Working paper, University of Melbourne and

University of Chicago. 6

Fleming, Michael J. and Asani Sarkar, “The Failure Resolution of Lehman Brothers,” FRBNY Economic Policy

Review, 2014, December, 175–206. 2

Fostel, Ana and John Geanakoplos, “Leverage Cycles and the Anxious Economy,” American Economic Review,

2008, 98, 1211–44. 5, 6

29



Frazzini, Andrea and Lasse Hejee Pedersen, “Betting agaisnt beta,” Journal of Financial Economics, 2014,

111, 1–25. 4, 26

Galichon, Alfred, Optimal Transport Methods in Economics, Princeton University Press, 2016. 3, 19
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Heckman, James and José Scheinkman, “The Importance of Bundling in a Gorman-Lancaster Model of Earn-

ings,” Review of Economic Studies, 1987, 54, 243–255. 6

Hindy, Ayman and Ming Huang, “Asset Pricing with Linear Collateral Constraints,” Technical Report, Stanford

University 1995. 5

Hong, Harrison and David Sraer, “Speculative Beta,” Journal of Finance, 2016, Forthcoming. 4, 26

Jacquet, Nicolas L., “Asset Classes,” Technical Report, Singapore Management University 2015. 6

Kehoe, Timothy J. and David K. Levine, “Debt-Constrained Asset Markets,” Review of Economic Studies,

1993, 60, 865–888. 5

Kiyotaki, Nobuhiro and John Moore, “Credit Cycles,” Journal of Political Economy, 1997, 105, 211–248. 2

Krusell, Per, Toshihiko Mukoyama, and Anthony A. Smith, “Asset prices in a Huggett Economy,” Journal

of Economic Theory, 2011, 146, 812–844. 21

Lagos, Ricardo, “Asset prices and liquidity in an exchange economy,” Journal of Monetary Economics, 2010, 57,

913 – 930. 6

30



Lenel, Moritz, “Safe Assets, Collateralized Lending and Monetary Policy,” 2017. Working paper, Stanford Univer-

sity. 5

Lester, Benjamin, Andrew Postlewaite, and Randall Wright, “Information, Liquidity, Asset Prices, and

Monetary Policy,” Review of Economic Studies, 2012, 79, 1208–1238. 6

Li, Yiting Li, Guillaume Rocheteau, and Pierre-Olivier Weill, “Liquidity and the Threat of Fraudulent

Assets,” Journal of Political Economy, 2012, 120, 815–846. 6

Ljungqvist, Lars and Thomas J. Sargent, Recursive Macroeconomic Theory, third edition ed., Boston: MIT

Press, 2012. 11

Luenberger, David, Optimization by vector space methods, John Wiley & Son, 1969. 34, 46

Lustig, Hanno and Stijn Van Nieuwerburgh, “How much does household collateral constrain regional risk

sharing?,” Review of Economic Dynamics, 2010, 13 (2), 265–294. 5

Mas-Colell, Andreu, Michael D. Whinston, and Jerry R. Green, Microeconomic Theory, Oxford: Oxford

University Press, 1995. 48

Mitchell, Mark and Todd Pulvino, “Arbitrage crashes and the speed of capital,” Journal of Financial Economics,

2012, 104 (3), 469–490. 4, 25

Negishi, Takashi, “Welfare Economics and Existence of An Equilibrium for a Competitive Economy,” Metroeco-

nomica, 1960, 12, 92–97. 3, 13

Rampini, Adriano and S. Viswanathan, “Collateral, Risk Management, and the Distribution of Debt Capacity,”

Journal of Finance, 2010, 65, 2293–2322. 5, 10, 57, 59, 60

Rosen, Sherwin, “A Note on Aggregation of Skills and Labor Quality,” The Journal of Human Resources, 1983,

18, 425–431. 6
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Appendix

We establish several of our results in the extended environment with a pledgeability parameter that is agent and

tree specific. That is, we assume that each agent i can pledge a fraction θi(δ) of the next-period payoff of tree δ ∈ ∆,

where θi(δ) ∈ (0, 1) for all i and δ, is continuous and uniformly bounded away from zero and one across all agents

and trees.

In what follows we will use the following notations and definitions. For each (t, st), we let ∆+
t (st) denote the set

of trees with non-zero continuation dividend, i.e. such that δu(su) > 0 for some (u, su) � (t, st). The set of functions

continuous on ∆ is endowed with the metric induced by the sup norm. The set of positive and finite measures over

∆ is denoted by M+ and is endowed with the topology of weak convergence.20

Finally, as is standard, it is easier to establish equilibrium existence when prices are deflated to time zero. Namely,

after fixing the price of consumption a time zero to be q0(s0), we let the deflated or time-zero price of consumption

at node (t, st) to be qt(s
t) ≡ q0(s0)Q1(s0, s1)Q2(s1, s2) . . . Qt(s

t−1, st). Likewise, the deflated price of trees is given

by the deflated functional pt(δ | st) ≡ qt(st)Pt(δ | st). For the remainder of this appendix, we work with this deflated

price system (p, q). Correspondingly, we write the sequential budget constraint as:

qt(s
t)cit(s

t) +

∫
pt(δ | st) dNit(δ | st) +

∑
s

qt+1

(
st, s

)
Wit+1(st, s) (31)

=qt(s
t)Wit(s

t) +
∑
s

qt+1(st, s)eit+1(st, s) +
∑
s

∫ [
qt+1(st, s)δt(s

t, s) + pt+1(δ | st, s)
]
dNit(δ | st, s),

for all (t, st), and with the convention that time T + 1 variables and time T tree prices are equal to zero. Likewise,

we write the incentive constraint as:

qt+1(st, s)Wit+1(st, s) ≥ qt+1(st)eit+1(st, s) + θ

∫ [
qt+1(st, s)δt+1(st, s) + pt+1(δ | st, s)

]
dNit(δ | st). (32)

A Preliminary results

A.1 Normalized no-arbitrage price systems

We let NA denote the set of normalized no-arbitrage price systems, that is, the set of (p, q) such that consumption

prices q lie in the simplex:

∑
(t,st)

qt(s
t) = 1, (33)

20Recall that a sequence N` ∈M+ converges weakly towards some N ∈M+ if
∫
f(δ) dN`(δ)→

∫
f(δ) dN(δ) for all functions

f continuous on ∆. We use sequences instead of nets to define weak convergence because M+ is metrizable (Varadarajan,
1958). The same sequential characterization of weak convergence is used by Stokey and Lucas (1989).
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tree prices pt(δ | st) are continuous in δ ∈ ∆ for all (t, st), and the no-arbitrage conditions hold:

qt(s
t) > 0 (34)

pt(δ | st) ≤
∑
s

[
qt+1(st, s)δt+1(st, s) + pt+1(δ | st, s)

]
(35)

pt(δ | st) ≥ (1− θi(δ))
∑
s

[
qt+1(st, s)δt+1(st, s) + pt+1(δ | st, s)

]
, (36)

where (35) must hold for all δ, and (36) must hold for all agents i and trees δ, with a strict inequality if the continuation

dividend is non-zero, δ ∈ ∆+
t (st).

Notice that we restrict attention here to price systems such that (35) holds for all δ ∈ ∆. Although this is stronger

than the necessary condition for no-arbitrage of Lemma 1, this will not create problems for establishing existence.

As will become clear, in any equilibrium, there always exists a price system such that (35) holds for all δ ∈ ∆. A

useful property to keep in mind, shown in online Appendix I, is:

Lemma A.1 The closure of NA, denoted by NA, is the set of price systems (p, q) such that (34)-(36) hold with weak

inequalities.

A.2 Properties of the constraint correspondence

The constraint correspondence is the set-valued function Γi(W0, p, q) mapping any initial cash-on-hand W0 ∈ R+ and

price system (p, q) ∈ NA to the set of plans (ci, Ni) that are budget feasible and incentive compatible given the initial

wealth W0 and price system (p, q). An important property for what follows is:

Proposition A.1 The constraint correspondence is non-empty, convex-valued, has a closed-graph over R+×NA, and

is lower hemi-continuous over R+ × NA.

The challenging part of the proof, shown in online Appendix II, is to establish lower hemi-continuity. To un-

derstand why, recall that Γi(W0, p, q) is lower hemi-continuous at (W0, p, q) if for all (W `
0 , p

`, q`) → (W0, p, q),

and for all (c,N) ∈ Γi(W0, p, q), there exists a sequence (c`, N `) → (c,N) such that, for all ` large enough,

(c`, N `) ∈ Γi(W
`
0 , p

`, q`) (see Section 3.3. in Stokey and Lucas, 1989). Without incentive constraints, the proof of

lower hemi-continiuity is easy. Indeed, if c 6= 0, then for (p`, q`)→ (p, q), one can finance some (c`, N `) ∈ Γi(W
`
0 , p

`, q`)

which is arbitrarily close to (c,N) by reducing consumption slightly in some state. But this no longer works with

our incentive constraints: indeed reducing consumption in some state corresponds to a reduction in the amounts of

cash-on-hand planed for this state, which tightens incentive constraints.

Next, we define, for any (p, q) ∈ NA, the demand correspondence of agent i: Zi(p, q) = arg maxUi(ci) with respect

to (ci, Ni) ∈ Γi(W0, p, q), where W0 is defined by (9). An important step in the classical proof of existence is to show

that the excess demand becomes arbitrarily large when the price system nearly violates the no-arbitrage conditions.

Proposition A.2 Take any (p, q) ∈ NA \NA. Then there exists some i such that, for any sequence (p`, q`) in NA

converging to (p, q), any sequence of optimal demand (c`i , N
`
i ) ∈ Zi(p`, q`) is unbounded in consumption.

The intuition is that, by our maintained assumptions and the no-abitrage conditions, agents initial tree wealth must

be bounded away from zero at all (p, q) ∈ NA \NA. This allows the agents who are best able to pledge (with low

θi(δ)) to take advantage of near arbitrage opportunities as (p`, q`) → (p, q) and guarantee unbounded consumption.

The detailed proof is in Online Appendix III.
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A.3 First-order necessary and sufficient conditions

We state first-order conditions when agents maximize taking as given the deflated price system (p, q), and subject

to the corresponding budget and incentive constraints, (31) and (32). Without loss, we state the sequential budget

constraints with weak inequalities. This allows us to apply Theorem 1 of chapter 8.3 and 8.4 in Luenberger (1969). In

particular, since there are only a finite number of parametric constraints, the interior-point condition for the positive

cone of the range of the parametric constraints is immediately satisfied. We thus obtain:

Proposition A.3 Let (p, q) be a price system satisfying the no-arbitrage conditions of Lemma 1. Then the plan

(ci, Ni) solves agent i’s problem if and only if it is budget and incentive feasible and there exists positive multipliers

λ̂ = {λ̂it(st), t ≥ 0, st ∈ St} and µ̂ = {µ̂it(st), t ≥ 1, st ∈ St} such that:

βtπt(s
t)u′i(cit(s

t)) ≤ λ̂it(st)qt(st) with “ = ” if cit(s
t) > 0 (37)

λ̂it(s
t) = λ̂it+1(st+1) + µ̂it+1(st+1) (38)

µ̂it(s
t)

{
qt(s

t)Wit(s
t)− qt(st)eit(st)−

∫
θi(δ)

[
qt(s

t)δt(s
t) + pt(δ | st)

]
dNit−1(st)

}
= 0 (39)∫ [

v̂it(δ | st)− pt(δ | st)
]
dM(δ) ≤ 0 for all M ∈M+ with “ = ” if M = Nit(s

t), (40)

where, for all t < T :

v̂it(δ | st) ≡
∑
s

(
1− θi(δ)µ̂it+1(st, s)

λ̂it(st)

)[
qt+1(st, s)δt+1(st, s) + pt+1(δ | st, s)

]
.

Online appendix IV provides the proof and derives the corresponding first-order conditions for the non-deflated price

system (P,Q) shown in the text.

A.4 Walras Law

The classical proof of existence adds to the economy a fictitious player who sets price in order to maximize the value

of excess demand – increasing the price of goods in positive excess demand and vice versa. In order to make an

educated guess about the specification of the price player’s objective in our setting, we now derive Walras Law –

that is, we calculate the value of the excess demand when all agents satisfy their budget constraints. The proof is in

Online Appendix V.

Proposition A.4 Suppose an allocation (c,N)i∈I is budget feasible for all i given some no-arbitrage price system

(p, q). Then:

∑
(t,st)

qt(s
t)

(∑
i

cit(s
t)− ωt(st)

)
−

∑
(t,st),t<T

∫
bt(δ | st)

(∑
i

dNit(δ | st)− dN̄(δ)

)
= 0, (41)

where ωt(s
t) ≡

∑
i eit(s

t) +
∫
δt(s

t)dN̄(δ) is the aggregate endowment and bt(δ | st) is the basis functional generated

by the price system (p, q) at node (t, st), t < T :

bt(δ | st) =
∑
s′

(
qt+1(st, s)δt+1(st, s) + pt+1(δ | st, s)

)
− pt(st), (42)
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with the convention that pT (sT ) = 0.

Without incentive constraints, there are no bases and the second term is equal to zero, because all that matter

in agents intertemporal constraint is the present value of the dividend generated by the tree. In that case, Walras

Law takes its standard form. In our setting with incentive constraints, Walras Law takes a non standard form for

two reasons, giving rise to the second term in our expression of Walras Law. First, agents generate extra revenue

with basis trades: purchases of trees financed by sales of replicating portfolios of Arrow securities. Second the bases

depress the value of agents’ initial tree endowment.

B Proof of Theorem 1

B.1 Existence of equilibrium with finitely many trees

We first provide an existence proof when the tree supply has finite support, and when agents can only choose

portfolios in that support. That is, we replace ∆ by some finite subset, {δ1, . . . , δK} ⊆ ∆, and we choose a supply

vector N̄ ∈ RK+ such that the aggregate dividend is strictly positive in all states. Notice that, in this market setting,

agents are restricted to choose portfolios in the finite subset {δ1, . . . , δK} instead of in ∆. Hence, portfolios are

no longer finite measures but simply vectors, specifying the share holding of each tree k. Correspondingly we use

the notation nit(s
t) ∈ RK+ to denote the portfolio chosen by agent i at node (t, st). Likewise, asset prices at node

(t, st) are no longer represented by a function but by a vector pt(s
t) ∈ RK+ . Finally, with some abuse of notation,

δt(s
t) = (δ1t(s

t), δ2t(s
t), . . . , δKt(s

t)) ∈ RK+ now denote the vector of all tree dividends at node (t, st).

B.1.1 The fixed-point problem

We now adapt the classical fixed-point problem to our setting. First, we let B denote the set of (c, n) such that

0 ≤ ct(st) ≤ 2
∑

(u,su)

ωu(su) (43)

0 ≤ nt(st) ≤ 2N̄ , (44)

where ωt(s
t) is the aggregate endowment, as defined in Proposition A.4. We let ZBi (p, q) denote the demand cor-

respondence of agent i when she is artificially constrained to choose (ci, ni) ∈ Γi(W0, p, q) ∩ B, with W0 defined

according to (9). This correspondence now has compact values. It continues to have a closed graph. We verify in

Online Appendix V.1 that it also continues to be lower hemi-continuous.

For any 0 < ε < mini,k θik, we let NAε denote the set of (p, q) ∈ NA satisfying :

qt(s
t) ≥ ε (45)

pkt(s
t) ≥ (1− θik + ε)

∑
s

(
qt+1(st, s)δkt+1(st, s′) + pkt+1(st, s′)

)
. (46)

for all (t, st), all trees k, and all agents i. Note that NAε is non empty since it contains price systems with zero

basis. We use Walras Law shown in Proposition A.4 to formulate the objective of the price player. Given any profile

of consumption and tree portfolio choices (ci, ni)i∈I , we let the price player’s problem be Zε0(c, n) = arg max q ·(∑
i ci − ω

)
− b(p, q) ·

(∑
i ni − N̄

)
, with respect to (p, q) ∈ NAε and where b(p, q) is the vector of bases generated
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by (p, q): bt(st | p, q) ≡
∑
s

(
qt+1(st, s)δt+1(st, s) + pt+1(st, s)

)
− pt(st). for each (t, st), t < T , with the convention

that pT (sT ) = 0. Next, we define the correspondence Ψ : NAε ×BI → NAε ×BI by

Ψε(p, q, (ci, ni)i∈I) = Zε0(c, n)× ZB1 (p, q) . . .× ZBI (p, q).

We show in Appendix V.2 that:

Proposition B.1 The correpondence Ψε has a fixed point which, for ε small enough, is the basis of an equilibrium.

The argument is very similar to the one of the classical proof. The key difference is that there are bases, which

create a second term in the price player’s objective, that the price player can only manipulate by choosing prices

respecting no-arbitrage conditions. Hence, relative to the classical proof, the price player faces different objective and

constraints, which makes it more difficult to establish that all markets clear.

B.2 Existence of equilibrium when the supply has a finite support

The case of a finite support is almost identical to the case of finitely many trees. The only difference is that agents have

a larger choice set: instead of being restricted to hold trees in {δ1, δ2, . . . , δK}, they can choose to hold any tree in ∆:

formally, instead of choosing vectors n ∈ RK+ representing their holdings of each tree in the support {δ1, δ2, . . . , δK},
they now choose positive finite measures N ∈M+ representing their holdings of each tree in ∆. Correspondingly, the

equilibrium must price all trees in ∆, and not only the trees in the support {δ1, δ2, . . . , δK}. The following Lemma,

proved in Appendix V.3, establishes that it is possible to choose a continuous price functional, defined over ∆, such

that the equilibrium identified in the previous section remains unchanged when agents can choose to hold any tree

in ∆.

Lemma B.1 Consider any equilibrium price system (p, q) and allocation (c, n) with a finite number of trees {δ1, . . . , δK}
in supply N̄ = (n1, . . . , nK). Then, there exists an extension p̂ of the price vector p to the set ∆, such that

1. the function p̂ belongs to an equi-continuous family P;

2. the price system (p̂, q) belongs to NA;

3. demands remain optimal when agents can choose to hold any tree in ∆, given (p̂, q).

The price functional p̂ is obtained by taking first-order conditions, using the formula given Proposition A.3, and

has a simple intepretation: it is the maximum marginal valuation of future payoffs, across all agents. It is intuitive

that it belongs to an equi-continuous family, since it can be written as a function that is jointly continuous with

respect to the dividend stream and the intertemporal marginal rates of substitutions of finitely many agents across

finitely many periods. See Appendix V.3 for the precise argument.

B.3 Existence of equilibrium for an arbitrary supply

Let N̄ be an arbitrary positive finite measure over ∆. By the density Theorem 15.10 in Aliprantis and Border (2006),

easily extended to the case of finite measures, there exists a sequence of measures N̄ ` with finite support converging

weakly towards N̄ . Invoking Lemma B.1, for each `, there exists an equilibrium (p`, q`, c`, N `). But this sequence

of equilibria remains trapped in a compact set.21 This allows to extract a subsequence converging weakly to some

(p, q, c,N) (and keep the same notations).

21Indeed the p` belong to P, an equi-continuous family of functions, the vector of consumption price q` is bounded by one,
the vector of consumption c` is bounded by the aggregate endowment, and tree-market clearing ensures that each measures N`

i

is bounded by N̄`(∆) ≤ 2N̄(∆) for all ` large enough which, together with Theorem 15.11 in Aliprantis and Border (2006),
ensures weak compactness.

36



By passing to the limit in the market-clearing conditions, one finds that the limiting consumption and portfolios are

feasible. By passing to the limit in the budget and incentive constraints, one obtains that the limiting consumptions

and portfolios belong to the constraint set of each agents: (ci, Ni) ∈ Γi(Wi0, p, q) for each i, where Wi0 is defined

according to (9).

What remains to be shown is that the limiting consumptions and portfolios are optimal. To that end, we first note

that the limiting price system (p, q) must belong to NA: otherwise, if instead (p, q) ∈ NA \NA, then by Proposition A.2,

easily extended to account for the fact that agents’ tree endowment αiN̄
` varies along the sequence, the consumption

of some agent would grow unbounded as ` → ∞, which would contradict market clearing. By Proposition A.1, it

follows that the constraint correspondence of each agent is lower-hemi-continuous at (Wi0, p, q), where Wi0 is defined

according to (9). Now consider any agent i and any (ĉi, N̂i) ∈ Γi(Wi0, p, q), where Wi0 is defined according to

(9). Lower-hemi-continuity ensures that there exists some sequence (ĉ`i , N̂
`
i ) ∈ Γi(W

`
i0, p

`, q`), where W `
i0 is defined

according to (9), such that (ĉ`i , N̂
`
i ) converges towards (ĉ, N̂). Clearly, for each `, Ui(c

`
i) ≥ Ui(ĉ

`
i), where c`i is the

optimal consumption demand in the equilibrium given the equilibrium (p`, q`) identified above. Passing to the limit,

we obtain Ui(ci) ≥ Ui(ĉi), which means that (ci, Ni) is indeed optimal given (p, q).

C Proof of Corollary 1

See Online Appendix VI.

D Proof of Proposition 1

We start by deriving a necessary and sufficient condition for a complete market equilibrium to be IC implementable.

The proof is in Online Appendix VII.

Lemma D.1 A complete market equilibrium (q, c) is IC-implementable if and only if there exists a feasible tree

allocation N such that

∑
(u,su)�(t,st)

qu(su) (ciu(su)− eiu(su)) ≥ θ
∫ [

qt(s
t)δt(s

t) + pt(δ | st)
]
dNit−1(δ | st−1), (47)

for all agents and at all nodes following time zero, that is for all i, all (t, st), t ≥ 1.

Point 1. If Inada conditions are satisfied then, in a complete-market equilibrium the consumptions of all agents

are bounded away from zero at all nodes. If in addition labor income is small enough, then the left-hand side of (47)

is strictly positive. It then follows that (47) holds with the feasible tree allocation Ni = N̄/I and θ small enough.

Point 2. Consider a complete-market equilibrium (c, q) when agents have heterogenous CRRA utility. Because

of complete market, it follows that consumption of agent i can be written as function of the aggregate endowment

only, cit(s
t) = yt(s

t)fi
[
yt(s

t)
]
, where fi denotes the consumption share. Because of heterogeneity in CRRA utility

it follows that the consumption share function, fi is strictly increasing in y for the least risk averse agent.

Now assume, towards a contradiction, that this equilibrium is implementable with just one tree for arbitrarily

small labor income, and pledgeability parameter arbitrarily close to one. That is, there exists a sequence of labor

endowment, ep → 0, of pledgeability parameter θp → 1 such that the complete market equilibrium is IC implementable

for all p. Using (47) in the last period, this means that there exists some tree holdings niT−1(sT−1) such that:

ciT (sT )− epiT (sT ) ≥ θp npiT−1(sT−1) δpT (sT ),
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where δpT (sT ) is the dividend of the tree and
∑
i n

p
iT (sT ) = 1, (normalizing the aggregate supply of the tree to one).

Dividing though by the aggregate endowment, this gives:

fi
[
yT (sT )

]
≥ θp npiT−1(sT−1)

δpT (sT )

yT (sT )
+
epiT (sT )

yT (sT )
.

Given that npiT−1(sT−1) ∈ [0, 1], we can extract subsequences for each i converging to n?i such that
∑
n?i = 1.

Moreover, since the labor endowment ep → 0, it follows that the tree dividend δpT (sT )→ yT (sT ). With this in mind,

when we go to the limit, we find fi
[
yT (sT )

]
≥ n?i , for all i. But since

∑
i fi
[
yT (sT )

]
=
∑
i n

?
i = 1, it follows that

fi
[
yT (sT )

]
= n?i for all i, which is a contradiction since we noted earlier that the consumption-share function fi(y)

is strictly increasing for the least risk-averse agent.

Point 3. Fix some strictly positive labor income e� 0 such that agents’ intertemporal marginal rate of substitu-

tions are not equalized when evaluated at ei. Towards a contradiction, consider a sequence N̄ ` such that N̄ `(∆)→ 0,

and a corresponding sequence of equilibria (p`, q`, c`, N `) such that (q`, c`) is a complete-market equilibrium for all `.

Proposition VIII.2 in the Online Appendix shows that (p`, q`, c`, N `) converges to the unique equilibrium that obtain

when N̄(∆) = 0, what Proposition VIII.1 in the Online Appendix calls a “zero-collateral equilibrium”. In particular

c`it(s
t) converges to eit(s

t). It follows that consumptions are strictly positive and intertemporal marginal rate of sub-

stitution are not equalized, implying that the equilibrium allocation cannot coincide with that of a complete-market

equilibrium, a contradiction.

Point 4. Consider two distributions of tree supplies N̄ ′ and N̄ . Then, we say that N̄ is less dispersed than N̄ ′

if there exists a transition probability function dΩ(δ′ | δ) (see Definition 8.1 in Stokey and Lucas, 1989) representing

the weight of tree δ′ in a replicating portfolio for tree δ, such that two conditions are satisfied. First, the portfolio

dΩ(δ′ | δ) must replicate δ:

∫
δ′
δ′ dΩ(δ′ | δ) = δ, for all δ ∈ ∆. (48)

Second, the distribution of supplies must satisfy the consistency condition:

N̄ ′(A) =

∫
δ

Ω(A | δ) dN̄(δ), (49)

for all Borel sets A of ∆. This ensures that the measure of trees in the set A, N̄ ′(A), is obtained by adding up

the measures of trees in A found in all replicating portfolios, Ω(A | δ) dN̄(δ). One can directly verify that the two

distributions, N̄ and N̄ ′, have identical aggregate dividend:

∫
δ′
δ′ dN̄ ′(δ′) =

∫
δ′

∫
δ

δ′ dΩ(δ′ | δ) dN̄(δ) =

∫
δ

δ dN̄(δ), (50)

where the first equality follows from (49) (or, more precisely, from Theorem 8.3 in Stokey and Lucas, 1989) and the

second equality follows from (48).

The result then follows almost directly from the definition. Suppose that the complete market equilibrium

under consideration is implemented for some θ, given some distribution N̄ . Consider an increase in tree supply

dispersion from N̄ to N̄ ′. Then all agents can replicate their portfolio holdings under N̄ by choosing tree portfolios

N ′i(A) =
∫
δ

Ω(A | δ)dNi(δ), where the (t, st) notation is suppressed for simplicity. From equation (49), these tree

portfolios satisfy market clearing. The sequential budget constraints and the incentive constraints of each agent

continue to hold because, under complete market, tree prices are linear in δ and because of equation (48). This
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shows that agents’ choice remain budget and incentive feasible, and continue to satisfy market clearing. Optimality

follows because, by our maintained assumption of IC implementability, the agents’ choice attain an upper bound

on their maximum attainable utility: the utility they can attain under the same price system but without incentive

constraints.

E Proof of Proposition 3

Let V (α, x) ≡ βg−γ
[
π1 (1 + k1α)φγ x+ π2 (1− k2α)φγ (1− x)

]
denote the valuation functional for payoffs in the

simplex, (x, 1−x). Under the maintained assumption of the proposition, φγ < 1, the function α 7→ V (α, x) is strictly

concave in α. Moreover, ∂V
∂α

= φγ
(
k1π1 (1 + k1α)φγ−1 x− k2π2 (1− k2α)φγ−1 (1− x)

)
is positive at α = 0 if and

only if

x ≥ x?(0) =
k2π2

k1π1 + k2π2
, (51)

and goes to minus infinity as α→ 1/k2. It follows that all payoffs x ≤ x? belong to the optimal payoff set of α1 = 0.

For payoffs x > x?(0), there exists some α?(x) > 0 such that V (x, α) achieves a strict maximum at α = α?(x). Given

that ∂2V/∂x∂α > 0, it follows that α?(x) is strictly increasing. One can also verify that α?(x) goes to 1/k2 as x→ 1.

Now considering the inverse function, it follows that, for for each α ∈ (0, 1/k2], there exists some x?(α) ∈ (x?(0), 1]

such that α has strictly higher valuation than any other agents for all payoffs near x?(α). Now since we have a

finite number of agents α1 = 0 < α2 < . . . < αI , it follows that, for all i > 2, αi values all payoffs near x?(αi) the

most. Together with our earlier observations that Xi are intervals, increasing in αi, it follows that there is a strictly

increasing sequence:

x0 = 0 < x1 < x2 < . . . < xI = 1

such that agent i holds all the payoffs in X(αi) = [xi−1, xi], and xi−1 < x?(αi) < xi.

F Proof of Proposition 4

Suppressing the (t, st) notation for simplicity, let δ 7→ x(δ) ∈ RS+ denote the function that maps a tree δ into its

vector of one-period ahead payoffs. Let M̂ denote the measure on payoffs x ∈ RS+, induced by the portfolio M : that

is, for all Borel set B of RS+, M̂(B) = M(x−1(B)). With this notation, the replicating porftolio condition writes

x(δ) =
∫
x′ dM̂(x′). Let i be the type of some agent who is the best holder of tree δ, that is x(δ) ∈ Xi. With this

notation, the maintained assumption of the proposition implies that Xi does not contain (almost) all trees of the

replicating portfolio, or M̂(RS+\Xi) > 0. The price of the replicating portfolio writes:

∫
P (δ′) dM(δ′) =

∫
max
j

Qj · x(δ′) dM(δ′) =

∫
max
j

Qj · x′ dM̂(x′)

>

∫
Qi · x′ dM̂(x′) = P (δ),

where: the first equality on the first line follows by definition of the pricing functional for trees; the second equality

on the first line line follows by the change of variable formula (see Theorem 13.46 in Aliprantis and Border, 2006); the

strict inequality on the second line follows because maxj Qj · x′ > Qi · x′ for all x′ ∈ RS+\Xi and M̂(RS+\Xi) > 0; the

equality on the second line follows because the payoff of the portfolio M̂ replicate the payoff of tree δ, and because

the price of tree δ is equal to the private valuation of agent i for that tree.
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G Proof of Proposition 5

The proposition is an implication of the following Lemma:

Lemma G.1 Let f(x, y) be some real-valued function of (x, y) ∈ RK × R. Assume that, f(x, y) is convex in (x, y),

and strictly increasing in y. Suppose that, for each x, f(x, y) = 0 has a solution, denoted by φ(x). Then, φ(x) is

concave in x.

For a proof, note that the convexity of f(x, y) with respect to (x, y) implies:

f(w1x1 + w2x2, w1φ(x1) + w2φ(x2)) ≤ w1f(x1, φ(x1)) + w2f(x2, φ(x2)) = 0.

But since f(x, y) is strictly increasing in y, w1φ(x1) + w2φ(x2) ≤ φ(w1x1 + w2x2).

Now let us turn to the proposition. Omitting the δ and st+1 arguments for notational simplicity, we first note

that, in terms of returns and agent-specific stochastic discount factors, the the priciging formula (25) writes

1 = max
i

Et [Mit+1Rt+1] .

Now using the factor decomposition of returns, (27), together with the assumed orthogonality condition Et [Mit+1 εt+1] =

0, this can be written:

max
i

{
Et[Rt+1] Et[Mit+1] +

K∑
k=1

βkEt[Mit+1Fkt+1]− 1

}
= 0. (52)

The left-hand side can be written as f(x, y) = 0, where x is the vector of beta’s, (βk)Kk=1, and y is the expected return

of the asset, Et [Rt+1]. The function f(x, y) is convex, since it is the maximum of affine functions of (x, y). It is strictly

increasing in y, since the stochastic discount factors are strictly positive. We also have that limy→−∞ f(x, y) = −∞
and limy→+∞ f(x, y) = +∞, hence f(x, y) = 0 has a unique solution. Now we apply Lemma G.1 and obtain that the

solution φ(x) of the equation f(x, y) = 0 is concave in x.
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Online Appendix (not for publication)

I Proof of Lemma A.1

It is clear that NA is included in the set defined by (34), (35), (36) with weak inequalities. For the reverse inclusion,

consider any (p, q) in the set defined by (34), (35), (36) with weak inequalities, and any ε > 0. Let

qεt (s
t) = qt(s

t) + ε,

and, working backward from time T − 1:

pεt (δ s
t) = pt(δ | st) + ε

∑
s

δt+1(st, s) +
∑
s

(
pεt+1(st, s)− pt+1(st, s)

)
, (53)

with the convention that pT (sT ) = pεT (sT ) = 0. We prove by backward induction that (pε, qε) satisfies the no-arbitrage

conditions (34)-(35)-(35), as well as:

pεt (δ | st) ≥ pt(δ | st) with > if δ ∈ ∆+
t (st). (54)

First, notice that, (34) holds by construction at all (t, st), while (34), (35), (36) and (54) hold by construction at time

T . Now we show that they must hold at time t if they hold at time t+ 1 ≤ T .

• Evidently, since (54) holds at t + 1, the definition of pεt (s
t) implies that holds with weak inequality at time t

for all δ. It clearly holds with a strict inequality for all δ ∈ ∆+
t (st) such that δt+1(st, s) > 0 for some s. If

δ ∈ ∆+
t (st) but δt+1(st, s) = 0 for all s, then δ ∈ ∆+

t+1(st, s) for some s, and the strict inequality follows from

(53) together with our induction hypothesis that (54) holds at time t+ 1.

• Since (35) holds with a weak inequality for (p, q):

pεt (δ | st) ≤
∑
s

[
qt+1(st, s)δt+1(st, s) + pt+1(δ | st, s)

]
+ ε

∑
s

δt+1(st, s)

+
∑
s

[
pεt+1(δ | st, s)− pt+1(δ | st, s)

]
=
∑
s

[
qεt+1(st, s)δt+1(st, s) + pεt+1(δ | st, s)

]
.

Hence (35) holds for (pε, qε) at time t.
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• Likewise, since (36) holds with weak inequality for (p, q):

pεt (δ | st) ≥(1− θi(δ))
∑
s

[
qt+1(st, s)δt+1(st, s) + pt+1(δ | st, s)

]
+ ε

∑
s

δt+1(st, s)

+
∑
s

[
pεt+1(δ | st, s)− pt+1(δ | st, s)

]
=(1− θi(δ))

∑
s

[
qεt+1(st, s)δt+1(st, s) + pεt+1(δ | st, s)

]
+ θi(δ)

[
pεt (δ | st)− pt(δ | st)

]
.

Together with the fact, shown in the first bullet point, that (54) holds at time (t, st), we obtain (36).

After scaling down qε and pε by the same constant so that the normalization (33) holds, we obtain a price system in

NA. This price system clearly converges to (p, q) as ε→ 0. Hence, (p, q) ∈ NA.

II Proof of Proposition A.1

It is clear that Γi(W0, p, q) is non-empty because it contains the hand-to-mouth-plan, specifically Ni = 0, cit(s
t) =

Wit(s
t) and, for t > 0, Wit(s

t) = eit(s
t). The constraint correspondence is convex-valued because it is defined by

a system of weak linear inequalities. The closed graph property is also immediate because the correspondence is

defined by weak inequalities, all jointly continuous in (W0, p, q) and (ci, Ni).
22 The only thing left to show is lower

hemi-continuity.

II.1 The one-period ahead constraint correspondence

In this subsection, we fix some node (t, st) and establish the lower hemi-continuity of the one-period ahead constraint

correspondence. Since the node is fixed, we suppress explicit reference to it to simplify notations. Instead, we

use the “0” subscript for variables indexed by (t, st), and the “1” subscript, together with the argument s, for

variables indexed by (t, st, s). With this in mind, we define the one-period ahead constraint correspondence as the

set-valued function mapping any (W0, p, q) to the corresponding one period-ahead constraint set, that is, the set of

(c0, N0,W1) ∈ R+ ×M+ × RS+ such that:

q0c0 +
∑
s

q1(s)W1(s) +

∫
p0(δ) dN0(δ) (55)

=q0W0 +
∑
s

q1(s)e1(s) +
∑
s

∫
[q1(s)δ1(s) + p1(δ | s)] dN0(δ),

and, for all s ∈ S:

q1(s)W1(s) ≥ q1(s)e1(s) +

∫
θi(δ) [q1(s)δ1(s) + p1(δ | s)] dN0(δ). (56)

Equipped with this definition, we obtain:

22For the joint continuity, recall from Corollary 15.7 in Aliprantis and Border (2006) that the “evaluation function” (p,N) 7→∫
p(δ) dN(δ) is jointly continuous in (p,N).
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Lemma II.1 The one-period ahead constraint correspondence is lower hemi-continuous in (W0, p, q) ∈ R+ × NA.

Consider some sequence (W `
0 , p

`, q`) → (W0, p, q) and some (c0, N0,W1) in the one-period ahead constraint set

given (W0, p, q). To prove lower hemi-continuity, we must find a sequence (c`0, N
`
0 ,W

`
1 )→ (c0, N0,W1), such that for

all ` large enough, (c`0, N
`
0 ,W

`
1 ) belongs to one-period ahead constraint set given (W `

0 , p
`, q`). We distinguish four

mutually exclusive cases.

Case 1: q0 c0 > 0.

Then we pick the sequence (c`0, N
`
0 ,W

`
1 ) such that:

N `
0 = N0

q`1(s)W `
1 (s) = max

{
q`1(s)e1(s) +

∫
θi(δ)

[
q`1(s)δ1(s) + p1(δ | s)

]
dN0(δ), q`1(s)W1(s)

}
(57)

q`0c
`
0 +

∫
p0(δ) dN0(δ) +

∑
s

q`1(s)W `
1 (s)

= q`0W
`
0 +

∑
s

q`1(s)e`1(s) +
∑
s

∫ (
q`1(s)δ1(s) + p`1(δ | s)

)
dN0(δ).

Since q`1(s)W `
1 (s)→ q1(s)W1(s), it follows that q`0c

`
0 → q0c0, and so is positive for all ` large enough. Since all q are

strictly positive, it follows that (c`, N `
0 ,W

`
1 )→ (c,N0,W1).

Case 2: q0c0 = 0 and q1(s)W1(s) = q1(s)e1(s) for each s.

Then it follows from the incentive constraints that

∫
θi(δ) [q1(s)δ1(s) + p1(δ | s)] dN0(δ) = 0.

Therefore, N0(∆+
0 ) = 0, where ∆+

0 is the set of trees with non-zero continuation dividend streams. Plugging this into

the budget constraint shows that W0 = 0. We then pick the sequence c`0 = W `
0 , N `

0 = N0 and W `
1 (s) = e1(s).

Case 3: q0c0 = 0 and q1(ŝ)W1(ŝ) > q1(ŝ)e1(ŝ) +
∫
θi(δ) [q1(ŝ)δ1(ŝ) + p1(δ | ŝ)] dN0(δ) for some ŝ.

Then we pick the sequence c`0 = c0 = 0 and N `
0 = N0. For s 6= ŝ, we choose W `

1 (s) according to (57). Then, we

pick W `
1 (ŝ) so that the budget constraint (55) holds. By construction, (c`, N `

0 ,W
`
1 )→ (c,N0,W1). Moreover, for all

`, the budget constraint hold, as well as the incentive constraints for s 6= ŝ. But by our maintained assumption the

incentive it holds strictly in the limit for s = ŝ, so it holds for ` large enough too.

Case 4: q0c0 = 0, the incentive constraints bind for all s, and q1(ŝ)W1(ŝ) > q1(ŝ)e1(ŝ) for some ŝ.

In this case, because q1(ŝ)W1(ŝ) > q1(ŝ)e1(ŝ) but the incentive constraint binds for ŝ, it follows from the incentive

constraint at ŝ that

∫
θi(δ) [q1(ŝ)δ1(ŝ) + p1(δ | ŝ)] dN0(δ) > 0,

so that N0(∆+) > 0. Now for some ε` → 0 to be determined later, pick N `
0 = (1 − ε`)N0. Pick W `

1 (s) so that the
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incentive constraint binds:

q`1(s)W `
1 (s) = −ε`

∫
θi(δ)

[
q`1(s)δ1(s) + p`1(δ | s)

]
dN0(δ) + q`1(s)Ŵ `

1 (s)

where q`1(s)Ŵ `
1 (s) ≡ q`1(s)e1(s) +

∫
θi(δ)

[
q`1(s)δ1(s) + p`1(δ | s)

]
dN0(δ)

We now pick ε` and c`0 so that the bugdet constraint binds. After some algebra we obtain that, for the budget

constraint to bind, ε` and c`0 must be chosen so that:

q`0c
`
0 − ε`

∫ (
p`0(δ)−

∑
s

(1− θi(δ))
[
q`1(s)δ1(s) + p`1(δ | s)

])
dN0(δ)

=W `
0 +

∑
s

q`1(s)e1(s) +

∫ (∑
s

[
q`1(s)δ1(s) + p`1(δ | s)

]
− p0(δ)

)
dN0(δ)−

∑
s

q`1(s)Ŵ `
1 (s)

Since Ŵ `
1 (s) → W1(s), q0c0 = 0, and since the budget constraint holds in the limit, it follows that the right-hand

side goes to zero as `→∞. If we denote this right-hand side by η`, then we can set c`0 and ε` to

q0c
`
0 = max{η`, 0}

ε`
∫ [

p`0(δ)− (1− θi(δ))
∑
s

(
q`1(s)δ1(s) + p`1(δ | s)

)]
dN0(δ) = min{−η`, 0}.

Notice that the integral multiplying ε` is bounded away from zero for ` large enough. Indeed,it converges to

∫ [
p0(δ)− (1− θi(δ))

∑
s

(q1(s)δ1(s) + p1(δ | s))

]
dN0(δ)

which is strictly positive for two reasons: first, (p, q) ∈ NA so that the integrand is strictly positive over ∆+, and

second N0(∆+) > 0 so that the integral is strictly positive as well. This ensures that ε` is well defined for ` large

enough, and goes to zero as ` goes to infinity.

II.2 The multi-period constraint correspondence

The proof now follows by recursive application of Lemma II.1 in the previous subsection. Namely, consider some

(W0, p, q) ∈ NA, some (c,N) ∈ Γi(W0, p, q). Let W denote the sequence of cash on hand associated with this plan.

Consider any sequence (W `
0 , p

`, q`)→ (W0, p, q). Lemma II.1 allows to construct sequences c`0(s0), W `
1 (s0, s1), N `

0(s0)

converging to W0, c0(s0), N0(s0) and W1(s0, s1). satisfying the one-period ahead budget constraint. Now repeat this

step at each node (t, st) until reaching the second to last period, T − 1.

III Proof of Proposition A.2

III.1 Unbounded constraint set

We first establish that:
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Lemma III.1 Take any (p, q) ∈ NA \NA. Then for any sequence (p`, q`) in NA converging to (p, q), there exists

some agent i and some sequence (c`i , N
`
i ) ∈ Γi(W

`
0 , p

`, q`), where W `
0 is defined by (9), such that ‖c`i‖ → ∞.

Lemma A.1 implies that, if (p, q) ∈ NA\NA, either

qt(s
t) = 0 (58)

for some (t, st), or there exists some agent i, some (t, st) and some δ ∈ ∆+
t (st), such that

pt(δ | st) = (1− θi(δ))
∑
s

[
qt+1(st, s)δt+1(st, s) + pt+1(δ | st, s)

]
(59)

For what follows let us denote by

T `i ≡ αi
∫ [

q`0(s0)δ0(s0) + p`0(δ | s0)
]
dN̄(δ)

the initial tree wealth of the agent. Notice that T `i has a strictly positive limit as ` → ∞. Ineeed, for any price

system (p, q) ∈ NA, iterating forward on the no-arbitrage condition (13) (with a weak inequality) starting at time

t = 0, implies that

q0(s0)δ0(s0) + p0(δ | s0) ≥
∑

(t,st)

(1− θi(δ))tqt(st)δt(st).

Integrating against the aggregate supply we obtain that:

∫ [
q0(s0)δ0(s0) + p0(δ | s0)

]
dN̄(δ) ≥

∑
(t,st)

(1− θi(δ))t
∫
qt(s

t)δt(s
t) dN̄(δ) > 0, (60)

given our assumption that the aggregate dividend is strictly positive in all state and since our normalization (33)

ensures at least one of the consumption prices, qt(s
t), must be strictly positive. It thus follows that the value of every

agent’s initial tree wealth is strictly positive in the limit (p, q), and bounded away from zero near the limit.

Case 1. Suppose that the time-zero price of consumption is zero at some node, (t, st), qt(s
t) = 0. Since all

elements of the sequence (p`, q`) belong to NA, q`u(su) > 0 for each node (u, su). Hence, an agent can save her

initial tree wealth from node to node until (t, st), at which point she can consume the amount c`it(s
t) solving

q`t(s
t)c`it(s

t) = q`t(s
t)eit(s

t) + T `i . At all other node, the agent can consume hand-to-mouth, c`iu(su) = eiu(su).23

Since q`t(s
t)→ 0, and since T `i remains bounded away from zero for all ` large enough, it follows that c`it(s

t)→∞.

Case 2. Now suppose that the price of consumption is strictly positive at all nodes but (59) holds for some i,

some (t, st) and some δ ∈ ∆+
t (st). Then proceeding exactly as above the agent can choose cash on hand equal to

q`t(s
t)eit(s

t) + T `i for node (t, st). At this point she can purchase an amount n` > 0 of tree δ (formally, this portfolio

is a discrete measure concentrated at δ) and partially finance the purchase by selling the tree pledgeable payoff. If

23The corresponding plan (ci, Ni) is the following. Set N`
iu(su) = 0 for all node. For all nodes (u, su) � (t, st), set

q`u(su)W `
iu(su) = q`u(su)eiu(su) + T `i . For all other node, set W `

iu(su) = eiu(su). For all nodes (u, su) 6= (t, st), set c`iu(su) =

eiu(su). For (t, st), pick c`it(s
t) solving q`t (s

t)c`it(s
t) = q`t (s

t)eit(s
t) + T `i .
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the agent consumes hand to mouth at this node, c`t(s
t) = eit(s

t), then:

n`
(
p`t(δ | st)− (1− θi(δ))

∑
s

(
q`t+1(st, s)δt+1(st, s) + p`t+1(δ | st, s)

))
= T `i

q`t+1(st, s)W `
it+1(st, s) = q`t+1(st, s)et+1(st, s) + n`θi(δ)

(
q`t+1(st, s)δt+1(st, s) + p`t+1(δ | st, s)

)
c`it+1(st, s) = W `

it+1(st, s).

Clearly, n` → ∞. Since δ ∈ ∆+
t (st), it follows from the no-arbitrage relationship (36) holding with weak equality

together with our maintained assumption that qt(s
t) > 0 at all nodes, that the tree payoff is strictly positive in some

state ŝ. It follows that c`t+1(st, ŝ)→∞.

III.2 Unbounded optimal demands

We now show that an unbounded constraint set implies an unbounded demand. Precisely, take any (c`i , N
`
i ) ∈

Zi(p
`, q`) and assume it is bounded in consumption. Use the previous lemma to generate another sequence (ĉ`i , N̂

`
i ) ∈

Γi(W
`
i0, p

`, q`), where W `
i0 is defined according to (9), that is unbounded in consumption. Since ‖ĉ`i‖ ≥ 1 for all `

large enough, it follows by convexity that, for all ` large enough, the plan

(
1− 1

‖ĉ`i‖

)
(c`i , N

`
i ) +

1

‖ĉ`i‖
(ĉ`i , N̂

`
i )

belongs to the constraint set Γi(W
`
i0, p

`, q`), where W `
i0 is defined according to (9). Moreover, since the norm of

ĉ`i/‖ĉ`i‖ is equal to one, at least one of its coordinate must remain bounded away from zero. It then follows by

continuity that the above convex combination must yield strictly higher intertemporal utility than (c`i , N
`
i ) for all `

large enough, and we have reached a contradiction.

IV Proof of Proposition A.3

Necessity. Suppose (ci, Ni) solves the agent’s problem together with some cash-on-hand plan Wi. Since utility

is strictly increasing, (ci, Ni), it also solves the “relaxed” problem in which all sequential budget constraints are

only required to hold with a weak inequality. Since the constraint set is defined by a finite number of inequality

constraints, the associated positive cone has interior points. Since the agent starts with strictly positive tree wealth,

it can guarantee strictly positive cash-on-hand at all nodes, so there is some plan for consumption, tree portfolio, and

cash-on-hand such that all constraints hold with strict inequalities. It then follows from Theorem 1, chapter 8.3 in

Luenberger (1969) that there exists positive multipliers λ and µ, as shown in the Proposition, such that the associated

Lagrangian is maximized at (ci, Ni,Wi), and such that the associated complementarity slackness conditions hold. The

result follows.

Sufficiency. This follows by a standard optimality-verification argument.

From Proposition A.3 to the first-order conditions shown in the text. The first-order condition (16)

and (17) shown in the text obtain by re-defining λit(s
t) ≡ λ̂it(s

t)qt(s
t) and µit(s

t) ≡ µ̂it(s
t)qt(s

t). The first-order
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condition (19) requires some algrebraic manipulations. First, (40) implies that

∑
s

(
1− θi(δ)µ̂it+1(st, s)

λ̂it(st)

)[
qt+1(st, s)δt+1(st, s) + pt+1(δ | st, s)

]
≤ pt(δ | st),

with an equality if dNit(δ | st) > 0. Now dividing through both sides by qt(s
t) and keeping in mind that Qt+1(st, s) =

qt+1(st, s)/qt(s
t), this inequality writes:

∑
s

(
1− θi(δ)µ̂it+1(st, s)

λ̂it(st)

)
Qt+1(st, s)

[
δt+1(st, s) + Pt+1(δ | st, s)

]
≤ Pt(δ | st),

The term in parenthesis can be then rewritten:

1− θi(δ)µ̂it+1(st, s)

λ̂it(st)
= 1− θi(δ) + θi(δ)

λ̂it(s
t)− µ̂it+1(st, s)

λ̂it(st)

= 1− θi(δ) + θi(δ)
λ̂it+1(st+1)

λ̂it(st)

= 1− θi(δ) + θi(δ)
λit+1(st+1)

Qt+1(st, s)λit(st)
,

where the equality on the second line follows from (38), and the equality on the third line follows from the definition

of λit(s
t) and µit(s

t). The first-order condition (19) follows.

V Proof of Proposition A.4

Using our basis notation, the sequential budget constraint of agent i writes, for all t < T

qt(s
t)cit(s

t) +
∑
s′

qt+1(st, s)Wit+1(st, s) (61)

=qt(s
t)Wit(s

t) +
∑
s

qt+1(st, s)eit+1(st, s) +

∫
bt(δ | st) dNit(δ | st).

Adding up all the constraint until T−1, as well as the time-T constraint WiT (sT ) = ciT (sT ), all the Wit(s
t) cancel out

except for the first one, Wi0(s0) = ei0(s0) + αi
∫ (
q0(s0)δ0(s0) + p0(δ | s0)

)
dN̄(δ). We thus obtain the intertemporal

budget constraint:

∑
(t,st)

qt(s
t)cit(s

t) = αi

∫ (
q0(s0)δ0(s0) + p0(δ | s0)

)
dN̄(δ) +

∑
(t,st)

qt(s
t)eit(s

t) +
∑

(t,st),t<T

∫
bt(δ | st) dNit(δ | st).

Now recall that, by definition of the basis:

pt(δ | st) =
∑
s′

(
qt+1(st, s′)δt+1(st, s′) + pt+1(δ | st, s′)

)
− bt(δ | st)
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for all (t, st), t < T . Iterating forward on this equation starting at the initial node (0, s0), we obtain that:

q0(s0)δ0(s0) + p0(δ | s0) =
∑

(t,st)

qt(s
t)δt(s

t)−
∑

(t,st),t<T

bt(δ | st),

that is, tree prices are equal to the present value of all of their future dividends, net of the sum of all their bases.

Plugging back into the intertemporal budget constraint we obtain:

∑
(t,st)

qt(s
t)cit(s

t) =
∑

(t,st)

qt(s
t)

(
eit(s

t) + αi

∫
δt(s

t) dN̄(δ)

)
+

∑
(t,st),t<T

∫
bt(δ | st)

(
dNit(δ | st)− αidN̄(δ)

)

and the result follows by adding up these intertemporal constraints across all i and using that
∑
i αi = 1.

V.1 Lower hemi-continuity for the multi-period constraint set bounded by B

To show lower hemi-continuity at (W0, p, q) consider any (c, n) ∈ Γi(W0, p, q) ∩ B and any (W `
0 , p

`, q`) → (W0, p, q).

Since the correspondence Γi(W0, p, q) is lower hemi-continuous, we already know that there is a sequence (c`, n`) ∈
Γi(W

`
0 , p

`, q`) converging to (c, n). But this sequence may lie outside B. To bring each element of the sequence

inside B, take a convex combination of (c`, n`) with the hand-to-mouth plan, which we denote (ĉ`, n̂`): n̂t(s
t) = 0,

ĉ`0(s0) = W `
0 (s0), ĉt(s

t) = Ŵ `
t (st) = et(s

t) for t > 0. Since (ĉ`, n̂`) ∈ B, there exists λ ∈ [0, 1] such that:

λ(ĉ`, n̂`) + (1− λ)(c`, n`) ∈ B.

Let λ` be the smallest λ such that this is the case. Recall that, for (ĉ, n̂), the right-hand-side inequalities defining

B, (43) and (44), hold strictly. Together with the fact that (ĉ`, n̂`) → (ĉ, n̂) and (c`, n`) → (c, n) ∈ B, we obtain

that, for any λ > 0, λ(ĉ`, n̂`) + (1− λ)(c`, n`) satisfies these right-hand-side inequality strictly for all ` large enough.

Therefore, λ` ≤ λ for all ` large enough. Since this is true for all λ > 0, we obtain that λ` → 0 and have found the

desired sequence.

V.2 Proof of Proposition B.1

The fixed point problem has a solution. By an application of the Theorem of the Maximum (see Theorem

3.6 in Stokey and Lucas, 1989), this correspondence is compact valued and upper hemi-continuous.24 It is also convex

valued because the constraints sets are convex and the objective concave. Hence, an application of the Kakutani

fixed point theorem (see Theorem M.I.2. p.953 in Mas-Colell, Whinston and Green, 1995) shows that it has a fixed

point, (pε, qε, (cεi , n
ε
i )i∈I). By Walras Law stated in Proposition A.4, the maximized price player objective must be

equal to zero.

The B constraints are not binding. Notice that, given any q, it is always feasible for the price player to

choose tree prices with zero bases, b(p, qε) = 0. Therefore, the price player’s value is weakly negative when she sets

24When ui(c) is unbounded below, the Theorem does not apply directly because the domain of the utility function is (0,∞)
instead of [0,∞), so the constraint set is not compact. But one can restrict the domain to consumptions that are bounded away
from zero by some constant. Indeed, since aggregate dividends are strictly positive at all nodes and Arrow security prices add
up to one, agents’ initial wealth can be bounded away from zero (see equation (60)). Therefore, purchasing Arrow securities
only, whose prices are bounded above by 1, the agent can guarantee herself positive consumption at all nodes: formally, there
exists some (ci, Ni), such that cit(s

t) > 0 at all (t, st) and Ni = 0, which is budget feasible and incentive compatible for all
prices (pε, qε). This places a lower bound on the agent’s maximum attainable utility and, when utility is unbounded below, a
strictly positive lower bound on the agent’s consumption. Hence we can restrict the domain, as claimed.
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qt(s
t) = q̄, for some constant q̄ such that consumption prices add up to one, and chooses p such that b(p, q) = 0.

This implies that:

∑
(t,st)

∑
i

cit(s
t) ≤

∑
(t,st)

ωt(s
t),

so that, at the fixed point, the constraint (43) is slack for consumption.

Then, we argue that the constraint (44) is slack for tree holdings as well. This is evident if if
∑
i nikt(s

t) ≤ N̄k. If∑
i nikt(s

t) > N̄k for some tree k and node (t, st), then bkt(st | pε, qε) = 0, otherwise, the price player could increase

its value by reducing the basis of tree k at node (t, st) to zero, and keep all other bases the same. To see that such

reduction in basis is consistent with the no-arbitrage conditions (i.e., the corresponding price system remains in the

constraint set of the price player) let us consider any price system (p, q) ∈ NAε and show that the price system

remains in NAε if one reduces the basis of any specific tree to zero at any node (t, st). Indeed, consider the tree prices

p̂ obtained by inverting the basis formula

p̂t(s
t) =

∑
s′

(
qt+1(st, s′)δt+1(st, s′) + p̂t+1(st, s′)

)
− b̂t(st). (62)

from p̂T (sT ) = 0, setting b̂kt(t, s
t) = 0, but otherwise keeping all other bases the same, b̂ju(su) = bju(su) for j 6= k

or (u, su) 6= (t, st). For all trees j 6= k, the tree prices remain the same. For tree k, the price is the same at all nodes

(u, su) � (t, st), and it increases strictly by bkt(s
t) at all nodes (u, su) � (t, st). But this relaxes the constraint

p̂ku(su) ≥ (1− θik + ε)
∑
s′

(
qu+1(su, s′)δku+1(su, s′) + p̂ku+1(su, s′)

)
⇔ b̂ku(su) ≤ (θik − ε)

∑
s′

(
qu+1(su, s′)δku+1(st, s′) + p̂ku+1(st, s′)

)

since b̂ku(u, su) ≤ bku(su) and p̂ku(su) ≥ pku(su).

Now, since bkt(st | p, q) = 0, then the agent can reduce its holdings of tree k arbitrarily, keep the same budget,

and relax her incentives constraint. Hence, (44) is not binding either.

For ε small enough, the constraint (45) and (46) are not binding. The finding that both (43) and

(44) are slack implies, together with the the concavity of the objective and the convexity of the constraint set, that

(cεi , n
ε
i ) solves the agent’s problem given (pε, qε), but unconstrained by B, that is, subject to (ci, ni) ∈ Γi(W

ε
0 , p

ε, qε)

only, where W ε
0 is defined by (9). Moreover, all the cεi are uniformly bounded. Now consider any sequence ε` → 0,

an associated sequence of fixed points (p`, q`) and (c`i , n
`
i)i∈I . Given that all of these sequences are bounded we can

extract convergent subsequences (but keep the same notation). By Proposition A.2, the limit price cannot belong

to NA \NA otherwise the associated consumption sequence of some agent would be unbounded. Hence, the limit of

the price sequence belongs to NA. This implies that, for ` large enough, the constraint (45) is not binding, and the

constraint (46) is not binding either for trees with non-zero continuation dividends.

Tree-market clearing. For a tree with zero continuation dividend at (t, st), the no-arbitrage conditions imply

that current and future prices are zero. This makes the tree is irrelevant in all current and future budget and incentive

constraints, and implies that any demand is optimal. Therefore, we can pick the demand so as to clear the market.
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For a tree with non-zero continuation dividend, consider the corresponding term in the price player’s objective

−bkt(st)

(∑
i

nikt(s
t)− N̄k

)
.

Now, we have shown that, for ε small enough, the constraint (46) of the price player is not binding for all (u, su) �
(t, st). This means that the price player can, without violating its no-arbitrage constraints, increase slightly the

basis of the tree at time (t, st) by reducing pkt(s
t), and keep all other bases the same by corresponding reductions in

pku(su) at (u, su) ≺ (t, st). Since this cannot increase the price player’s objective, it follows that
∑
i nikt(s

t) ≥ N̄k.

If, at node (t, st), the basis of tree k is strictly positive, then by the same argument used just above to show that

the B constraint is not binding, the price player can, without violating its no-arbitrage constraints, reduce the basis

bkt(s
t) and keep all other bases the same. Since this cannot improve the price player’s objective, we obtain that∑

i nikt(s
t) ≤ N̄k, and we are done.

If, at node (t, st), the basis of tree k is zero, then reducing the demand of the tree leaves the budget constraint

the same, and relaxes the incentive constraint. Hence we can adjust the demand of each agent in such a way that∑
i nikt(s

t) = N̄k.

Consumption-market clearing. For ` large enough, the constraint (45) is not binding, and the constraint (46)

is not binding for trees with non-zero continuation dividend. Hence, it is feasible for the price player to increase and

decrease slightly any two coordinates of q`t(s
t) and keep all the bases the same. Since this cannot increase the price

player’s objective, we conclude that
∑
i c
`
it(s

t)− ωt(st) is constant across all nodes.

Now recall that, at the fixed point, Walras Law implies that the price player’s objective must be zero. Since we

know that the tree market clears, this writes:

∑
(t,st)

q`t(s
t)

[∑
i

c`it(s
t)− ωt(st)

]
= 0.

But since
∑
i c
`
it(s

t)− ωt(st) is constant across all nodes, it follows that it must be equal to zero.

V.3 Proof of Lemma B.1

Proceeding as in Proposition A.3, we obtain that the first-order conditions with respect to n, for the economy with

finitely many trees write:

vikt(s
t)− pkt(st) ≤ 0, with “ = ” if nikt(s

t) > 0,

where

vikt(s
t) ≡

∑
s

(
1− θi(δk)µit+1(st, s)

λit(st)

)[
qt+1(st, s)δkt+1(st, s) + pkt+1(st, s)

]
.

Now given q and the Lagrange multiplier’s λ and µ, let us define the functions p̂t(δ | st) and v̂it(δ | st) and as follows,

backwards from time T − 1:

p̂t(δ | st) = max
i
v̂it(δ | st),
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where

v̂it(δ | st) =
∑
s

(
1− θi(δ)µit+1(st, s)

λit(st)

)[
qt+1(st, s)δt+1(st, s) + p̂t+1(δ | st, s)

]
,

with the convention that pT = 0.

By construction, p̂t(δk | st) = pkt(s
t). Moreover, it is clear that the first-order necessary and sufficient conditions

continue to hold when agents can choose any tree in ∆. Finally, the price functionals can be viewed as a jointly

continous functions of δ ∈ ∆ and of the finitely many multipliers ratios µit+1(st, s)/λit(s
t) ∈ [0, 1], for all i, all t ≥ 0,

all st ∈ St, and s ∈ S. This function is uniformly continuous since its domain is compact. This implies that, when

viewed as function of δ only, the price functionals belong to an equi-continuous family.

VI Proof of Corollary 1

Suppose we allow short-selling of trees subject to the incentive constraint (15) as explained prior to Corollary 1.

Write the sequential budget constraints as in equation (3) (i.e. do not make the cash-on-hand change of variable),

using deflated time-zero prices (p, q). Assume that the pledgeability parameter depends on assets and agents, θi(s)

for Arrow securities and θi(δ) for trees held by agent i. Proceeding as in Section A.3, the first-order necessary and

sufficient conditions with respect to cit(s
t), a+

it+1(st, s), a−it+1(st, s), N+
it (s

t), and N−it (st), write:

βtπt(s
t)u′i(ct(s

t)) ≤ λ̂it(st)qt(st) with“ = ” if cit(s
t) > 0 (63)

λ̂it+1(st, s) + (1− θi(st))µ̂it+1(st, s) ≤ λ̂it(st) with “ = ” if a+
it+1(st, s) > 0 (64)

λ̂it+1(st, s) + µ̂it+1(st, s) ≥ λ̂it(st) with “ = ” if a−it+1(st, s) > 0 (65)∫ [
v̂+
it(δ | s

t)− pt(δ | st)
]
dM(δ) ≤ 0 for all M ∈M+ with “ = ” if M = N+

it (s
t) (66)∫ [

pt(δ | st)− v̂−it(δ | s
t)
]
dM(δ) ≤ 0 for all M ∈M+ with “ = ” if M = N−it (st) (67)

where v̂+
it(δ | s

t) and v̂−it(δ | s
t) are the agent’s private valuations for long and short positions:

v̂+
it(δ | s

t) =
∑
s

λ̂it+1(st, s) + (1− θi(δ))µ̂it+1(st, s)

λ̂it(st)

[
qt+1(st, s)δt+1(st, s) + pt+1(δ | st, s)

]
(68)

v̂−it(δ | s
t) =

∑
s

λ̂it+1(st, s) + µ̂it+1(st, s)

λ̂it(st)

[
qt+1(st, s)δt+1(st, s) + pt+1(δ | st, s)

]
, (69)

together with the complementary slackness condition for the incentive constraint:

µ̂it+1(st, s)

{∫
(1− θi(δ))

[
qt+1(st, s)δt+1(st, s) + pt+1(δ | st, s)

]
dN+

it (δ | s
t) + (1− θi(s))a+

it+1(st, s) (70)

−
∫ [

qt+1(st, s)δt+1(st, s) + pt+1(δ | st, s)
]
dN−it (δ | st)− a−it+1(st, s)

}
= 0. (71)

Now, start from Theorem 1 and consider an equilibrium of the economy in which trees cannot be sold short,

51



(p, q, c,N). Let a denote the implied Arrow security positions of the agents. Let N+ ≡ N , N− ≡ 0, a+ ≡ max{a, 0}
and a− ≡ max{−a, 0}. We seek to show that (p, q, c,N+, N−, a+, a−) is an equilibrium of the economy in which

short-selling of tree is allowed, subject to the incentive constraint (15). Since the market-clearing conditions hold by

construction, it is sufficient to show that (ci, N
+
i , N

−
i , a

+
i , a

−
i ) satisfies the first-order sufficient conditions (63)-(71),

given the multipliers found in the first-order necessary conditions (37)-(40) in Proposition A.3.

• The first-order condtition (63) holds because it is identical to (37).

• Notice that, because the incentive constraint is not binding when ait+1(st, s) > 0, we have that µ̂it+1(st, s) = 0

whenever ait+1(st, s) > 0. Hence, the first-order condition with respect to Wit+1(st, s), (38), implies the

first-order conditions (64) and (65).

• The first-order condition (66) holds because it is identical to (65), given that (38) implies that λ̂it(s
t) =

λ̂it+1(st, s) + µ̂t+1(st, s).

• Next recall that λ̂it(s
t) = λ̂it+1(st, s) + µ̂t+1(st, s), so

v−it(δ , | s
t) =

∑
s

[
qt+1(st, s)δt+1(st, s) + pt+1(δ | st, s)

]
.

But we know that trees are priced below replicating portfolios of Arrow securities, so v−it(δ | s
t) ≥ pt(δ | st),

implying the first-order condition (67).

• Finally, complementary slackness condition holds by construction.

VII Proof of Lemma D.1

For sufficiency, start from a complete market equilibrium (q, c) and define the tree pricing functional by the recursion:

pt(δ | st) =
∑
s

qt+1(st, s)
[
δt+1(st, s) + pt+1(δ | st, s)

]
, (72)

for all nodes (t, st), t < T , with the convention that pT (sT ) = 0. Define as well the cash-on-hand of agent i at node

(t, st):

qt(s
t)
(
Wit(s

t)− eit(st)
)

=
∑

(u,su)�(t,st)

qu(su) (ciu(su)− eiu(su)) . (73)

Let N denote the tree allocation in equation (47). We now verify that (p, q, c,N) is an equilibrium when agents are

subject to incentive constraints. First, by construction, all markets clear. Second, Ui(ci) is an upper bound for the

agent maximum attainable utility, when she is subject to incentive constraints in addition to budget constraint. But,

together with (73), (47) ensures that the plan (ci, Ni) is budget feasible and incentive compatible, so that this upper

bound is attained. Hence, (ci, Ni) is optimal for each agent given the price system (p, q).

Next, we turn to the proof of necessity. Suppose that (q, c) is IC implementable. That is, there exists an

equilibrium (p̂, q̂, ĉ, N̂) with incentive constraints such that q̂ = q and ĉ = c. Then, comparing the first-order

condition in the complete market equilibrium and in the corresponding equilibrium with incentive constraints shows

that the multiplier on the incentive constraint is equal to zero, and as a result the no-arbitrage condition (72) holds.

This implies that cash-on-hand can be written as (73), and that (47) holds with N = N̂ .
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VIII Proof of properties of the zero-collateral equilibrium

In this appendix we study properties of the zero-collateral equilibrium, that is an equilibrium in the special case when

N̄(∆) = 0. First, we establish existence and uniqueness. Second, we establish continuity: equilibria can be made

arbitrarily close to the zero collateral equilibrium, as long as N̄ is small enough. This property is very convenient: it

means that the zero-collateral equilibrium, which is straightforward to characterize, approximates all equilibria when

N̄(∆) ' 0.

Existence and uniqueness. Existence is straightforward but is not covered by our main Theorem, because

an economy with zero collateral does not satisfy our assumption (1) that aggregate dividend are strictly positive at

all nodes. Uniqueness is specific to this case and implies a continuity property: equilibria converge to the unique

zero-collateral equilibrium as N̄(∆)→ 0.

Proposition VIII.1 Suppose that e� 0 and N̄ = 0. Then, in equilibrium, agents consume their labor endowment,

cit(s
t) = eit(s

t) and Ni(s
t) = 0 for all agents i and nodes (t, st). Moreover, an equilibrium price system is given by

q0(s0) = 1,

qt+1(st, s)

qt(st)
= max

i
βπt+1(s | st) u

′
i(eit+1(st, s))

u′i(eit(s
t))

pt(δ | st) = max
i

∑
s

(
1− θ µ̂it+1(st, s)

λ̂it(st)

)[
qt+1(st, s)δt+1(st, s) + pt+1(δ | st, s)

]

where λ̂it(s
t) = βtπt(s

t)u′i(eit(s
t))/qt(s

t), and µ̂it+1(st, s) = λ̂it(s
t)− λ̂it+1(st, s).

We first show that the proposed price system and allocation is an equilibrium. Indeed, it is obvious that the

proposed allocation clears market and that, given the proposed price system, it satisfies the budget and incentive

constraints of each agent. Optimality follows from the first-order conditions of Proposition A.3.

Next, we turn to uniqueness of the equilibrium allocation. Consider any equilibrium (p, q, c,N). Then, since N̄ =

0, we must have that Ni = 0 as well. The incentive constraints for agent i then implies that Wit(s
t) ≥ eit(st) for all t ≥

1. But notice that, in equilibrium, at all nodes,
∑
i qt(s

t)Wit(s
t) =

∑
i qt(s

t)eit(s
t)+
∫ [
qt(s

t)δt(s
t) + pt(δ | st)

]
dN̄(δ).25

This implies that Wit(s
t) = eit(s

t) at all t ≥ 1. The definition of time-zero cash-on-hand also implies that

Wi0(s0) = ei0(s0) at t = 0. The sequential budget constraint then implies that cit(s
t) = eit(s

t).

Continuity. Now we argue that, the zero-collateral equilibrium identified above approximates all equilibria as

N̄ → 0.

Proposition VIII.2 Fix some endowment of labor income e � 0 and some sequence of tree supplies N̄ ` such that

N̄ `(∆)→ 0, satisfying our maintained assumption (1) that aggregate dividend is strictly positive at all nodes. Consider

any associated sequence of equilibria (p`, q`, c`, N `), and the corresponding sequence of optimal payoff sets, X`, and

assume that the tree pricing equation (25) holds for all trees in ∆. Let (p, q, c,N) denote the zero-collateral equilibrium

identified in Proposition VIII.1, and X the corresponding optimal payoff sets. Then (p`, q`, c`, N `) → (p, q, c,N).

Moreover, for any sequence of payoffs x` ∈ X`
jt(s

t), if x` → x, then x ∈ Xjt(st).

25 In the last period, t = T , this is simply a restatement of market clearing since WT = cT and pT = 0. Suppose that this
result is true at t + 1 ≤ T . Then, if we add all the sequential budget constraints (31) across all agents and use our induction
hypothesis, we obtain: ∑

i

qt(s
t)cit(s

t) +
∑
i

∫
pt(δ | st) dNit(δ | st) =

∑
i

qt(s
t)Wit(s

t),

and the result follows from the market clearing condition for consumption and trees at node (t, st).
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Let us first extract a subsequence converging to some (p̂, q̂, ĉ, N̂). Since N̄ ` → 0, it follows that N `
i → 0 for all i

and, therefore, N̂ = 0. Next, after passing to the limits in budget and incentive constraints, and noting that q̂ > 0,26

we can use the same argument as in the proof of uniqueness in Proposition VIII.1 to obtain that ĉ = c = e. Finally,

given that eit(s
t) > 0, we can pass to the limit in the first-order conditions and obtain that p̂ = p and q̂ = q.

For the second result, let Yit(s
t) denote the intersection of the optimal payoff set of agent i at node (t, st) with

the simplex. It solves the optimization problem:

Yit(s
t) = arg max

{
Qit+1(st) · x− Pt(x | st)

}
,

with respect to x ∈ RS+ such that
∑
x(s) = 1 and where, with some abuse of notation P (x | st) ≡ maxj Qjt+1 ·x is the

price of payoff x. Since the objective of this optimization problem is continuous in the private valuations Qj , Berge

Theorem implies that its arg max is upper hemi continuous in the private valuations. Now consider any sequence

x` ∈ X`
it(s

t) such that x` → x. If x = 0, then the result follows because 0 belongs to all payoff sets. If x 6= 0, then the

sequence y` = x`/
∑
x`(s) belongs to the intersection of the optimal payoff set with the simplex, Y `it(s

t), which are

upper-hemi continuous in private valuations. Moreover, by the continuity result we just established above, Q`i → Qi

for all i. Therefore, we obtain that x/
∑
x(s) belongs to the limit intersection, Yit(s

t) and, by implication, that x

belongs to the limit optimal payoff set, Xit(s
t).

IX Optimal payoff sets and power-diagrams

Power diagrams: a definition. Take some finite collection of S-dimensional vectors a = (a1, . . . , aI) and

scalars b = (b1, . . . , bI). Then, the power diagram generated by (a, b) is the collection of sets:

Yi ≡
{
x ∈ RS : ai · x+ bi ≥ aj · x+ bj for all j

}
.

It is clear from the definition that any x ∈ RS must belong to some Yi, that is, a power diagram covers RS .

Aurenhammer (1987a,b) has shown that any covering generated by a power diagram can be viewed as the projections

of a S + 1 dimensional convex polyhedron on RS , and vice versa. Put differently, think of lying on the floor (that

would be RS) and taking a picture of a S + 1-dimensional polyhedron from your position: you would produce a

S-dimensional picture that is a covering of RS . Moreover, it is easy to see that this picture is generated by a power

diagram and vice versa. Indeed, consider the polyhedron defined as:

{
(x, y) ∈ RS × R : y ≥ max

j
{aj · x+ bj}

}
.

Then it is clear that Yi can be viewed as the face of the polyhedron defined by y = ai · x+ bi and y ≥ aj · x+ bj for

all j.

Any collection of optimal payoff sets map into some S − 1 dimensional power diagram. Since

optimal payoff sets are cones, they are entirerly determined by their intersection with the S− 1 dimensional simplex.

Moreover, consider any x in the S − 1-dimensional simplex, that is such that x(s) ≥ 0 and
∑S
s=1 x(s) = 1. Then, at

26This follows by an argument in our existence proof: if q̂t(st) = 0 for some (t, st), consumptions would become unbounded
as `→∞, contradicting market clearing.
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any node (t, st), x ∈ Xit(st) if and only if

S∑
s=1

Qit+1(st, s)x(s) ≥
S∑
s=1

Qjt+1(st, s)x(s) for all j

⇔
S−1∑
s=1

ait+1(st, s)x(s) + bit(s
t) ≥

S−1∑
s=1

ait+1(st, s)x(s) + bit(s
t) for all j,

where ait+1(st, s) ≡ Qit+1(st, s) −Qit+1(st, S) and bit(s
t) ≡ Qit+1(st, S). Therefore, the optimal payoff sets can be

viewed as the intersection of a S − 1-dimensional power-diagrams with the S − 1-dimensional simplex.

Any S−1 dimensional power diagrams maps into a collection of optimal payoff sets. The converse

is also true. Given any S − 1 dimensional power diagram, then there exists an economy such that the collection of

optimal payoff sets correspond to the intersection of this power-diagram with the S − 1 simplex. Namely, consider,

at each node (t, st), t < T , a S − 1 power diagram described by coefficients (at+1(st), bt+1(st)) as above. Let

Ψit+1(st, s) ≡ ait+1(st, s) + bit(s
t) +K, for s ∈ {1, 2, . . . , S − 1}

Ψit+1(st, S) ≡ bit(st) +K,

where K is some constant that is large enough so that all Ψit+1(st, s) > 0 for all agents and all nodes. Then consider

an economy with I agents, all endowed with identical CRRA preferences with parameter γ. Define the endowment

of agent i recursively as

eit+1(st, s) = git+1(st, s)eit(s
t, s),

with initial condition ei0(s0) = 1, and where the growth rate is taken to solve:

βπt+1(s | st)git+1(st, s)−γ = Ψit+1(st, s).

If there is no collateral, N̄ = 0, it follows from the results in Section VIII that the private valuations Qit+1(st, s) for

Arrow-Debreu securities take the form:

Qit+1(st, s) = (1− θ) max
j

Ψjt+1(st, s) + θΨit+1(st, s).

But the first vector of the sum, (1− θ) maxj Ψjt+1(st, s), is independent of i. It follows that Qit+1(st)·x ≥ Qjt+1(st)·x
for all j if and only if Ψit+1(st, s) · x ≥ Ψjt+1(st, s) · x for all j, and so if and only if the intersection of the optimal

payoff sets with the S − 1 dimensional simplex belongs to power diagram we started with.

Assumptions and computations for Figure 3. Focus on two time periods t and t+ 1 in an economy with

I = 50 agents with identical relative risk aversion γ = 1 and discount factor β = 0.95. There are three states, one

disaster state s = 1 and two normal states, s = 2 and s = 3. State s = 1 is a disaster state with dismal endowment

growth g(3) = 0.8, and realizes with low probability π(3) = 0.05. State s = 2 is a normal state with low endowment

growth g(2) = 1.01, and realizes with probability π(2) = 0.475. State s = 3 is a normal state with high endowment

growth g(3) = 1.03, and realizes with probability π(3) = 0.475. We assume that all agents have the same labor
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income at time t, normalized to eit(s
t) = 1. At time t+ 1, on the other hand:

eit+1(st, s)

eit(st)
= αi(s)g(s),

where the αi(s) are drawn at random and are subsequently normalized so that g(s) represents the aggregate growth

of income in state s. We assume that there is no collateral, N̄(∆) = 0, so that the intertemporal marginal rate of

substitution of agent i is given by βπt+1(s | st) (αi(s)g(s))−γ . In Appendix VIII we show that equilibria are continuous

in N̄ near N̄(∆) = 0: hence, the optimal payoff sets with N̄ = 0 approximate those with N̄ ' 0.

Next, we reduce the dimension of the problem by studying the intersection of Xi with the simplex, as outlined

above. Namely, proceeding as above, direct calculations reveals that this intersection is made up of points x ∈ R2
+,

x(1) + x(2) ≤ 1, such that

ai · x+ bi ≥ aj · x+ bj for all j,

where

Ψi(s) = βπ(s) [αi(s)g(s)]−γ

ai(1) = Ψi(1)−Ψi(3)

ai(2) = Ψi(2)−Ψi(3)

bi = Ψi(3).

To calculate the optimal payoff sets, we use the transport package in R, which requires to reformulate the inequalities

ai · y + bi ≥ aj · y + bj as

‖y − zi‖2 − wi ≤ ‖y − zj‖2 − wj ,

for some zi ∈ R2 and wi ≥ 0. Direct calculations show that zi = ai/2 and wi = ‖zi‖2 + bi.

The calculation. Figure 3 is created using R, in the following steps. First, we use the fonction power diagram,

from the transport pacakge, to calculate the optimal payoff sets. Precisely, this function calculates the vertices of

the polygons that enclose the intersection of optimal payoff sets with the unit square, [0, 1]× [0, 1]. We then calculate

the intersection of these polygons with the simplex, using the function st intersection from the sf package. Finally,

we plot these polygons in barycentric coordinates using the function geom polygon of the ggplot2 package.

X Parametric cases not covered in Proposition 3

Case γφ = 1. Then V (α, x) is linear in α and one can directly verify that the optimal payoff set of α1 = 0 is

X0 = [0, x?(0)], where x?(0) is defined in equation (51). The optimal payoff set for αI is XI = [x?(0), 1]. For all

other agents Xi = {x?(0)}.

Case γφ > 1. In this case the function α 7→ V (α, x) is strictly convex in α. This implies that it achieves a strict

maximum either at α1 or at αI . Therefore there exists some x? such that X1 = [0, x?] and XI = [x?, 1]. This
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threshold solves V (α1, x
?) = V (αI , x

?), which leads to:

x? =
π2

(
1− (1− k2αI)

φγ
)

π1 ((1 + k1αI)φγ − 1) + π2 (1− (1− k2αI)φγ)
.

For all other i, Xi = ∅.

X.1 Proof that the pricing functional solves (30)

The proof follows a standard-optimality verification argument. Let P̂t(δ s
t) denotes the solution of the Bellman

equation (25) for tree δ, and let Ĵ denote a sequence of agent that solve the Bellman equation for tree δ at each

node. Now take any stream of asset holders J . The Bellman equation (30) and the definition of qt(s
t | J) imply that

at node (u, su), u < T :

P̂u(δ | su) ≥
∑
s

qu+1(su | J)

qu(su | J)

[
δu+1(su, s) + P̂u+1(δ | su, s)

]
,

with an equality if j is the term (t, st) of the sequence of agent Ĵ solving the Bellman equation. Multiplying through

by qu(su | J), dividing by qt(s
t | J) and adding the inequalities for all su � st, we obtain that

P̂t(δ | st) ≥
∑

(u,su)�(t,st)

qu(su | J)

qt(st | J)
δu(su, s),

with an equality if J = Ĵ . Therefore P̂ (δ | st) is an upper bound for P (δ | st), and it is attained for Ĵ . The result

follows.

XI An micro-foundation à la Rampini and Viswanathan (2010)

In this section we offer an alternative micro-foundation of the incentive constraint (6). We closely follow the approach

Rampini and Viswanathan (2010) and adapt their argument to our setting.

Precisely, let us imagine a contracting problem between an agent of our model and a continuum of competitive

lenders. Agents and lenders take as given some no-arbitrage security prices (p, q) ∈ NA, i.e. the prices of trees p and of

Arrow securities q. As everywhere else in this Appendix, (p, q) denote time-zero deflated prices. Lenders can commit

to make state-contingent payments to the agent, but they cannot hold trees: they cannot operate the technology that

produces the corresponding dividend streams. The agent, on the other hand, can operate the technology but she has

limited commitment. At any node (t, st), the agent can default, divert a fraction θ of the cum-dividend value of her

tree portfolio, contract with a new competitive lender and continue to receive her stream of labor income. Agents

maximize the same intertemporal utility as in the paper, while lenders maximizes the present value of their profits,

evaluated at Arrow security prices.

XI.1 The optimal contracting problem

A contract is a list (c,N, τ) that specifies, for all nodes (t, st), the consumption and tree holdings of the agent, ct(s
t)

and Nt(s
t), as well as the net transfers made by the lender to the agent, τt(s

t). We omit the type “i” subscript

for notational simplicity. A contract is feasible if it satisfies the budget, participation, and enforcement constraints

specified below.
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The key difficulty is to formulate the enforcement constraint at node (t, st), because it depends on the value of

defaulting multiple times with successive lenders. Specifically, the enforcement constraint is determined by the value

of defaulting and re-contracting with a new lender, which itself depends on the option to defaulting and re-contracting

later with yet another lender, and so on. This implies that the enforcement constraint at node (t, st) depends on the

enforcement constraint at successor nodes, (u, su) � (t, st). Hence, it is natural to define the enforcement constraint

recursively, by backward induction.

Namely, we first define the set of feasible contract at a terminal node, BT (w | sT ), where w is the agent’s wealth,

to be the collection of contracts (c,N, τ) such that

qT (sT )cT (sT ) = qT (sT )w + qT (sT )eT (sT ) + qT (sT )τT (sT )

qT (sT )τT (sT ) = 0,

i.e., the contracts that satisfy the budget constraint and the binding participation constraint of the lender, which we

state as an equality for simplicity. Note that, at the terminal node, there are no trees left to purchase. As noted

above, all valuations are based on time zero prices (p, q). We do not include an enforcement constraints at time T in

BT (w | sT ): instead, we include these enforcement constraints at T − 1, as explained below.

Now, proceeding by backward induction, consider any node (t, st), with t < T and suppose that we have already

constructed sets of feasible contracts, Bu(w | su), for all successor nodes (u, su) � (t, st). At node (t, st), we define

Bt(w | st) to be the set of contracts (c,N, τ) satisfying the following constraints. First, a budget constraint at (t, st):

qt(s
t)ct(s

t) +

∫
pt(δ | st) dNt(δ st) = qt(s

t)w + qt(s
t)et(s

t) + qt(s
t)τt(s

t). (74)

Second a budget constraint at all (u, su) � (t, st),

qu(su)cu(su) +

∫
pu(δ | su) dNu(δ su)

=

∫
[qu(su)δu(su) + pu(δ | su)] dNu−1(δ | su−1) + qu(su)eu(su) + qu(su)τu(su). (75)

Third, the binding participation constraint for the lender at (t, st):

∑
(u,su)�(t,st)

qu(su)τu(su) = 0. (76)

Fourth, a set of enforcement constraints for the agent, that ensures that, at all successor nodes (u, su) � (t, st), the

agent does not have incentive to default:

∑
(v,sv)�(u,su)

βvπv(sv)u(cv(sv)) ≥
∑

(v,sv)�(u,su)

βvπv(sv)u(ĉv(sv)), (77)

for all (ĉ, N̂ , τ̂) ∈ Bu(ŵu(su) | su), where

qu(su)ŵu(su) = θ

∫
[qu(su)δu(su) + pu(δ | su)] dNu−1(δ | su−1),
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is the value of the agent’s tree portfolio after default and diversion. This last constraint states formally that the

agent can default, divert a fraction θ of the cum-dividend value of its portfolio and pick a feasible contract with a

new lender. This new contract gives the agent the option to default at some future date. In particular, as anticipated

above, the enforcement constraints at node (t, st) depends on future enforcement constraints encoded in the sets

Bu(ŵu(su) | su).

The optimal contracting problem is to choose (c,N, τ) ∈ B0(w0 | s0), where w0 is the cum-dividend value of the

agent’s initial tree portfolio endowment.

XI.2 Implementation with Arrow borrowing and incentive constraints

The main result is that the agent’s problem considered in the text, with incentive constraints of the form (6), yields

the same allocation as the optimal contracting problem defined above. Formally:

Proposition XI.1 Consider a solution (c,N, a) to the agent’s problem considered in the text, and let

qt(s
t)τt(s

t) ≡ qt(st)at(st)−
∑
s

qt+1(st, s)at+1(st, s).

Then (c,N, τ) solves the optimal contracting problem.

The proof proceeds in two steps.

Step 1 of the proof. Similarly to Rampini and Viswanathan (2010) we show that the enforcement constraint

implies:

Lemma XI.1 If (c,N, τ) ∈ B0(w0 | s0) then, at all nodes (t, st), t > 0:

−
∑

(u,su)�(t,st)

qu(su)τu(su) ≤ (1− θ)
∫ [

qt(s
t)δt(s

t) + pt(δ | st)
]
dNt−1(δ | st−1). (78)

According to (78), the present value of net transfers to the lender cannot must be less than 1− θ times the cum-

dividend value of the tree portfolio acquired in the previous period. The proof, which is identical to that in Rampini

and Viswanathan (2010), proceeds by contradiction. Suppose that (78) does not hold at some node (t, st). Then,

we argue that the incentive constraint (77) is violated at this node. Indeed, the agent could default, start over with

ŵt(s
t) = θ

∫ [
qt(s

t) δt(s
t) + pt(δ | st)

]
dNt−1(δ | st−1) at node (t, st) and pick a new contract (ĉ, N̂ , τ̂) ∈ Bt(ŵt(st) | st)

that changes the transfer and consumption at node (t, st), but keeps everything else the same. Namely, the transfer

at (t, st) is changed to:

qt(s
t)τ̂(st) = −

∑
(u,su)�(t,st)

qt(s
t)τt(s

t),

while consumption is changed to:

qt(s
t)
[
ĉt(s

t)− ct(st)
]

=− (1− θ)
∫ [

qt(s
t)δt(s

t) + pt(δ | st)
]
dNt−1(δ | st−1)−

∑
(u,su)�(t,st)

qu(su)τu(su)
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which is strictly positive by our maintained assumption. The budget constraints and the participation constraint

of the lenders hold by construction. Moreover, since the original contract satisfies the enforcement constraint at all

nodes (u, su) � (t, st), so does the new contract. But this means that the enforcement constraint does not hold at

(t, st), a contradiction.

Step 2 of the proof. With the Lemma in mind, we define the relaxed problem to be the optimal contracting

problem in which all enforcement constraints are replaced by (78). Clearly the Lemma shows that the constraint set

in the original problem is contained in that of the relaxed problem. Hence, the value of the relaxed problem is an

upper bound to the value of the original problem. Next, we show that this upper bound is attained:

Lemma XI.2 The value of the original contracting problem is equal to that of the relaxed contracting problem, and

to the agent’s problem considered in the text.

To establish this result we make the same change of variable as in Rampini and Viswanathan (2010), namely we

let:

qt(s
t)at(s

t) ≡
∑

(u,su)�(t,st)

qu(su)τu(su)

⇔ qt(s
t)τt(s

t) = qt(s
t)at(s

t)−
∑
s

qt+1(st, s)at+1(st, s),

with a0(s0) = 0. This leads to an equivalent representation of the constraint set of the relaxed problem. Namely, a

contract (c,N, a) belongs to the constraint set of the relaxed problem starting at time t given initial financial wealth

w if it satisfies the following constraints. First, a budget constraint at (t, st):

qt(s
t)ct(s

t) +

∫
pt(δ | st) dNt(δ st) +

∑
s

qt+1(st, s)at+1(st, s) = qt(s
t)w + qt(s

t)et(s
t). (79)

Second a budget constraint at all (u, su) � (t, st),

qu(su)cu(su) +

∫
pu(δ | su) dNu(δ | su) +

∑
s

qu+1(su, s)au+1(su, s) (80)

=

∫
[qu(su)δu(su) + pu(δ | su)] dNu−1(δ | su−1) + qu(su)eu(su) + qu(su)au(su). (81)

with the convention that NT = aT+1 = 0. Third a set of incentive constraints for for all (u, su) � (t, st), which take

the same form as (6):

−qu(su)au(su) ≤ (1− θ)
∫

[qu(su)δu(su) + pu(δ | su)] dNu−1(δ | su−1). (82)

Clearly the relaxed optimal contracting problem at time t = 0 with wealth w0 has become identical to the agent’s

problem studied in the text.

Now let Vt(w | st) denote the value of the relaxed contracting problem starting with financial wealth w at (t, st).

Clearly, this value function is weakly increasing in w. Moreover a standard dynamic programming argument shows

that if (c,N, a) solves the relaxed contracting problem starting at time zero given w0, then it also solves it starting
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at node (t, st) given financial wealth

qt(s
t)wt(s

t) =

∫ [
qt(s

t)δt(s
t) + pt(δ | st)

]
dNt−1(δ | st−1) + at(s

t).

We now verify that a solution of the relaxed contracting problem is incentive compatible for the original contracting

problem (after doing the opposite change of variables from a to τ). Indeed, the budget constraints and participation

constraint hold by construction. The enforcement constraint (77) hold as well at all (t, st), t > 0. Indeed, the

left-hand side of the enforcement constraint is equal to Vt(wt(s
t) | st) defined above. The right-hand side is bounded

above by the solution of the relaxed contracting problem, starting with financial wealth

qt(s
t)ŵt(s

t) = θ

∫ [
qt(s

t)δt(s
t) + pt(δ | st)

]
dNt−1(δ | st−1).

Since the incentive constraint (82) holds at (t, st), we have that wt(s
t) ≥ ŵt(s

t). Since the value function is weakly

increasing, Vt(wt(s
t) | st) ≥ Vt(ŵt(st) | st). Therefore, the enforcement constraint holds.
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