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Abstract

We study liquidity supply in fragmented markets. Market makers intermediate heterogeneous order flows,
trading off spread revenue against inventory costs. Applying our model to payment for order flow (PFOF),
we demonstrate that portfolio-based considerations of inventory management incentivize market makers to
segment retail orders by siphoning them off-exchange. Banning order flow segmentation reduces total welfare,
can make trading more costly for all investors, and can resolve a prisoner’s dilemma among market makers.
These results differentiate our inventory-based model from the existing information-based theories of PFOF.
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trading

1. Introduction

Trade in modern financial markets is spread across many venues. Creation of the National Market System
in the U.S. in 1975 marked the start of a sustained regulatory effort to create a reliable, integrated exchange
trading environment. Yet, an enormous amount of trading still happens off-exchange—in recent months,
nearly half of all equity volume. In part, this reflects differences in intermediation costs: investors who tend
to be less costly for market makers to intermediate can be offered better prices if they are segmented into
separate venues. But what does this order flow segmentation imply for welfare and liquidity? This paper
argues that the implications may be nuanced and may depend on why certain investors are less costly to
intermediate than others.

There are two reasons for why investors may differ in their intermediation costs, each relating to one of the
two classic frictions in the market microstructure literature: asymmetric information (Glosten and Milgrom,
1985; Kyle, 1985) and inventory costs (Stoll, 1978; Amihud and Mendelson, 1980; Ho and Stoll, 1981, 1983).
On the one hand, certain orders may be less costly to intermediate because they are less informed about
fundamentals. And several existing studies have analyzed order flow segmentation through this lens. What
has so far received less attention in the literature—despite its empirical importance—is the other possibility:
that certain orders may be less costly to intermediate because they tend to be less correlated in direction with
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the other orders in a market maker’s portfolio.1 This paper aims to fill that gap. The analysis introduces
a portfolio perspective on order flow management, which underlies an inventory-based incentive to segment
orders. We obtain additional predictions regarding liquidity and welfare. We also discuss implications for
the potential consequences of regulatory intervention.

We first study a baseline model in Section 2, where order flow segmentation is taken as given: order flows
from various sources (e.g., retail investors or institutions) are exogenously split across marketplaces. These
various marketplaces can represent exchanges, “upstairs” block trading, or many other forms of segmentation.
Yet another form of order flow segmentation is payment for order flow (PFOF), a common order-handling
practice in which retail orders are routed directly to market makers, who typically execute them against
their own balance sheets. In Sections 3 and 4, we specialize the model to the setting of PFOF, where we
show how considerations of inventory cost can cause this practice to arise endogenously.

Baseline model. A single asset is traded on a fixed number of marketplaces, where the volume of liquidity-
demanding orders arriving to each marketplace is price-elastic (i.e., elastic with respect to the bid-ask spread).
A key characteristic of a marketplace is its order flow directionality, which determines the probability with
which each order arriving there is a buy or a sell. These directionalities are modeled as random variables
with an arbitrary joint distribution, and they capture order correlation within and across marketplaces.
Such correlation can arise, for example, from the splitting of large institutional parent orders into child
orders or from sentiment-driven trading by retail investors. A continuum of market makers choose liquidity
supplies—the expected numbers of orders that they will receive in each marketplace—balancing expected
revenues from bid-ask spreads against quadratic inventory costs. An equilibrium consists of liquidity supplies
and spreads for each marketplace such that (i) each market maker’s liquidity supplies are optimal given the
spreads, and (ii) each spread clears liquidity demand and supply in its marketplace.

A key insight from the baseline model is that market makers must consider their liquidity-supply decisions
across marketplaces as a portfolio: the correlation structure of directionalities determines the extent to which
order flows will offset, hence the expected inventory cost of marginal orders. In fact, the market maker’s
problem is tightly connected to the optimization problem in standard portfolio theory. Our analysis highlights
that portfolio considerations matter even for inventory management of a single asset.

The importance of inventory considerations in general—and of a portfolio perspective in particular—is
consistent with recent empirical evidence. Daures-Lescourret and Moinas (2023) show that after a shock to
her inventory from an execution on one venue, a market maker’s liquidity supply on the same (opposite)
side becomes less (more) aggressive on all venues. Barardehi et al. (2024) argue that market makers treat
retail orders differently, depending on institutional liquidity demand imbalances. Portfolio-based inventory
considerations also explain two other facts: (i) Eaton et al. (2022) find that outage-induced reductions
in Robinhood retail activity improve on-exchange liquidity supply (while outages of other brokers harm
liquidity), and (ii) Schwarz et al. (2023) experimentally document that Robinhood clients receive less price
improvement than clients of other retail brokers (E*Trade, Fidelity, TD Ameritrade). An explanation for
both findings is that Robinhood order flow tends to exacerbate inventory imbalances: compared with order
flows from other retail brokerages, Robinhood orders are more concentrated (Barber et al., 2022) and more
correlated with past returns (Eaton et al., 2022).

Application to PFOF. Whereas order flow segmentation is exogenous in the baseline model, we next investi-
gate how it might endogenously arise, for example, in the form of PFOF.2 Section 3 considers a setting with
two marketplaces, on-exchange and off-exchange, and two order sources, R and I, for retail and institutional.

1 Indeed, the staff report of SEC (2021) states that “[retail] orders are more likely to be small, uncorrelated with one another,
and thus ‘one and done’ (i.e., not the first in a series of orders intended to transact a large amount of stock), which also allows
for a tighter spread.”

2 In practice, PFOF may refer to either (i) the practice whereby retail orders are routed directly to market makers and
executed off-exchange, or (ii) the payment transferred from market makers to retail brokers for such a purpose. In this paper,
PFOF refers primarily to (i). We do not model the payment (ii) both for parsimony and because it tends to be very small
(Schwarz et al., 2023).
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I-orders must clear on-exchange, but an endogenous fraction of R-orders may be siphoned off-exchange. This
siphoning endogenously affects both the characteristics of on-exchange order flow and the correlation between
on-exchange and off-exchange order directionalities—and in turn, equilibrium volumes and bid-ask spreads
as well.

Depending on parameters, the equilibrium entails either (i) both R- and I-orders clearing on-exchange
(i.e., a “no-siphoning” equilibrium) or (ii) all R-orders siphoned off-exchange, leaving only I-orders on-
exchange (i.e., a “with-siphoning” equilibrium). To see how siphoning arises, conjecture an equilibrium in
which all orders clear on-exchange. This implies a specific portfolio of R- and I-orders for market makers. A
market maker might, however, benefit if she could alter the composition of R- and I-orders in her portfolio—
due to differences in the orders’ characteristics, like their arrival rates and directionalities. In particular, if it
is beneficial to obtain more R-orders, they can be siphoned off-exchange with the promise of a slightly smaller
spread. Doing so destroys the conjectured no-siphoning equilibrium, yielding a with-siphoning equilibrium
instead.

We characterize the exact condition that separates the two regions of parameters. In words, the with-
siphoning region is precisely where R-orders contribute less to inventory costs (at the margin) than I-orders
do. For example, this happens when R-order flow tends to be sufficiently well balanced between buys and
sells. In this case, market makers find R-orders more attractive and siphon them off-exchange as a result. We
argue in Section 3.3 that the realistic parameter values lie in this with-siphoning region, which is consistent
with the fact that “in the equity markets right now, if you place a [retail] market order, 90–95 percent do not
go to the lit exchanges, do not go to Nasdaq or New York Stock Exchange; they go to wholesalers” (Gensler,
2022).

Most existing models of PFOF analyze it through the lens of asymmetric information, as in Easley et al.
(1996) and Battalio and Holden (2001). These models view retail orders as less informed than institutional
orders, meaning that they create less adverse selection and can therefore be cleared at a smaller spread if
siphoned off-exchange. Our model proposes an entirely different mechanism: retail orders may contribute
less to—and may even reduce—market makers’ inventory risk. As we discuss below, this differing mechanism
implies different predictions and different policy implications.

One set of predictions concerns the consequences of banning off-exchange retail trading (hereafter, a
“segmentation ban”) on spreads, market maker profits, and total welfare. Our analysis adds to the ongoing
policy debate regarding PFOF. While the practice is widely prevalent in the U.S., it would be affected by new
rules that the SEC has recently proposed (SEC, 2022). In Europe, the issue remains contentious (Reuters,
2023).

When a segmentation ban has an effect (i.e., in the with-siphoning region of the parameter space), the
model predicts that it harms R-investors, in the sense that it leads them to pay a larger spread. One might
think such a ban would entail a countervailing benefit for I-investors—however, this is not necessarily so.
Rather, for certain parameters, I-investors are also harmed. When segmentation is banned and R-investors
face a larger spread, fewer R-investors opt to trade. If R-orders are sufficiently effective for hedging I-orders,
this leads market makers to anticipate ending with a larger net inventory imbalance, and they set a larger
on-exchange spread to compensate. Moreover, there is reason to think that this is not only a theoretical
possibility, but in fact the empirically-relevant case: Evidence from Jones et al. (2023) suggests that retail
order imbalances negatively correlate with institutional imbalances, hence are effective for hedging against
them.

These predictions reveal an interesting comparison with the existing information-based models of PFOF.
These models posit that R-investors pay a smaller spread when siphoned off-exchange because they are less
informed than I-investors (i.e., create less adverse selection). By pooling both investor types, a segmentation
ban would lead to an intermediate spread, harming R-investors while unambiguously benefitting I-investors.
In contrast, our theory makes a more nuanced prediction for I-investors. And although our theory makes
the same prediction for R-investors, it is for an entirely different reason: not because their orders are less
informed but rather because they contribute less inventory risk.

Turning to market maker profitability, the model reveals that PFOF can sometimes function as a pris-
oner’s dilemma: although each market maker has a unilateral incentive to siphon R-orders off-exchange,
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their collective siphoning creates a pecuniary externality, which may lead them to be worse off in equilibrium
than if the practice were banned. In this way, our theory rationalizes market makers’ seeming ambivalence
toward regulatory discussions of bans on PFOF (and the order flow segmentation that PFOF entails).3

A segmentation ban unambiguously reduces total welfare in our model. This is because, absent a seg-
mentation ban, the equilibrium in fact leads to the welfare-maximizing quantities of R- and I-investor
volume, essentially by the First Welfare Theorem. By constraining market makers’ liquidity-supply deci-
sions, a segmentation ban distorts outcomes and necessarily reduces welfare. This analysis identifies a novel
channel through which regulatory restrictions on PFOF might harm welfare, via market makers’ inventory
considerations.

Related literature. Our paper contributes to two strands of literature. First, a theoretical literature has
studied market fragmentation from various angles: investors’ venue choices (Pagano, 1989, Chowdhry and
Nanda, 1991, Babus and Parlatore, 2022); competition among venue operators (Pagnotta and Philippon,
2018, Chao et al., 2019, Baldauf and Mollner, 2020, Cespa and Vives, 2022); information and price discovery
(Ye and Zhu, 2020, Zhu, 2014); speed and latency arbitrage (Foucault and Menkveld, 2008; Kervel, 2015);
and price impact (Chen and Duffie, 2021). In the work closest to ours, Daures-Lescourret and Moinas
(2023), as we do, speak to liquidity supply across exogenously fragmented exchanges in a setting with
inventory frictions. Different from their paper, our model highlights that such inventory concerns, in fact,
endogenously incentivize market makers to siphon certain orders off-exchange.

Second, our application to PFOF contributes to the theoretical literature on the practice. Battalio and
Holden (2001) argue that PFOF and internalization can arise when orders’ verifiable characteristics are
correlated with informedness. This is consistent with evidence from Easley et al. (1996), who estimate that
orders on the main exchange (NYSE) are more likely to be informed than those diverted to the regional
exchange (Cincinnati). More recently, Yang and Zhu (2020) show that “back-runners” like high-frequency
trading firms may be willing to pay for retail flows because doing so enables them to learn about institutional
flows, infer the information driving those flows, and earn subsequent trading profits. The above explanations
share a common feature: they all analyze PFOF through information-based channels, like adverse selection
and learning. Our model departs from this focus on information, turning instead to inventory risk as the
key friction.

Various other dimensions of PFOF have also been explored theoretically. Chordia and Subrahmanyam
(1995) show that order flows migrate from exchange (NYSE) to off-exchange (non-NYSE) via PFOF when
discrete ticks constrain market makers’ price competition. Hagerty and McDonald (1996) analyze a broker’s
optimal portfolio of informed and uninformed clientele. Kandel and Marx (1999) explicitly study brokers’
order-handling decisions: sending to the exchange (via Nasdaq’s Small Order Execution System), selling
to market makers via PFOF, or internalizing (vertical integration). Parlour and Rajan (2003) argue that
PFOF can serve as an anticompetitive device, raising market maker profits. Glode and Opp (2016) argue
that pre-trading order flow agreements, like PFOF, can sustain intermediation chains that reduce information
asymmetry and improve efficiency.

On the empirical side, our model connects to the recent, growing literature studying new developments
in retail trading. Jain et al. (2023) document how the rise of zero-commission retail brokers changed various
volume shares, for example, across brokers or between exchanges and wholesale market makers. Adams and
Kasten (2021) study the execution quality of small orders in the zero-commission regime. Ernst and Spatt
(2022) find that retail brokers receive larger PFOF payments in options than equities, meaning that they
have an incentive to sway retail investors to the options market.

Our model also relates to the economics literature on price discrimination in competitive environments,
surveyed by Stole (2007). One interesting feature of our model is that it is possible for price discrimination
to lower spreads for all investors. This cannot happen in the classic model of third-degree oligopolistic
price discrimination of Holmes (1989), which features two firms and two consumer groups (the “weak” and

3 For example, Ken Griffin (CEO of Citadel) has said, “Payment for order flow is a cost to me. So if you’re going to tell me
that by regulatory fiat one of my major items of expense disappears, I’m OK with that” (FT, 2021).
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“strong” markets). However, Corts (1998) demonstrates that if the competing firms differ in which markets
they consider strong versus weak, then it is possible for price discrimination to lower prices in both markets,
a phenomenon he calls “all-out competition.”

2. A model of liquidity supply

2.1. Setup

Overview. A single asset is traded on multiple marketplaces. Its fair value—the common component of
its value—is constant and known to all. Liquidity-taking orders arriving at these marketplaces are met by
liquidity-supplying market makers, at bid-ask spreads that clear each market. We assume away information
asymmetry so as to mute channels already analyzed by previous literature. That is, all liquidity-taking
orders are submitted for non-fundamental, private-value reasons.

Marketplaces and order flows. Marketplaces are indexed j ∈ {1, . . . , J}. For simplicity, we model these mar-
ketplaces as clearing simultaneously, at a single point in time.4 Appendix C considers dynamics, showing that
our main conclusions carry over to a two-period version of the model. For each marketplace j, let sj ≥ 0 be its
half bid-ask spread, which will be determined endogenously in equilibrium.5 We write s := (s1, . . . , sJ)

⊤. As
a convention, bold letters denote vectors (always columns) or matrices. A continuum of liquidity-demanding
orders with measure λj(sj) arrives at marketplace j, with λj(·) decreasing and nonnegative.

Remark 1. For example, a model of PFOF might entail J = 2 marketplaces, with one as the exchange and
the other as off-exchange execution on market makers’ own balance sheets. In general, a marketplace can
represent any trading venue where prices are determined by market clearing—including limit order books,
periodic auctions, exchanges’ retail liquidity programs, and the market for block trading. On the other hand,
the marketplaces of our model are less appropriate for capturing venues where prices are determined in other
ways—including midpoint dark pools and workup sessions.

Order directions. Each order arriving on marketplace j is independently either a one-unit buy or a one-unit
sell, with respective probabilities 1

2 (1+Dj) and
1
2 (1−Dj), where Dj ∈ [−1, 1] captures the average direction

of the marketplace’s order flow. The vector of directionalities D := (D1, D2, . . . , DJ)
⊤ is random, with mean

and variance denoted µ = E[D] and Σ = var[D], respectively. We assume Σ is positive-definite.

Remark 2. Directionalities capture the possibility of correlation among orders. In reality, orders may be
correlated due to several mechanisms. One is trading on private information about fundamentals. Yet, given
our focus on inventory frictions, our model better fits correlation driven by forces other than private infor-
mation. For example, correlation can arise from the splitting of large institutional parent orders placed for
non-informational reasons like portfolio rebalancing, portfolio transition, and fund flows. Several datapoints
help quantify the importance of large, non-informational institutional trades. Index additions and deletions
are a source of such trades, because they cause index funds and other investors to adjust their holdings for
mechanical reasons, and they lead to a significant increase in trading volume (e.g., Harris and Gurel, 1986;
Greenwood, 2005). In the data of Kyle and Obizhaeva (2016), an average portfolio transition accounts for
4.20% of corresponding stocks’ daily trading volume, and this number increases to 16.23% for small stocks.
Coval and Stafford (2007) find that flows out of (or into) mutual funds can result in severe uninformed
fire selling (or purchasing), and such fund flows amount to as much as 13.9% (Israeli data, Ben-Rephael
et al., 2011) or 19.19% (U.S. data, Ben-Rephael et al., 2012) of total trading volume in the market. Fur-
thermore, non-informational correlation can also arise when retail investors coordinate on online platforms
(e.g., “WallStreetBets” on Reddit) or herd on the same market sentiment.

4 An alternative but equivalent way to think about our model is that trading occurs over a continuous interval, with prices
held fixed over that interval. Hendershott and Mendelson (2000) adopt a similar approach.

5 Because our primary focus will be on symmetric settings, in which order directionality is not predictable ex ante and
market makers have zero initial inventory, each marketplace’s midpoint (if we were to endogenize it) would be naturally at the
fair value of the asset, leaving only the spread to be determined. This is why our analysis can focus only on the spreads.

5



Microfoundation. The downward-sloping liquidity demand λj(·) can be microfounded as follows. Assume
that order flow on marketplace j originates from a continuum of investors with measure κj . Each investor
submits a one-unit immediate-or-cancel (IOC) order with a limit price reflecting her private value for the
asset—this order will be marketable only if the private value is extreme enough, exceeding the half spread sj .
Her private value is positive with probability 1

2 (1+Dj) (and negative otherwise) and its magnitude is drawn
i.i.d. from c.d.f. Fj(·). We then obtain the decreasing aggregate liquidity demand λj(sj) := κj · (1− Fj(sj)).

Liquidity supply. A continuum of market makers, indexed m ∈ [0,M ], compete to provide liquidity on all J
marketplaces.6 Before D realizes, each market maker m chooses her liquidity supply xmj for each market-
place j, taking as given the half spreads s, to maximize her expected profit described below. The number
of randomly-assigned orders that market maker m will receive on marketplace j is a Poisson-distributed
random variable with expectation xmj . We write xm := (xm1, . . . , xmJ)

⊤.

Remark 3. The interpretation of xmj may depend on what marketplace j represents. For example, if j refers
to an exchange, then xmj can represent a market maker’s posted limit orders. Alternatively, xmj can reflect
the “groundwork” that a market maker needs to lay before trading starts, like the allocation of computational
power, bandwidth, and staffing, data subscription fees, regulatory and compliance costs, etc. If j refers to
market makers’ siphoning of retail orders, then xmj can refer to market maker m’s negotiations with brokers
over the terms at which retail orders will be processed. In each of these situations, the number of orders
that a market maker would in practice receive is random, determined by how many liquidity-demanding
investors happen to arrive over the relevant interval of time. This is why we model xmj as determining a
random (rather than deterministic) number of orders that market maker m receives from marketplace j. In
fact, the Poisson distribution that we assume would be exactly correct if the market maker were to receive
liquidity-demanding orders at a constant rate over a fixed time interval. By letting market makers choose
liquidity supplies xm, we effectively base our model of liquidity supply on quantity competition rather than
price competition. Empirical evidence, e.g., from Brogaard and Garriott (2019), supports such a view.

Market maker profits. A market maker’s profit has two components: spread revenue and inventory cost.7

Let Qmj and Zmj denote, respectively, market maker m’s realized volume and realized net inventory from
supplying liquidity to marketplace j. For example, 2 buy and 3 sell orders would yield volume Qmj = 2+ 3
and net inventory Zmj = −2+3. Each unit of volume earns her the half-spread sj . We assume the inventory
cost is quadratic, with γ > 0 as a common scaling parameter. Ex ante both Qmj and Zmj are random, with
distributions depending on her liquidity supply xmj . Therefore, her expected profit

E

[
J∑

j=1

Qmjsj −
γ

2

( J∑
j=1

Zmj

)2
]

(1)

is an endogenous function of the liquidity supply choices xm.

Equilibrium definition. An equilibrium consists of liquidity supplies xm for each market maker m and a half
spread sj for each marketplace j, such that (i) each market maker m’s xm maximizes her expected profit (1),
and (ii) market clearing holds for each marketplace j:8∫ M

0

xmjdm = λj(sj), ∀j ∈ {1, . . . , J}. (2)

6 While in reality the market making sector is composed of a handful of large wholesale market makers (Citadel, Virtu,
etc.), we model them as a continuum to simplify the analysis by ensuring price-taking behavior.

7 Market makers’ inventory costs can arise from risk aversion, price impact in portfolio rebalancing, capital pledged to
clearing houses, or a moral hazard problem between market makers and their financiers (Bruche and Kuong, 2021).

8 In formulating this market-clearing condition, we follow convention in assuming an exact law of large numbers over a
continuum of independent random variables. See Duffie et al. (2023) for a rigorous formulation.
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2.2. Equilibrium characterization

We first express a market maker’s expected profit (1) as a function of her liquidity supplies xm. Suppose
she has chosen xmj , meaning that her volume Qmj is Poisson distributed with mean xmj . She therefore
expects spread revenue of E[Qmjsj ] = xmjsj from marketplace j. Her net inventory from marketplace j can
be written

Zmj =

Qmj∑
i=1

(−1)Bimj , (3)

where (Bimj) are i.i.d. Bernoulli draws with success rate 1
2 (1+Dj). Total net inventory across all marketplaces

is
∑J

j=1 Zmj , where, to evaluate her quadratic inventory cost, we need the expectation of its square.

Lemma 1. Amarket makerm’s expected squared inventory is E
[(∑J

j=1 Zmj

)2]
= x⊤

m1+x⊤
m

(
Σ+ µµ⊤)xm,

where 1 is a length-J column vector of ones.

To understand Lemma 1, consider the special case with only one marketplace j and only sell orders (i.e.,
σj = 0 and µj = −1). Because all orders are to sell, a market maker’s realized inventory Zmj equals her
volume Qmj , which is a Poisson random variable with mean xmj . Hence, expected squared inventory is

E
[
Z2
mj

]
= var[Zmj ] + E[Zmj ]

2
= xmj + x2

mj , consistent with Lemma 1. For general values of σj and µj , we

derive in the proof that E
[
Z2
mj

]
= xmj + (σ2

j + µ2
j )x

2
mj . Intuitively, potential for both buying and selling,

on the one hand, allows certain offsetting in the net inventory Zmj , thus lowering the x2
mj term to x2

mjµ
2
j ;

but on the other hand, randomness in the composition of buys versus sells creates additional variation, thus
adding the term x2

mjσ
2
j . With multiple marketplaces, the expectation of the square of total inventory is as

stated in Lemma 1.
Using Lemma 1, therefore, we can write the market maker’s optimization problem as9

max
xm

x⊤
m

(
s− γ

2
1
)
− γ

2
x⊤
m

(
Σ+ µµ⊤)xm. (4)

Because the optimization problem (4) is quadratic, first-order conditions yield the market maker’s optimal
liquidity supplies

xm =
1

γ

(
Σ+ µµ⊤)−1

(
s− γ

2
1
)
. (5)

The equilibrium half spreads s can then be pinned down via the market-clearing condition (2).

Proposition 1 (Equilibrium liquidity supply). There exists a unique equilibrium, where the half

spreads s are the unique solution of M
γ

(
Σ+ µµ⊤)−1(

s− γ
21
)
= (λ1(s1), . . . , λJ(sJ))

⊤
; and where each

market maker m’s liquidity supply xm is given by (5), which moreover satisfies xm ≥ 0.

2.3. Connections to portfolio theory

The objective (4) resembles the optimization problem in standard portfolio theory:

max
w

w⊤(r − rf1)−
a

2
w⊤Σrw,

where, fixing the risk-free rate rf, an investor with risk-aversion coefficient a chooses a weight vector w over
risky assets with expected returns r and variances Σr. Analogously, our market makers choose liquidity-
supply portfolios xm for a single asset.

9 We do not require the liquidity supplies xm to be nonnegative, although they always are in the unique equilibrium
characterized by Proposition 1. For example, xmj < 0 might be interpreted as the market maker demanding liquidity on
marketplace j by crossing the spread.
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The solution to this standard portfolio problem is w∗ = 1
aΣr(r − rf1). Naturally, our expression for

the optimal supply (5) resembles it. Portfolio theory, therefore, also suggests an intuition for equation (5).
In choosing her optimal portfolio, an investor trades off the benefit from the assets’ expected returns w⊤r
against two sources of cost: (i) the opportunity cost of not investing in the risk-free asset w⊤rf1 and (ii)
the portfolio’s return risk a

2w
⊤Σrw. In optimizing her portfolio, the investor maximizes the Sharpe ratio

w⊤(r−rf1)√
w⊤Σrw

then scales according to her risk aversion a. In our setup, a market maker trades off the benefit from

the spread revenues x⊤
ms against the expected inventory cost x⊤

m
γ
21 + γ

2x
⊤
m

(
Σ+ µµ⊤)xm (see Lemma 1).

To obtain her optimal liquidity supply (5), a market maker maximizes a similar ratio
x⊤

m(s− γ
2 1)√

x⊤
m(Σ+µµ⊤)xm

then

scales according to the inventory cost parameter γ.
As another connection, our equilibrium half spreads s are determined via market clearing (as in (2)),

similar to how equilibrium expected returns r are determined in, e.g., CAPM. One key difference is that, in
our model, market makers face spread-elastic liquidity demand (λj(·) is downward-sloping), while in CAPM,
the assets are in inelastic fixed supplies. This is because whereas every agent in CAPM faces a portfolio
problem, in our model, only the liquidity-supplying market makers do (the liquidity-demanding investors do
not).10

3. Endogenous order flow segmentation

We next adapt our general model of liquidity supply to the setting of PFOF, highlighting how the
economic forces that we model can cause order flow segmentation to arise endogenously.

3.1. Setup

To capture PFOF, we model two types of investors: institutional and retail. In particular, retail orders
can be executed either on-exchange or off-exchange (albeit at a spread no worse than that on-exchange).
This corresponds to a version of the model described in Section 2.1 with J = 2 marketplaces whose order
flows are an endogenous mixture of retail and institutional orders.

Investors and their liquidity demand. The two types of liquidity-demanding investors are labeled k ∈ {R, I}.
The measure of type-k orders is λk(s), where for tractability we assume

λk(s) = max{0, (ζ − s)ωk},

where ωk > 0 measures the magnitude of the type-k demand, and ζ > 0 reflects the maximum acceptable
trading cost—demand falls to zero if the half-spread s exceeds ζ. We also assume ζ > γ

2 to guarantee trading
in equilibrium.11

As before, we assume every order from a type-k investor is independently either a one-unit buy or a
one-unit sell, with respective probabilities 1

2 (1+Dk) and
1
2 (1−Dk), where Dk ∈ [−1, 1] captures the average

direction of type-k orders. For simplicity, we let E[DI ] = E[DR] = 0.12 We write Σ◦ = var
[
(DI , DR)

⊤] =(
σ2
I ρσIσR

ρσIσR σ2
R

)
and assume that Σ0 is positive-definite.

10 Another distinction applies to the version of the model that we subsequently consider in Sections 3–4. There, market
makers are allowed to endogenously siphon order flows, which endogenizes the demand λj(·) in each marketplace, as well as the
corresponding directionality characteristics µ and Σ.

11 Indeed, (i) liquidity demand vanishes on all marketplaces j where sj > ζ; (ii) hence, market clearing requires zero liquidity
supply (xmj = 0) for such marketplaces and nonnegative liquidity supply (xmj ≥ 0) elsewhere; (iii) if ζ ≤ γ

2
, then we have

sj ≤ γ
2

for these other marketplaces; (iv) hence, according to (4), any such xm ̸= 0 leads to negative profit, so that market
makers optimally choose xm = 0.

12 Setting E[DI ] = E[DR] = 0 is with little loss of generality: as seen from Section 2.2 and Proposition 1, the mean vector µ
enters the analysis only via the matrix Σ+ µµ⊤, so that its effects can be equivalently attributed to Σ.
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Remark 4. The linear demand can be microfounded, following the discussion on p. 6, by assuming that the
investors’ private value magnitudes are uniformly distributed on [0, ζ]. Setting the same ζ for both k ∈ {R, I}
amounts to assuming that each investor type exhibits the same price elasticity, dλk/λk

ds/s = − s
ζ−s , which is a

natural benchmark case.

Marketplaces and routing. Aside from differences in the parameters (ωR, σR) and (ωI , σI), the other dif-
ference between the two investor types is that R-investors’ orders can be siphoned off-exchange, while I-
investors’ orders must remain on-exchange.13 Formally, we define J = 2 marketplaces, labeled as 1 and 2,
where 1 refers to on-exchange and 2 to off-exchange execution of retail orders. All I-orders are routed to
marketplace 1. For R-orders, an endogenous fraction α ∈ [0, 1] are routed to marketplace 2, and the remain-
ing 1− α to marketplace 1. The measure of liquidity-demanding orders on each of the two marketplaces is
therefore

λ1(s1) = λI(s1) + (1− α)λR(s1) and λ2(s2) = αλR(s2).

Order flow on marketplace 1 is a mixture of I-orders with weight ωI and R-orders with weight (1 − α)ωR.
Order flow on marketplace 2 is purely type-R. Letting the weighting matrix be

F (α) =

(
ωI

ωI+(1−α)ωR

(1−α)ωR

ωI+(1−α)ωR

0 1

)
, (6)

the order flow directionality vector (D1, D2)
⊤
= F (α)(DI , DR)

⊤
is a function of α and therefore endogenous.

We also compute Σ = var
[
(D1, D2)

⊤] = F (α)Σ◦F (α)⊤.

Liquidity supply. Market makers, their liquidity supplies, and their objective functions are modeled precisely
as in Section 2.1.

Equilibrium definition. An equilibrium consists of liquidity supplies (xm1, xm2) for each market maker m,
the fraction α ∈ [0, 1] of R-orders that are siphoned off-exchange, and half spreads s1 and s2, such that (i)
each market maker m’s (xm1, xm2) maximizes her expected profit (1), (ii) market clearing holds for each
marketplace j, which, following (2) can be written∫ M

0

xm1dm = (ζ − s1)
(
ωI + (1− α)ωR

)
and

∫ M

0

xm2dm = (ζ − s2)αωR,

and (iii) the spreads satisfy both of the following conditions:

s1 ≤ s2 if α < 1; (7a)

s1 ≥ s2 if α > 0. (7b)

Conditions (7a) and (7b) represent the fiduciary duty of (unmodeled) retail brokers to their clients. For
example, they together imply that if α ∈ (0, 1), then s1 = s2. The intuition is that α ∈ (0, 1) means R-orders
are routed both off- and on-exchange. This mixing behavior conforms with best-execution obligations only
if both outlets offer identical execution quality, in the sense that s1 = s2. Similarly, if α = 1 (α = 0), so that
all R-orders are routed off-exchange (on-exchange), then s1 ≥ s2 (s1 ≤ s2).

14

Remark 5. In practice, when executing retail orders off-exchange, market makers typically charge a spread
lower than the one prevailing on-exchange. The difference is called price improvement, which endogenously

13 Not modeled are off-exchange venues that cater to I-investors. For example, many dark pools cross institutional buy and
sell orders at the midpoint. Appendix B extends our model by introducing a midpoint dark pool accessible to I-investors. Our
results are robust to this extension.

14 The access rule of Reg NMS (Rule 610) prohibits exchanges from differential treatment of orders based on the identity of
the trader. Our model captures this through (7b): if s1 < s2, then all R-investors would prefer to trade on the exchange; by
the access rule, they must be allowed to do so; we therefore obtain α = 0. In contrast, off-exchange execution is not subject to
the access rule, which is why I-investors trade on-exchange, even if s2 < s1.
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arises in our model whenever s1 − s2 > 0. Furthermore, when a retail order is siphoned off-exchange in
practice, the retail investor’s broker may receive an additional payment, known as payment for order flow,
from the market maker who handles the order. Schwarz et al. (2023) show that this payment is small, ranging
“from $0.001 to $0.03 per share [. . . ] an order of magnitude smaller than [. . . ] price improvement, which
ranges from $0.03 to $0.08.” Nor is it central to the economic mechanism we analyze. We therefore opt to
simplify the model by omitting brokers and ignoring payments they would receive.

3.2. The incentive to siphon retail orders off-exchange

Before characterizing equilibrium, we pause to examine market makers’ incentives to siphon retail orders
off-exchange in our model. To do so, we conjecture an equilibrium in which all R-orders are routed on-
exchange (i.e., α = 0), and we seek conditions under which such a no-siphoning equilibrium exists.

With J = 2 marketplaces, a market maker’s expected profit (1) can in general be written

πm =
(
s1 −

γ

2

)
xm1 +

(
s2 −

γ

2

)
xm2 −

γ

2

(
σ1

2x2
m1 + 2rσ1σ2xm1xm2 + σ2

2x2
m2

)
, (8)

where σ1
2 and σ2

2 are the diagonal elements of Σ and rσ1σ2 is the off-diagonal covariance, with r ∈ [−1, 1] as
the correlation. Note that both σ1 and r are functions of α via the weighting matrix F (α), whereas σ2 = σR

regardless of α (as marketplace 2 contains only R-orders). Below, we write σ1(α) and r(α) to emphasize this
dependence.

Suppose we are in an equilibrium with α = 0. Market clearing therefore requires that xm2 = 0. Because
the assumption ζ > γ

2 rules out a no-trade equilibrium (cf. Footnote 11), we therefore have xm1 > 0. To
sustain the conjectured equilibrium, the profit from a marginal unit of xm2 must be weakly negative:

∂πm

∂xm2

∣∣∣
xm2=0

=
(
s2 −

γ

2

)
− γr(0)σ1(0)σRxm1 ≤ 0; (9)

and the first-order condition with respect to xm1 must hold:

∂πm

∂xm1

∣∣∣
xm2=0

=
(
s1 −

γ

2

)
− γσ1(0)

2xm1 = 0. (10)

Therefore, a no-siphoning equilibrium can obtain only if both (9) and (10) hold. Following (7a), s2 ≥ s1, so
that both can hold only if γr(0)σ1(0)σRxm1 ≥ γσ1(0)

2xm1. Because γ, σ1(0), σR, and xm1 are all strictly

positive, this requires r(0) ≥ σ1(0)
σR

.15

Evaluating r(0) and σ1(0) in terms of the primitive parameters, we find that sign
[
r(0)− σ1(0)

σR

]
matches

the sign of the quantity

∆ :=
(
σ2
RωR + ρσIσRωI

)
−
(
σ2
IωI + ρσIσRωR

)
, (11)

which summarizes the differences between the two investor types that are relevant for siphoning decisions.
To understand this expression, note that the first bracketed term represents the covariance of the market
maker’s existing portfolio with a marginal R-order: σ2

R is the covariance with another R-order, ρσIσR is
the covariance with an I-order, and these are respectively weighted by ωR and ωI . The second term is the
analogue for a marginal I-order. If the difference ∆ is negative, a marginal R-order amplifies inventory risk
by less (or mitigates it by more) than a marginal I-order, so that market makers have incentive to siphon
them.16 In fact, ∆ is the key determinant of the equilibrium:

Proposition 2 (The PFOF equilibrium). The three equilibrium objects—the liquidity supplies
(
xm

)
m∈[0,M ]

,

the fraction α of off-exchange R-orders, and the half spreads s—are determined as follows.

15 This condition becomes less likely to hold if R-orders become more attractive: either by virtue of becoming relatively
less likely to exhibit significant directionality (i.e., small σR relative to σ1(0)) or by better diversifying inventory risk from
on-exchange orders (i.e., small r(0)). When R-orders become so attractive that the condition fails, market makers have an
incentive to siphon them off-exchange, destroying the putative no-siphoning equilibrium.

16 Conversely, if ∆ > 0, market makers would want to siphon I-orders—if they could—leaving only R-orders on the exchange.
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(i) If ∆ < 0, then there is a unique equilibrium in which α = 1.
(ii) If ∆ > 0, then there is a unique equilibrium in which α = 0.
(iii) If ∆ = 0, then there is an equilibrium for any α ∈ [0, 1].
In all cases,

(
xm

)
m∈[0,M ]

and s follow Proposition 1, with λ1(s) = λI(s) + (1 − α)λR(s), λ2(s) = αλR(s),

µ = 0, and Σ = F (α)Σ◦F (α)⊤.

Surprisingly, the equilibrium fraction of off-exchange R-orders is a boundary value α ∈ {0, 1} (except
when ∆ = 0). An intuition is the following. If ∆ < 0, then by previous analysis, each market maker wants
to siphon at least some R-orders off-exchange. Once all market makers do this, however, on-exchange flow
becomes more heavily composed of I-orders, so that each market maker can achieve her targeted mixture of
R- and I-order flow only by siphoning even more R-orders off-exchange. This reinforcing logic repeats itself
until all R-orders have been siphoned off-exchange in equilibrium.17

Depending on parameters, the equilibrium might not feature on-exchange trading. This can happen
because of off-exchange trading: When ∆ < 0, market makers siphon R-orders off-exchange and take on
the resulting inventories. If ρ > 0, this raises the marginal inventory cost of I-orders, potentially to the
point at which it is no longer profitable for market makers to provide liquidity on-exchange. Equilibria
without on-exchange trading are, of course, inconsistent with the current reality. The following proposition
characterizes the parametric conditions that ensure both on- and off-exchange trading in equilibrium. Our
subsequent analysis focuses on the case in which these conditions hold.

Proposition 3 (Equilibrium with positive volume both on- and off-exchange). There is a unique

equilibrium with both
∫M

0
xm1dm > 0 and

∫M

0
xm2dm > 0 if and only if both ∆ < 0 and

M >
(
ρσIσR − σ2

R

)
ωRγ (12)

hold.18

In summary, the two conditions ∆ < 0 and (12) jointly characterize where market makers supply liquidity
in equilibrium. First, the sign of ∆ determines whether they supply liquidity off-exchange by siphoning R-
orders (xm2 > 0). Second, if they do provide liquidity off-exchange, do they still provide liquidity on-exchange
(xm1 > 0)? The necessary and sufficient condition for the latter is (12). One intuitive interpretation of this
condition is that it requires sufficiently many market makers, so that none takes on enough inventory risk
via off-exchange liquidity supply to fully deter on-exchange liquidity supply.

3.3. Discussion of parameters

Reality features positive volume both on- and off-exchange. According to Proposition 3, this realistic
outcome arises in the model when both ∆ < 0 and (12) hold. Thus, a test of the model is to see whether
realistic parameter values are consistent with those conditions. This subsection argues that this is the case.

17 Indeed when ∆ < 0, market makers always feel they have too few R-orders in the putative equilibrium corresponding to
any α < 1. To see this, note that by market clearing, the equilibrium weight of R-orders in market makers’ portfolio of order
flows can in general be written

(1− α)λR(s1) + αλR(s2)

λI(s1) + (1− α)λR(s1) + αλR(s2)
.

For all α ∈ [0, 1), the above remains constant at ωR/(ωI + ωR), because s1 = s2 for α ∈ (0, 1) following (7a) and (7b) and
because s2 does not enter when α = 0. Focusing on the case of α = 0, the in-text analysis showed that if ∆ < 0, this exposure to
R-orders is too low: market makers want to siphon R-orders to increase their exposure. We have just shown that any α ∈ (0, 1)
leads to the same exposure, hence the same incentive to siphon further. As this discussion suggests, one model change that
might lead to an interior equilibrium value for α would be if R- and I-investors exhibited different elasticities of demand (cf.
Remark 4).

18 By Proposition 2, insisting on equilibrium uniqueness merely rules out the non-generic case of ∆ = 0. In this knife-edge

case of ∆ = 0, there is an equilibrium for each α ∈ [0, 1], all of which—with the exception of α = 0—entail
∫M
0 xm1dm > 0 and∫M

0 xm2dm > 0 simultaneously holding.
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The fluctuation of order directionality, σR and σI . Order flow of either type, k ∈ {R, I}, can be viewed as
a mixture of independent and coordinated trades, with the parameter σk capturing the composition of this
mixture. For example, the extreme in which each k-order is independently either to buy or to sell (each with
equal probability) is captured by σk = 0. And the extreme in which all k-orders are children of the same
parent order (which is either to buy or to sell, each with equal probability) is captured by σk = 1. Consistent
with σR < σI , independent trades empirically feature much more heavily in retail order flow. Indeed, the
SEC report quoted in Footnote 1 makes exactly this point. Likewise, Ken Griffin (CEO of Citadel) said in
his 2021 Congressional testimony:

the average retail order is much smaller in totality than the average order that goes onto an
exchange [. . . ] Because it’s a small order, the amount of risk that we need to assume in managing
that order is relatively small, as compared to an order that we have to manage from our on
exchange trading. (Griffin, 2021)

Yet another economic force operates through midpoint dark pools, which allow institutional investors to
first cross their buy and sell orders, so that only the remaining imbalance is subsequently passed along to
the exchange, to be absorbed by market makers. Because order imbalance is necessarily more extremely
directional than the original order flow, these dark pools effectively enlarge σI , and thereby make, all else
equal, σR < σI more likely. Appendix B provides a model extension that demonstrates this mechanism.

More direct evidence is available from Jones et al. (2023), who use comprehensive account-level data
from the Chinese stock market to directly compute signed order imbalance measures for both retail and
institutional investors at the daily level.19 According to Panel C of their Table I, order imbalances are
more tightly clustered around zero for retail than for institutional, consistent with σR < σI . The standard
deviation of imbalances is 0.455 for institutional accounts, and it ranges from 0.171 to 0.352 for retail,
depending on account size.

The correlation of order directionality, ρ. The aforementioned evidence from Jones et al. (2023) also speaks to
the correlation of signed order flow imbalances. According to Panel C of their Table I, retail and institutional
imbalances are negatively correlated, consistent with ρ < 0. The precise correlation ranges from −0.380 to
−0.188, depending on retail account size. This empirically-documented negative correlation can arise for
many reasons.20 For simplicity, we assume it is exogenous, yet we conjecture that the effects we study would
also arise in a model where (negative) correlation arises endogenously. In fact, some other models go as
far as assuming perfect negative correlation between shocks that drive retail and institutional trades, as in
Hendershott et al. (2022). Similar assumptions are made by, e.g., Grossman and Miller (1988); Lo et al.
(2004).

The magnitude of liquidity demand, ωR and ωI . Despite recent growth, retail trading remains small in
comparison to institutional trading volumes. For example, Bloomberg (2022) reports that retail trading
accounts for 17.5% of total trading volume in the second quarter of 2022, while non-bank buy-side institutions
account for 34.8%. This suggests a ratio of ωR/ωI ≈ 1/2.

Summary. Overall, the evidence suggests that σR < σI , ρ < 0, and ωR < ωI . These are sufficient to guaran-
tee ∆ < 0 in our model, implying positive off-exchange volume (i.e., siphoning of R-orders) in equilibrium.

19 It is difficult to perform a similar exercise using standard, nonproprietary datasets—like TAQ and Refinitiv—because they
lack retail or institutional trade identifiers. It remains possible to imperfectly classify these trades, e.g., using the algorithm
proposed by Boehmer et al. (2021). However, inexactness in this algorithm (Schwarz et al., 2023) could bias estimates.

20 For example, Linnainmaa (2010) shows empirically that informed institutions adversely select retail investors, so that
institutional trades and retail trades are, respectively, positively and negatively correlated with contemporaneous returns,
hence negatively correlated with each other. In addition, retail and institutional investors may trade against each other for
non-informational reasons: Kaniel et al. (2008) show that retail traders pursue contrarian trading strategies, whereby they
profit from providing liquidity to institutions’ temporary price impacts; reversely, I-investors may crawl online platforms so as
to monitor and trade against R-investors’ sentiment; finally, R-investors may coordinate via online platforms to trade against
I-investors’ bets, as in how they attempted to short squeeze institutions in GameStop and other “meme stocks” in early 2021.
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Further, ρ < 0 is by itself sufficient for (12) to hold, implying also positive on-exchange volume. As such,
our model yields realistic trading patterns under realistic parametrizations.

4. Predictions

Continuing the application to PFOF, we now explore the model’s predictions. We study three equilibrium
objects: bid-ask spreads in Section 4.1, market maker profitability in Section 4.2, and total welfare in
Section 4.3. We also address policy debates over the off-exchange segmentation of retail orders. A ban on
this practice (henceforth, a “segmentation ban”) would consolidate both R- and I-orders on the exchange
(marketplace 1), yielding an equilibrium characterized by the following corollary.

Corollary 1 (Equilibrium under a segmentation ban). Under an exogenous α = 0, the equilibrium
liquidity supplies

(
xm

)
m∈[0,M ]

and the half spreads s follow Proposition 1, with λ1(s) = λI(s) + λR(s),

λ2(s) = 0, µ = 0, and Σ = F (0)Σ◦F (0)⊤.

For the analysis below, we denote the equilibrium objects under the ban with a subscript b. For example,
under the ban, all trades happen on-exchange and there is only one spread, sb.

A no-siphoning equilibrium (α = 0) can endogenously arise under certain parameter values and, of
course, a segmentation ban has no effect in this case. More interesting are parameter values leading to a
with-siphoning equilibrium (α = 1), meaning that a segmentation ban would bite. As discussed earlier, these
parameter values are also more relevant. For our analysis in this section, we therefore specialize to the set
of relevant parameters, for which equilibrium features positive volume both on- and off-exchange. Using the
characterization of Proposition 3, we therefore maintain the following assumption:
Assumption (Relevant parameter values). ∆ < 0 and condition (12) both hold.

4.1. Bid-ask spreads: trading costs

This subsection studies equilibrium spreads. Without a segmentation ban, we examine s1 for the on-
exchange, s2 for the off-exchange, and s̄ for the volume-weighted average half spread, defined as21

s̄ =
λI(s1)s1 + λR(s2)s2
λI(s1) + λR(s2)

, (13)

as well as price improvement s1 − s2. With a segmentation ban, the spread is sb.

4.1.1. Segmentation ban

We find that R-investors are unambiguously harmed by a segmentation ban, in the sense that it causes
them to pay a larger spread (sb > s2). In contrast, I-investors often benefit from a segmentation ban—
although not always. In particular, a segmentation ban harms not only R-investors but also I-investors if
and only if ρ is sufficiently negative (in a way made precise by Proposition 4 and as illustrated by Figure 1).
Additionally, such a ban unambiguously causes the volume-weighted average spread to increase (sb > s̄).

Proposition 4 (Segmentation ban and spreads). s2 < sb and s̄ < sb. Moreover, s1 < sb if and only if
ρ < −(M + σ2

RωRγ)/(σIσRωI).

Comparison with information-based theories of PFOF. We pause here to compare and contrast Proposition 4
with predictions from information-based theories of PFOF (e.g., Battalio and Holden, 2001). Under the
natural assumption that R-orders are less informed than I-orders, those theories predict that R-investors
would be harmed by a segmentation ban, while I-investors would benefit. Our model predicts the same
for R-investors, but for an entirely different reason: R-investors pay a smaller spread when segmentation is
allowed not because their orders are less informed but rather because their orders generate less inventory

21 The volume weights for s1 and s2 in (13) are λI(s1) and λR(s2) respectively because, under the maintained assumption
that ∆ < 0, without a segmentation ban all R-orders are siphoned off-exchange (i.e., α = 1) in equilibrium, meaning that all
I-investors pay s1 and all R-investors s2.
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Figure 1: Bid-ask spreads: the effect of a segmentation ban. This figure shows how various (half) bid-ask

spreads change when a segmentation ban is imposed. The order flow direction correlation ρ varies on the horizontal

axis. The other parameters are set at M = 3, γ = ζ = 1, ωI = 100, ωR = 50, σI = 0.5, σR = 0.2, and µI = µR = 0.

In particular, s1 > sb if and only if ρ < − 1
2
.

risk for market makers. In contrast to those theories, however, our model predicts that I-investors might
also pay a smaller spread when segmentation is allowed.

Intuition for why s2 < sb. The intuition follows Proposition 2: Given the maintained assumption that ∆ < 0,
R-investors are less costly for market makers to intermediate than I-investors. When segmentation is allowed,
R-investors therefore pay a smaller spread. That is, s2 < s1, implying s2 < s̄. Combined with s̄ < sb (which
we explain next), we therefore have s2 < sb.

Intuition for why s̄ < sb. Let fR denote the fraction of volume due to R-orders. When segmentation is
banned, volume is proportional to demand magnitude, so that fban

R = ωR

ωR+ωI
in equilibrium. When segmenta-

tion is allowed, and given ∆ < 0, market makers siphon R-orders off-exchange, meaning that fno-ban
R > fban

R .
In either case, the volume-weighted average spread s̄ is determined by the intersection of an average liquidity
demand curve and an average liquidity supply curve:

Lemma 2 (Average liquidity demand and supply curves). Investors’ average liquidity demand and
market makers’ average liquidity supply curves are given, respectively, by

s̄(x; fR) = ζ − v(fR)x and s̄(x; fR) =
γ

2
+ c(fR)x,

where x is the aggregate volume, and v(·) and c(·) are the respective curves’ slopes:

v(fR) =
(1− fR)

2

ωI
+

f2
R

ωR
and c(fR) =

γ

M
var
[
(1− fR)DI + fRDR

]
.

The conclusion s̄ < sb follows because demand is steeper and supply is flatter when segmentation is
allowed than when it is banned.

• Demand is at its flattest when both investor types face the same pricing, as under a segmentation
ban. Mathematically, v(fR) is minimized at fban

R = ωR

ωR+ωI
. To understand the intuition, compare the
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following two extremes. On the one hand, a value fR = ωR

ωR+ωI
obtains when both investor types face

the same spread s. In that case, total quantity demanded is λR(s)+λI(s) = (ζ−s)(ωR+ωI), implying

a demand curve with slope v
(

ωR

ωR+ωI

)
= 1

ωR+ωI
. On the other hand, a value fR = 1 obtains when all

I-investors are priced out of the market. In that case, total quantity demanded is entirely determined
by the R-investors: λR(s) = (ζ − s)ωR, implying v(1) = 1

ωR
. Being at its flattest when segmentation

is banned, demand must be steeper when segmentation is allowed.
• Furthermore, supply is flatter when segmentation is allowed, in the sense that the ensuing increase in fR
causes a decrease in c(fR). The intuition is that when segmentation is allowed, market makers siphon
R-orders, precisely because doing so reduces their inventory costs. Formally, c(fno-ban

R ) < c(fban
R )

follows from two facts. First, c(·) is quadratic and convex. Indeed, we can compute c(fR) =
γ
M

[
(1 −

fR)
2σ2

I + 2fR(1 − fR)ρσIσR + f2
Rσ

2
R

]
. Second, fban

R < fno-ban
R ≤ argminfR c(fR). We have already

seen that fban
R < fno-ban

R . To see fno-ban
R ≤ argminfR c(fR), consider a benchmark in which R- and

I-orders could be procured at the same spread. In that benchmark, a market maker would optimally
procure a portfolio in which the fraction of R-orders was argminfR c(fR). But because ∆ < 0, we have
s2 ≤ s1 in the no-ban equilibrium, rendering R-orders (weakly) less attractive to market makers than
they would be in the aforementioned benchmark. As a result, fno-ban

R ≤ argminfR c(fR).

Intuition for why s1 < sb is possible. Recall the maintained assumption ∆ < 0, which, following the discus-
sion after (11), implies that R-orders exert a lower marginal inventory cost on market makers than I-orders.
Under a segmentation ban, both types are pooled together and are priced at the volume-weighted average of
their marginal costs. Once segmentation is allowed, each type is charged a spread equal to its own marginal
cost, creating two effects:

• The first effect can be understood through what would happen if liquidity demand were perfectly
inelastic. In that case, the less costly R-investors would be charged less (s2 < sb), and the more costly
I-investors would be charged more (s1 > sb).

• Crucially, however, liquidity demand is not perfectly inelastic. If R-investors are charged less, then
R-investor volume increases. How this affects the marginal inventory cost of I-orders depends on ρ.
If ρ > 0 (ρ < 0), additional R-investor volume raises (lowers) the marginal cost of I-orders, reinforcing
(counteracting) the first effect.

It follows that s1 < sb if and only if ρ is sufficiently negative. Proposition 4 provides the exact condition.
The economic force discussed above echoes a concern raised by the SEC in its recently-proposed Order Com-
petition Rule (p. 298, SEC, 2022): “a reduction in the volume of individual investor order flow internalized
by wholesalers could increase wholesaler inventory risk, which in turn could cause wholesalers to reduce the
liquidity they supply as exchange market makers.”

Relation to the empirical literature. Proposition 4 speaks to how off-exchange siphoning affects on-exchange
liquidity. Much empirical literature has examined this question. On the one hand, on-exchange liquidity does
not seem to have been harmed by off-exchange siphoning in certain settings (e.g., Battalio, 1997; Battalio
et al., 1997; Garriott and Walton, 2018; Elsas et al., 2022), which is consistent with our inventory-based
theory but inconsistent with the information-based theories mentioned earlier. On the other hand, on-
exchange liquidity does seem to have deteriorated in response to off-exchange siphoning in other settings
(e.g., Degryse et al., 2015; Hatheway et al., 2017; Comerton-Forde et al., 2018; Hu and Murphy, 2022), which
is consistent both with our inventory-based theory and with the information-based ones.

Discussion of Figure 1. Figure 1 illustrates bid-ask spreads as a function of the correlation parameter ρ,
under parameters consistent with the discussion in Section 3.3: we set σR = 0.2 and σI = 0.5 to be consistent
with the estimates of Jones et al. (2023), and we also set ωR/ωI = 1/2. As Proposition 4 states: (i) sb > s2
and sb > s̄ in the figure, regardless of ρ, and (ii) sb > s1 if and only if ρ is sufficiently negative, where for
these parameters, the precise cutoff is ρ = −1/2. The estimates of Jones et al. (2023) indicate correlations
not far from this cutoff, suggesting that s1 < sb is in fact a realistic possibility.

The figure also indicates how spreads vary with ρ. Roughly speaking, there are two effects. First, as
ρ increases, R- and I-orders become less likely to offset. A given order portfolio therefore creates greater
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inventory risk, so market makers require larger spreads to compensate. This effect drives the initial increase
of all spreads seen in Figure 1. Second, as spreads change, investors’ participation decisions may change,
and a market maker’s order portfolio changes as well. For the parametrization of Figure 1, in the limit as
ρ → 1, s1 → ζ, implying that I-investors stop participating altogether, which reduces the marginal cost of
R-orders, driving the subsequent decrease of s2.

4.1.2. The rise of retail trading

Recent years have seen a rapid growth in retail trading activity. In the U.S. equity market, retail trading
volume doubled from about $15 billion per day before 2017 to about $30 billion in 2022 (Mackintosh, 2022).
This trend can be modeled as an increase in the parameter ωR.

Proposition 5 (Rise of retail trading and spreads). As the magnitude of retail demand ωR increases,
• the off-exchange half spread, s2, monotonically increases;
• the on-exchange half spread, s1, monotonically increases (decreases) if ρ > 0 (< 0); and
• price improvement, s1 − s2, monotonically decreases (increases) if ρ < ρ̂ (> ρ̂), where the threshold ρ̂
is a function of other parameters (given in equation (D.5) in the proof) and is strictly positive.

Figure 2 illustrates these effects. The off-exchange spread s2 (the dashed line) rises with ωR. This is
intuitive: the increase in R-investor liquidity demand requires market makers to handle larger volumes, hence
also higher inventory costs.

As can be seen by comparing Panels (a) and (b), the effect of ωR on the on-exchange spread s1 (the solid
line) depends on the order flow correlation ρ. If ρ > 0 (< 0), the increase in R-orders worsens (alleviates)
the market makers’ overall inventory costs through its correlation with the I-orders. In other words, as the
“retail army” rises, it exerts a negative (positive) externality on other investors who on average trade in the
same (opposite) direction.

The same force underlies how ωR affects the price improvement s1 − s2. Clearly, when ρ < 0, s1 − s2
decreases with ωR, because s1 decreases and s2 increases. If ρ > 0 instead, then the effect depends on the
relative speed of the increases in s1 and in s2. As Proposition 5 states, s1 is faster only if ρ is sufficiently
positive. Intuitively, this is exactly the case where, as ωR increases, R-investors’ negative externality on
I-investors is particularly strong, thus pushing up s1 very quickly. Figure 2(c) depicts such an example.

Our predictions regarding how retail trading activity affects spreads and price improvement can be
empirically tested. In particular, Proposition 5 predicts that ωR affects the on-exchange spread s1, and
moreover that the direction of the effect depends on the sign of the order flow correlation ρ. These are novel
predictions. To compare, under the information-based theories of PFOF, as long as all (uninformed) R-orders
are siphoned off-exchange, the adverse-selection risk of the on-exchange I-orders is unaffected by ωR, and so
is the on-exchange spread s1.

4.1.3. The size of the market making sector

Another focal point in debates over PFOF is the concentration of the market making sector (e.g., Hu and
Murphy, 2022). Would entry of additional market makers drive down investors’ trading costs? Our model
generates predictions along this line via comparative statics with respect to the size of the market-making
sector, M . Perhaps surprisingly, the implications of a change in M are nuanced.

Figure 3 plots the various spreads against M . In the limit of M → ∞, in both panels, the spreads
converge to γ

2 , which is 0.5 in the numerical illustration. This is because, in the limit, an infinite measure of
market makers compete for a finite measure of orders, and, therefore, each market maker expects to receive
at most one order. Hence, the limiting spread equals the marginal cost of one unit of inventory, which is γ

2 .
However, the convergence to γ

2 is not always monotone. In particular, if the order flow correlation ρ
is sufficiently negative, as in Panel (b), the off-exchange spread s2 is U-shaped. Accordingly, the volume-
weighted average spread s̄ is also non-monotone. This implies that a larger market making sector might
actually raise investors’ trading costs.

Proposition 6 (Size of the market making sector and spreads). As the size of the market making
sector M increases,

• the on-exchange half spread, s1, monotonically decreases;
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(a) Negative correlation (ρ = −0.5)
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(b) Positive correlation (ρ = 0.5)
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(c) An example with increasing price improvement (ρ = 0.95)
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Figure 2: Bid-ask spreads: the rise of retail trading. This figure shows how various (half) bid-ask spreads

change as retail trading demand increases. Panels (a) and (b) illustrate the cases of negative and positive order flow

correlations (ρ = −0.5 and ρ = 0.5, respectively) between retail and institutional order flows. In both Panels (a)

and (b), price improvement s1 − s2 is decreasing in ωR; Panel (c) illustrates an example with increasing price

improvement (with ρ = 0.95). The magnitude of retail demand ωR varies on the horizontal axes. The other

parameters are set at M = 3, γ = ζ = 1, ωI = 100, σI = 0.5, σR = 0.2, and µI = µR = 0. The vertical dotted line

in (c) indicates the upper bound on ωR implied by (12): when ωR exceeds that bound, no trading occurs on-exchange.
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(a) Moderate correlation (ρ = 0)
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(b) Negative correlation (ρ = −0.95)
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Figure 3: Bid-ask spreads: the size of the market making sector. This figure shows how various (half)

bid-ask spreads change as the market making sector grows. Panels (a) and (b) illustrate the cases of moderate and

negative order flow correlations, ρ = 0 and ρ = −0.95, respectively. The size of the market making sector M varies

from 0.1 to 1,000 on the horizontal axes. The other parameters are set at γ = ζ = 1, ωI = 100, ωR = 50, σI = 0.5,

σR = 0.2, and µI = µR = 0.

• the off-exchange half spread, s2, initially decreases but eventually increases (i.e., is U-shaped in M) if
ρ < −σRωR

σIωI
, and it monotonically decreases otherwise.

To see how this happens, note that the off-exchange spread s2 may, in fact, drop below γ
2 under the

parameterization of Figure 3(b). Were it not for I-orders, market makers would lose money when providing
liquidity to R-investors at such a spread, following (4). Why are they willing to provide liquidity to R-orders
at such a small spread? This is because the acquired R-orders aid in hedging I-orders, thanks to the negative
order flow correlation ρ. In other words, the inventory cost savings from hedging I-orders subsidizes losses in
providing liquidity to R-orders. Mapping to the real world, this “subsidy” effect helps explain why market
makers are willing to provide significant price improvements to their purchased retail orders (cf. Remark 5).

The U-shape of s2 is riven by two countervailing effects of M . First is an intuitive “supply effect:”
As M increases, the total liquidity supply curve Mxm2(s) to R-investors increases, and the market makers
effectively walk down the decreasing demand curve given by λR(s2). Second, as explained in the previous
paragraph, s2 may decrease below γ

2 when ρ is sufficiently negative. In that case, s2 must be eventually
increasing in M , because, as we have previously observed, s2 converges to γ

2 (the marginal cost of the first
unit of inventory) as M → ∞.

4.2. Market maker profitability

We now turn to market maker profitability, denoted π with segmentation and πb under the ban. An
insight from the model is that market makers might face a “prisoner’s dilemma” in which each unilaterally
wants to siphon R-orders off-exchange and yet, collectively they would be better off if they all refrained from
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Figure 4: Market maker profits. This figure shows how the size of the market making sector M affects a market

maker’s expected profit π with versus without a segmentation ban. The other parameters are set at γ = ζ = 1,

ωI = 100, ωR = 50, σI = 0.5, σR = 0.2, ρ = −0.3, and µI = µR = 0.

doing so. In such cases, a segmentation ban actually benefits market makers. Such a prisoner’s dilemma can
be seen in Figure 4 where the solid line falls below the dashed line—with sufficiently many market makers.

Proposition 7 (Market maker profits). Market maker profits are higher under the segmentation ban,
i.e., π > πb, if and only if M < M̂ , where M̂ denotes the unique strictly positive root of a cubic polynomial
given by equation (D.6) in the proof.

How does the prisoner’s dilemma arise in this context? As we have seen in Section 3.2, under the
maintained assumption that ∆ < 0, each market maker individually benefits from siphoning, as it provides
flexibility for tailoring exposure to R- and I-order flows. However, when all market makers collectively
siphon, that changes the order flow composition (i.e., the F (α) matrix) as well as the liquidity demands λ1(·)
and λ2(·). Equilibrium spreads then also change—potentially in a way that harms market makers. Indeed,
Proposition 4 has established that the volume-weighted average spread is lower when segmentation is allowed
(i.e., s̄ < sb).

A prisoner’s dilemma emerges when the negative pecuniary externality (lowered spread revenues) out-
weighs the individual benefit of segmentation (flexibility for tailoring order flow exposures). Externalities
often loom large when more parties are involved, so that as indicated by the proposition, the prisoner’s
dilemma arises when M is sufficiently large.

A puzzle is why some market makers (e.g., Citadel as quoted in Footnote 3) have been quite open to a
potential segmentation ban—after all, such a ban would undermine a core aspect of their current business
model. Our analysis highlights a novel explanation for this puzzle: a segmentation ban might actually benefit
market makers by resolving a prisoner’s dilemma among them.

Comparison with information-based theories of PFOF. Inventory costs are central to this prisoner’s dilemma.
To see this, compare our model to Easley et al. (1996) and other existing models of PFOF, which do not
feature inventory costs (but asymmetric information instead). In these models, market makers earn zero
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profits—both in the equilibrium with segmentation and in the equilibrium segmentation is banned—so that
this type of prisoner’s dilemma cannot arise.

4.3. Welfare

Finally, we turn to welfare. We first derive a general expression for total welfare—the sum of the investors’
and the market makers’ surplus. To do so, note that each individual market maker expects to receive Poisson-
distributed numbers of R- and I-orders. Define xI and xR as the respective expectations of these Poisson
random variables. Similarly, define sI and sR as the respective spreads charged to R- and I-orders.

Now we consider investor surplus. Under the maintained assumption of this section (p. 13), sk ≤ ζ
for k ∈ {I,R} holds in equilibrium both with and without the segmentation ban. Then the k-investors’
inverse demand curve is s(q) = ζ − q

ωk
and their surplus can be computed as∫ Mxk

0

(
ζ − q

ωk
− sk

)
dq = (Mxk)ζ −

(Mxk)
2

2ωk
− (Mxk)sk.

An individual market maker’s surplus is given by

xIsI + xRsR − γ

2
(xI + xR)−

γ

2
(x2

Iσ
2
I + 2ρσIσRxIxR + x2

Rσ
2
R).

Summing the above, noting that there is a measure of M market makers in total, we obtain the welfare
expression:

w(xI , xR) =
∑

k∈{I,R}

[
(Mxk)

(
ζ − γ

2

)
− (Mxk)

2

2ωk

]
− Mγ

2

(
x2
Iσ

2
I + 2ρσIσRxIxR + x2

Rσ
2
R

)
. (14)

By substituting the corresponding equilibrium supplies xk, this welfare expression applies generally to any
equilibrium. Let w and wb respectively denote equilibrium welfare with segmentation and under the ban.
In the model, a segmentation ban can only reduce welfare (i.e., wb < w). This follows from a stronger
result—that the equilibrium without a segmentation ban in fact leads to the welfare-maximizing (xI , xR).
Figure 5 illustrates.

Proposition 8 (Segmentation ban and welfare). Absent a segmentation ban, the equilibrium outcome
maximizes total welfare, hence, w > wb.

That the equilibrium without a segmentation ban leads to the welfare-maximizing outcome essentially
follows from the First Welfare Theorem. For example, our model features competitive pricing, no externalities
(aside from pecuniary ones), and separate “prices” (spreads s1 and s2) for each and every different “good”
(liquidity to R- and I-orders). With a segmentation ban in place, the First Welfare Theorem no longer
applies, for we then have only a single “price” (sb) for the two “goods.” The reason for strict (rather than
weak) inequality in Proposition 8 is the maintained assumption ∆ < 0, which implies that the segmentation
ban bites.

Our result adds to recent policy discussions about PFOF. Both in the U.S. and in Europe, financial market
regulators have expressed concerns regarding PFOF as well as intentions to ban it.22 Their arguments largely
refer to negative effects of PFOF that are not captured by our model. For example, some have argued that
the practice poses conflicts of interest, as a broker would “choose the [market maker] offering the highest
payment, rather than the best possible outcome for its clients” (ESMA, 2021). The SEC chair, Gary Gensler,
also warns that via PFOF, “[market makers] get the data, they get the first look, they get to match off buyers
and sellers out of that order flow” (Barron’s, 2021). Our welfare result, as stated in Proposition 8 above,

22 Following the discussion in Footnote 2, what precisely would be banned often varies: (i) some have discussed banning
the practice whereby retail orders are routed directly to market makers and executed off-exchange—what we have called a
“segmentation ban,” while (ii) others have discussed banning only the accompanying payments that are often transferred from
market makers to retail brokers. Our analysis speaks only to the implications of (i).

20



(a) Varying type-R demand, ωR
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(b) Varying order flow correlation, ρ
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Figure 5: Welfare. This figure shows how total welfare is affected by the magnitude of retail liquidity demand ωR

in Panel (a) and the order flow correlation ρ in Panel (b). For Panel (a), ρ = −0.3; for Panel (b), ωR = 50. The

other parameters are set at M = 3, γ = ζ = 1, ωI = 100, σI = 0.5, σR = 0.2, and µI = µR = 0.

cuts in the opposite direction. We contribute to these discussions by highlighting the benefit of order flow
segmentation, in a stylized setting featuring market makers’ inventory concerns.

Comparison with information-based theories of PFOF. The first part of Proposition 8 says that, without
a segmentation ban, the equilibrium outcome maximizes welfare. No analogous result typically holds in
information-based theories of PFOF, for the reason that adverse selection generally invalidates the First
Welfare Theorem. The second part of Proposition 8 says that a segmentation ban would reduce welfare.
No analogous welfare comparison is made in many information-based models of PFOF (e.g., Easley et al.,
1996; Battalio and Holden, 2001), for the reason that uninformed investors are assumed to be price-inelastic
in those models, so that a segmentation ban has no effect on total welfare. Incorporating an elasticity into
those models could, however, permit an analogous result in certain cases.

5. Conclusion

This paper studies order flow segmentation from the novel perspective of market makers’ inventory
management. In isolation, a given source of orders is riskier for market makers to intermediate if it is more
likely to exhibit significant directionality. Yet, market makers typically intermediate order flow from several
sources, whose directionalities are potentially correlated. These considerations incentivize market makers to
form portfolios of liquidity supply to different order flows, so as to optimally balance spread revenues against
overall inventory costs. While the portfolio perspective on inventory management across assets has been
previously examined in the literature (Stoll, 1978; Ho and Stoll, 1983), our portfolio perspective on inventory
management across order flows of the same asset is new.

In a setting tailored to PFOF, we show that siphoning specific types of orders off-exchange may be a
part of portfolio-based inventory management by market makers. That is, order flow segmentation can
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endogenously emerge out of inventory considerations. Our inventory perspective on PFOF moreover makes
novel predictions about consequences of regulations that ban order flow segmentation.

As we have pointed out, there are a variety of empirical facts, which our inventory-based theory can
explain, but which an information-based theory of PFOF would struggle to explain on its own. See, for
example, our discussion of the empirical literature on how off-exchange siphoning affects on-exchange liquidity
(on p. 15). It follows that information cannot constitute the entire explanation for why retail orders have been
siphoned off-exchange—considerations of inventory, like those we model, play a role also. A more challenging
question, which could be addressed in future work, concerns the relative importance of information versus
inventory in driving this siphoning. One way to address this question would be by assembling and estimating
a structural model that is rich enough to encompass both frictions.
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Appendix A. Notation

Notation used in Section 2
Exogenous parameters
J number of marketplaces
λj(·) measure of liquidity-demanding orders on marketplace j
Dj (random) directionality of liquidity-demanding orders on marketplace j

Endogenized
in Section 3

µ E[(D1, D2, . . . , DJ)
⊤]

Σ var[(D1, D2, . . . , DJ)
⊤]

M measure of market makers
γ parametrization of market maker inventory costs

Endogenous variables
sj half bid-ask spread of marketplace j
xmj Poisson intensity of liquidity supply for market maker m on marketplace j
Qmj (random) volume of market maker m on marketplace j
Zmj (random) net inventory of market maker m on marketplace j
πm expected profit of market maker m

Additional notation used in Sections 3–4
Exogenous parameters
λk(·) measure of type-k liquidity-demanding orders
ζ maximum acceptable half spread
ωk magnitude of type-k liquidity demand
Dk (random) directionality of type-k liquidity demand
Σ◦ var

[
(DI , DR)

⊤]
σk sd(Dk)
ρ corr(DI , DR)
∆

(
σ2
RωR + ρσIσRωI

)
−
(
σ2
IωI + ρσIσRωR

)
Endogenous variables
α fraction of R-orders routed off-exchange (i.e., to marketplace 2)
F (α) order flow weighting matrix
s̄ volume-weighted average half spread
π market maker profitability
w total welfare
b subscript to indicate that segmentation is banned, as in sb, πb, and wb

Additional notation used in Appendix B
Exogenous parameters
D◦

I (random) I-directionality, before crossing in the midpoint dark pool

Additional notation used in Appendix C
Exogenous parameters
t time period (t ∈ {1, 2}); superscripted on other variables as “(t)”
ϕk autocorrelation of type-k order flow

Endogenous variables

π
(t)
m a market maker m’s expected profit, before period t trading

z
(t)
m a market maker m’s inventory after period t trading
z̄(t) market makers’ average inventory after period t trading

I(1)
m {z(1)m , D

(1)
I , z̄(1)}

∆(2)
(
ϕID

(1)
I Mz̄(1)

)
/
(
ζ − γ

2

)
− σ2

IωI

Appendix B. Extension: adding a midpoint dark pool

In Section 3, we assume that I-investors can trade on-exchange only. Yet, in reality, institutional investors
do occasionally trade off-exchange. Nevertheless, the off-exchange venues on which institutional investors
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tend to trade differ in crucial ways from off-exchange execution of retail orders, which we have modeled.
For example, institutional investors often trade in midpoint dark pools. In these venues, the spread is
not determined by market clearing (as it is for off-exchange retail execution); rather the spread is zero by
construction. Accordingly, these markets may fail to clear, in the sense that an order routed to a midpoint
dark pool might fail to execute, if it cannot be crossed against a corresponding order in the other direction.

We study in this appendix a model extension that additionally features a midpoint dark pool, in which
I-investors can first cross their liquidity demand. Our formulation of this dark pool is standard, following, for
example, Hendershott and Mendelson (2000) and Zhu (2014).23 The extension also suggests an additional
microfoundation for why it is likely that σR < σI , complementing the empirical evidence discussed in
Section 3.3.

I-investor characteristics. We follow the discussion on microfoundation in Section 2.1 to model I-orders:
There is a continuum of measure κI of I-investors, each of whom wants to trade one unit of the asset. Each
of them has an i.i.d. private value for the asset: it is positive with probability 1

2 (1 + D◦
I ) (and negative

otherwise), and its magnitude is distributed according to the c.d.f. FI(·).
Note that we use D◦

I to denote the “original” directionality of I-investors’ trading needs. It is randomly
distributed on [−1, 1], where we assume that D◦

I ̸= 0 almost surely and that the distribution is symmetric
around 0. As in the main text, we use DI to denote the directionality of the I-flow that enters the exchange.
Below we shall see how D◦

I endogenously affects—hence also differs from—DI .

Trading. In aggregate, a fraction 1
2 (1 +D◦

I ) of these I-investors want to buy and the rest 1
2 (1 −D◦

I ) want
to sell. Upon arrival, an I-investor seeks liquidity according to the following pecking order:

• First, she sends an order, in the direction of her private value, to the midpoint dark pool, on which
offsetting orders are randomly matched. If her order is on the short side, it is always matched; if it is

on the long side, it is matched only with probability
1−|D◦

I |
1+|D◦

I |
.24 Once matched, the order trades at the

“midpoint,” i.e., at zero spread. Midpoint dark pool volume is then publicly observed.
• Second, only if unmatched in the midpoint dark pool, she sends an IOC order with a limit price
reflecting her private value to the exchange, where market makers provide liquidity according to the
setup in Section 2.1.

Compared to Section 2.1, the key difference is the added possibility of crossing in the midpoint dark
pool. In particular, we have assumed that I-investors always first attempt crossing at the midpoint dark
pool before turning to the exchange. Although we take this pecking order as exogenous, it would in fact
arise endogenously: if an I-investor succeeds in her attempt to trade at the dark pool, then she will have
traded at a spread of zero, leaving her better off than if she had instead traded at a positive spread on the
exchange; and if she fails in her attempt to trade at the dark pool, then she is no worse off for having tried.

Midpoint dark pool volume is therefore

min
{1
2
(1 +D◦

I )κI ,
1

2
(1−D◦

I )κI

}
=

1

2

(
1−

∣∣D◦
I

∣∣)κI ,

and, therefore, IOC orders sent by unmatched I-investors to the exchange have measure∣∣∣1
2
(1 +D◦

I )κI −
1

2
(1−D◦

I )κI

∣∣∣ = ∣∣D◦
I

∣∣κI =: ωI .

Further, these on-exchange IOC orders will all have the same sign. Formally,

DI = sign
[1
2
(1 +D◦

I )−
1

2
(1−D◦

I )
]
= sign

[
D◦

I

]
.

23 There are many different forms of dark pools, as detailed in Menkveld et al. (2017). In this extension, we consider a
midpoint dark pool because it is the most common form of dark trading in practice. For example, Nimalendran and Ray (2014)
document that about 57% dark transactions are within 0.01% of the price around the midpoint.

24 An I-buyer is on the short side (long side) if D◦
I < 0 (> 0). Vice versa, an I-seller is on the short side (long side) if D◦

I > 0
(< 0).
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That is, the on-exchange I-order directionality DI has a two-point distribution, with P[DI = 1] = P[D◦
I >

0] = 1
2 and P[DI = −1] = P[D◦

I < 0] = 1
2 (recall that D◦

I is assumed to be symmetrically distributed
around 0). The analysis in Sections 3.1 and 3.2 can then be carried out with the above ωI and DI .

How the midpoint dark pool exacerbates the directionality of I-orders. As seen above, because I-investors
naturally first turn to the cheaper midpoint dark pool to cross their orders, the residual on-exchange orders
become more extreme, with |DI | = 1. (Instead, in reality retail orders typically do not go through midpoint
dark pools.) We argue this is one realistic mechanism through which I-orders are more likely to be directional
than R-orders, i.e., why σR < σI . Indeed, σ2

I = var[DI ] = 1 following the above analysis, while by
definition σ2

R ≤ 1.

Appendix C. Extension: dynamics

In the model, market makers’ liquidity-supply decisions can be interpreted as their limit orders, their
ex-ante allocation of groundwork, or their negotiations with brokers (see Remark 3). In Sections 2 and 3, we
assume that these decisions are made once, before trading starts. In this section, we relax this assumption
and examine how market makers supply liquidity dynamically.

In Appendix C.1, we describe the model setup. To keep the analysis tractable and to highlight the
main insights, we also introduce a few simplifying assumptions. We then characterize the equilibrium in
Appendix C.2, showing that market makers’ incentive to siphon R-orders remains intact. In fact, this
dynamic extension highlights a novel effect that further incentivizes siphoning. This new mechanism arises
from two unique features of the dynamic extension: (1) market makers inherit inventories accumulated in
previous periods, and (2) these inventories can be correlated with future orders because of autocorrelation
in order flows.

Appendix C.1. Setup

Timing. There are two trading periods t ∈ {1, 2}. As in Section 3, there are two marketplaces j ∈ {1, 2},
where 1 denotes on-exchange and 2 off-exchange trading. In each period t, each market maker m ∈ [0,M ]

chooses her liquidity supply for the two marketplaces x
(t)
m =

(
x
(t)
m1, x

(t)
m2

)⊤
, where the superscript “(t)”

indicates the period. The period-t half spreads for these two marketplaces are denoted s(t) =
(
s
(t)
1 , s

(t)
2

)⊤
and will be determined endogenously in equilibrium. A market maker’s profit is her spread revenue (across
both marketplaces and both time periods) minus γ

2 times the square of her terminal inventory.

Liquidity demand. As in Section 3, there are two types of investors, k ∈ {R, I}. For simplicity, their

liquidity demands are assumed to be time-invariant, i.e., λ
(t)
k (s) = λk(s) = max{0, (ζ − s)ωk}, for both

t ∈ {1, 2}. Whereas we permitted an arbitrary joint distribution for directionalities in previous sections, we
impose additional structure here so as to introduce autocorrelation in a tractable way. Formally, we model
directionalities as follows:

D
(1)
I = (−1)Y

(1)
I σI , D

(2)
I = XID

(1)
I + (1−XI)(−1)Y

(2)
I σI , and D

(1)
R = D

(2)
R = 0, (C.1)

where
{
Y

(1)
I , Y

(2)
I , XI

}
are independent Bernoulli draws with respective success rates

{
1
2 ,

1
2 , ϕI

}
with ϕI ∈

[0, 1) and σI ∈ (0, 1]. In words, for each period t, I-orders will realize a directionality D
(t)
I of either ±σI , yet

are unconditionally balanced, with E
[
D

(t)
I

]
= 0. The period-2 directionalityD

(2)
I remains equal to the period-

1 directionality D
(1)
I with probability ϕI and is an i.i.d. new draw with probability 1 − ϕI . In contrast, we

assume that R-orders lack directionality altogether, which lends tractability while simultaneously encoding
the realistic feature that R-orders are less directional than I-orders (as discussed in Section 3.3).25

25 Our analysis can be generalized to the case where R-order directionalities take the same functional form as for I-orders:

D
(1)
R = (−1)Y

(1)
R σR, and D

(2)
R = XRD

(1)
I + (1 − XR)(−1)Y

(2)
R σR, where

{
Y

(1)
R , Y

(2)
R , XR

}
are independent Bernoulli draws

25



Siphoning. In each period t ∈ {1, 2}, a fraction α(t) ∈ [0, 1] of the R-orders is endogenously siphoned off-

exchange, so that the marketplace-level directionalities are D(t) = F
(
α(t)

)(
D

(t)
I , D

(t)
R

)⊤
, where the weighting

matrix F (·) remains as in (6). As in Section 3, brokers honor the best-execution requirement, so that

s
(t)
1 ≤(≥)s

(t)
2 if α(t) < 1(> 0); see (7a)–(7b) and Remark 5.

Trading outcomes from t = 1. After the t = 1 trading, a market maker m observes I(1)
m =

{
z
(1)
m , D

(1)
I , z̄(1)

}
,

where z
(1)
m is the market maker’s own inventory at that time, and z̄(1) := 1

M

∫M

0
z
(1)
m dm is the average

inventory across all market makers. Naturally, the market maker knows her own z
(1)
m . She can further infer

D
(1)
I and z̄(1), for example, from a public data feed.26

Equilibrium definition. Analogous to Section 3.1, an equilibrium consists of, for both t ∈ {1, 2}, liquidity
supplies x

(t)
m for each market maker m, siphoning fractions α(t), and half spreads s(t). In particular, for t = 2,

a market makerm’s supply x
(2)
m can depend on her own information I(1)

m , while the market-wide variables, α(2)

and s(2) can depend on ∪m∈[0,M ]I
(1)
m . The equilibrium conditions determining these endogenous variables

are: (i) each market maker m chooses her liquidity-supply strategy
{
x
(1)
m ,x

(2)
m

}
to maximize her expected

profit—not only in the entire game but also in each t = 2 subgame (as in the spirit of subgame perfection);
(ii) market clearing holds for each marketplace j (in every subgame), and (iii) the best-execution requirement
is satisfied (in every subgame).

Comparison with existing literature. A key feature of our analysis is that we consider an environment with
two marketplaces, so as to highlight endogenous order flow segmentation—the off-exchange siphoning of
retail orders. In contrast, existing inventory-based models of dynamic liquidity supply typically consider
only a single venue; see, e.g., Amihud and Mendelson (1980), Ho and Stoll (1981, 1983), and Hendershott
and Menkveld (2014).27

Different from the above literature, we maintain the standing assumption that each marketplace’s mid-
point is fixed at the asset’s fair value throughout the two periods (so that only the spreads s(t) remain to be
determined in equilibrium). Hendershott and Mendelson (2000) make a similar assumption. Nevertheless,
we acknowledge that this assumption is a substantive one, as market makers would have incentives to skew
their quotes against their inventories. For example, if a market maker becomes long, then she would set the
midquote below the fair value, so as to encourage buyers and discourage sellers. Such “price pressure” is a
key insight from the above literature.

By fixing the midpoint, we effectively ignore how market makers might use price pressures to manage
their inventories over time. In return, we obtain the tractability necessary to demonstrate the robustness of
our main result—that even in a dynamic framework, market makers’ incentive to segment orders persists.
In other words, our analysis highlights that order flow segmentation can serve as a further tool—in addition
to price pressure—with which market makers can manage their inventories. We leave it as an open question
for future research how these two tools might interact with each other.

with respective success rates
{

1
2
, 1
2
, ϕR

}
with ϕR ∈ [0, 1) and σR ∈ [0, 1]. In particular, the same key result (that retail orders

are all siphoned off-exchange) will be obtained for sufficiently small σR > 0.
26 For example, such a data feed may contain the on-exchange half spread s

(1)
1 , trading volume V

(1)
1 := λI

(
s
(1)
1

)
+

(
1 −

α(1)
)
λR

(
s
(1)
1

)
, and order imbalance I

(1)
1 := λI

(
s
(1)
1

)
D

(1)
I +

(
1 − α(1)

)
λR

(
s
(1)
1

)
D

(1)
R = λI

(
s
(1)
1

)
D

(1)
I (where the last equality

holds because D
(1)
R = 0). Each market maker can infer D

(1)
I by solving those two equations for the two unknowns D

(1)
I and

α(1). The average inventory also follows z̄(1) = − 1
M

I
(1)
1 (note that the off-exchange imbalance I

(2)
2 := α(1)λR

(
s
(1)
2

)
D

(1)
R is zero

and hence does not affect z̄(1)).
27 In addition to considerations related to inventory management, the literature has also highlighted several other dimensions

of strategic behavior in dynamic liquidity supply. For example, Glosten and Milgrom (1985) and Kyle (1985) analyze how
competitive market makers dynamically supply liquidity in view of information asymmetry. Bernhardt et al. (2004) show that
dealers provide better liquidity to frequent customers to secure future business. Desgranges and Foucault (2005) show that
repeated trading relationships can shield a dealer from being adversely selected by a possibly-informed investor. Barbon et al.
(2019) find evidence consistent with brokers leaking information about some of their clients’ fire-selling orders to other clients.
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Appendix C.2. Equilibrium

The equilibrium is solved backwards: We first derive the t = 2 equilibrium objects for any given t = 1
trading outcomes. This gives market makers’ continuation values, with which we then solve for the t = 1
equilibrium objects.

Appendix C.2.1. Period 2

The analysis for period 2 is similar to that for the single-period model, with two key differences. First,

given her observation I(1)
m from t = 1, each market maker m possesses information about the t = 2 direc-

tionality of I-orders, D
(2)
I . In particular, all market makers observe the realized t = 1 directionality D

(1)
I ,

which following (C.1) is a sufficient statistic. For notational simplicity, we write E1[·] = E
[
·
∣∣D(1)

I

]
and

var1[·] = var
[
·
∣∣D(1)

I

]
. Therefore, by Bayes’ rule, every market maker obtains the same posterior moments:

E1

[
D

(2)
I

]
= ϕID

(1)
I , var1

[
D

(2)
I

]
= (1 − ϕ2

I)σ
2
I , and we of course also have E1

[
D

(2)
R

]
= 0 and var1

[
D

(2)
R

]
= 0.

We write the posterior mean and variance of D(2) = F
(
α(2)

)
·
(
D

(2)
I , D

(2)
R

)⊤
as µ(2|1) and Σ(2|1), respectively,

and derive their expressions in the proof of Lemma 3.
Second, in the single-period model, all market makers begin with zero inventory, whereas now in t = 2,

each market maker m inherits from her trading at t = 1 the inventory z
(1)
m . We show in the proof of Lemma 3

that her objective now becomes:

π(2)
m

(
x(2)
m ; z(1)m , D

(1)
I

)
= x(2)

m

⊤(
s(2) − γ

2
1
)

− γ

2

[
x(2)
m

⊤(
Σ(2|1) + µ(2|1)µ(2|1)⊤

)
x(2)
m − 2x(2)

m

⊤
µ(2|1)z(1)m +

(
z(1)m

)2]
, (C.2)

where she takes as given the half spreads s(2) and the siphoning fraction α(2) (which determines Σ(2|1) and
µ(2|1)). Compared with the objective (4) in the single-period model, the last two terms in the squared-

brackets are new. They arise from the market maker’s existing inventory z
(1)
m : The expected inventory cost

created by that existing inventory itself is proportional to
(
z
(1)
m

)2
, and that created by its covariance with

her t = 2 trading is proportional to −x
(2)
m

⊤
µ(2|1)z

(1)
m .

We show in the proof of Lemma 3 that the objective (C.2) is strictly concave in x
(2)
m1 but linear in x

(2)
m2.

Therefore, the first-order condition determines the optimal x
(2)
m1 (as a function of the on-exchange half

spread s
(2)
1 ) and the off-exchange half spread s

(2)
2 . Market clearing then determines the on-exchange half

spread s
(2)
1 and the aggregate off-exchange liquidity supply. The equilibrium siphoning fraction α(2) is

determined by the best-execution requirement. The following lemma summarizes the results:

Lemma 3 (Period 2). Given period-1 outcomes D
(1)
I and z̄(1), the period-2 continuation game always has

an equilibrium. All equilibria are characterized as follows. Define

∆(2) :=
ϕID

(1)
I Mz̄(1)

ζ − γ
2

− σ2
IωI . (C.3)

(i) If ∆(2) < 0, then α(2) = 1.
(ii) If ∆(2) > 0, then α(2) = 0.
(iii) If ∆(2) = 0, then α(2) can take any value in [0,1].

In all cases, the equilibrium half spreads s
(2)
1 and s

(2)
2 are defined by equations (D.9)–(D.10); equilibrium

on-exchange liquidity supply x
(2)
m1 is given by (D.11); and equilibrium off-exchange aggregate liquidity sup-

ply
∫M

0
x
(2)
m2dm is given by (D.12) (but may be allocated arbitrarily among the individual market makers).

Furthermore, when the market clears at t = 1 (as it would in equilibrium of the full game), we have α(2) = 1
(i.e., all R-orders are siphoned off-exchange in t = 2).

According to the last part of the lemma, in (the full game) equilibrium, all R-orders are siphoned off-
exchange in t = 2. Two effects drive this equilibrium feature.
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• First, suppose (contrary to the equilibrium) that all market makers were to enter period 2 without
any inventory. This would imply that z̄(1) = 0, leading to ∆(2) = −ωIσ

2
I < 0 by equation (C.3).

Thus, even absent the inventories inherited from t = 1, R-orders would be siphoned off-exchange. The
intuition is that R-orders, being balanced, would be cheaper than I-orders, being imbalanced, in terms
of market makers’ inventory costs. In fact, this first effect is implied by the analysis in Section 3, where
R-orders are siphoned off-exchange if ∆ < 0.28 In other words, the siphoning incentive identified in
the single-period case remains robust in the dynamic extension.

• Second, the inventory that market makers bring into period 2 leads to an extra term in the expression

for ∆(2), namely ϕID
(1)
I Mz̄(1)/

(
ζ− γ

2

)
. Equilibrium requires market clearing at t = 1 so that Mz̄(1) =

−λI

(
s
(1)
1

)
D

(1)
I . Plugging this in, the extra term becomes −ϕIλI

(
s
(1)
1

)
σ2
I/
(
ζ − γ

2

)
, which makes ∆(2)

even more negative. The intuition is that autocorrelation in I-investor order flow implies that I-orders
in t = 2 are on average expected to exacerbate market makers’ inventories inherited from t = 1: I-
investors are expected to buy (sell) in t = 2 precisely when market makers are short (long) on average,
owing to I-orders from t = 1. This makes I-orders even less attractive relative to R-orders, further
incentivizing market makers to siphon R-orders off-exchange.

The second effect above is new in the dynamic model. It arises only if I-orders are autocorrelated. Indeed,
if ϕI = 0, then in expectation, the average market maker’s inventory z̄(1) is no longer exacerbated by the
period-2 I-orders.

Appendix C.2.2. Period 1

The equilibrium analysis for period 1 proceeds similarly. We sketch the steps below and defer details to
the proof of Proposition 9. First, taking the spreads s(1) and siphoning α(1) as given, a market maker m

chooses her optimal liquidity supply x
(1)
m to maximize

π(1)
m

(
x(1)
m

)
= x(1)

m

⊤
s(1) + E

[
π(2)
m

(
x(2)
m ; z(1)m , D

(1)
I

)]
,

which is the sum of her expected spread revenue from t = 1 and her expected continuation value π
(2)
m (·) as

given in (C.2). Note that the choice variable x
(1)
m affects the continuation value E

[
π
(2)
m (·)

]
for it affects the

distribution of z
(1)
m , the inventory that the market maker will acquire in t = 1. We derive the expression

of π
(1)
m in the proof of Proposition 9 and show that, analogous to π

(2)
m , it is strictly concave in x

(1)
m1 but linear

in x
(1)
m2. We then proceed exactly as in Appendix C.2.1 for t = 2. The following proposition summarizes the

equilibrium.

Proposition 9 (Equilibrium). An equilibrium for the full game always exists. All equilibria are charac-
terized as follows. In period 1, all R-orders are siphoned off-exchange, i.e., α(1) = 1; the equilibrium half

spreads s
(1)
1 and s

(1)
2 are defined by (D.23) and (D.21); equilibrium on-exchange liquidity supply x

(1)
m1 is

given by (D.22); and equilibrium off-exchange aggregate liquidity supply
∫M

0
x
(2)
m2dm is given by (D.24) (but

may be allocated arbitrarily among the individual market makers). The period-2 equilibrium objects are as
described in Lemma 3.

Although equilibrium (for the full game) is not unique, equilibrium does make a unique prediction re-

28 In Section 3, to simplify notation, we assumed E[DI ] = E[DR] = 0 (cf. Footnote 12), so that Σ + µµ⊤ reduces to Σ.
Without such a simplification, it can be shown that the definition of ∆ generalizes from (11) to ∆ :=

(
E[D2

R]ωR + E[DRDI ]ωI

)
−(

E[D2
I ]ωI + E[DRDI ]ωR

)
; that is, σ2

k = var[Dk] is replaced by E[D2
k] and ρσRσI = cov[DR, DI ] by E[DRDI ]. To adapt this

generalized definition of ∆ to the second-period phase of our dynamic model (for the case of z̄(1) = 0), we simply use the
conditional expectation E1[·] and set σR = 0 to obtain

∆ =

(
E1

[(
D

(2)
R

)2]︸ ︷︷ ︸
=0

ωR + E1

[
D

(2)
R D

(2)
I

]
︸ ︷︷ ︸

=0

ωI

)
−

(
E1

[(
D

(2)
I

)2]︸ ︷︷ ︸
=σ2

I

ωI + E1

[
D

(2)
R D

(2)
I

]
︸ ︷︷ ︸

=0

ωR

)
= −ωIσ

2
I < 0,

which exactly coincides with the result of setting z̄(1) = 0 in the expression for ∆(2) given in (C.3).

28



garding the spreads.29 For period 1, these unique spreads entail s
(1)
1 > s

(1)
2 , consistent with how, according

to the proposition, all R-orders are siphoned off-exchange in t = 1. This is because, as before, the R-orders
are balanced and, thus, are relatively cheaper than the directional I-orders in terms of inventory costs. And
as previously discussed, on the equilibrium path, all R-orders are also siphoned off-exchange in t = 2. There-
fore, we conclude that the economic forces that drive siphoning are robust to the dynamic considerations we
have modeled here.30

Appendix D. Proofs

Proof of Lemma 1. Consider first Zmj , market maker m’s net inventory from marketplace j. Conditional on
the realizations of (Qmj)

J
j=1, we have

E
[
Z2
mj |Qmj

]
= E

Qmj∑
i=1

(−1)2Bmji + 2
∑
i ̸=i′

(−1)Bmji(−1)Bmji′


= Qmj + (Qmj − 1)QmjE

[
E
[
(−1)Bmji(−1)Bmji′ |Dj

]]
= Qmj + (Qmj − 1)QmjE

[
D2

j

]
= Qmj + (Qmj − 1)Qmj · (σ2

j + µ2
j ),

where (Bmji) are i.i.d. Bernoulli draws with success rate 1
2 (1 +Dj), µj is the j-th element of µ, and σ2

j is
the j-th diagonal element of Σ; and, for j ̸= j′,

E[ZmjZmj′ |Qmj , Qmj′ ] =

Qmj∑
i=1

Qmj′∑
i′=1

E
[
(−1)Bmji(−1)Bmji′

]
= QmjQmj′E

[
E
[
(−1)Bmji(−1)Bmji′

∣∣∣Dj , Dj′

]]
= QmjQmj′E[DjDj′ ] = QmjQmj′ · (ρjj′σjσj′ + µjµj′),

where ρjj′ is the correlation betweenDj andDj′ . The market maker’s total net inventory is Zm :=
∑J

j=1 Zmj ,
and

E
[
Z2
m|Qm1, . . . , QmJ

]
=

J∑
j=1

E
[
Z2
mj |Qmj

]
+
∑
j ̸=j′

E[ZmjZij′ |Qmj , Qmj′ ]

=

J∑
j=1

(
Qmj + (Qmj − 1)Qmj(σ

2
j + µ2

j )
)
+
∑
j ̸=j′

QmjQmj′(ρjj′σjσj′ + µjµj′)

=

J∑
j=1

Qmj +

J∑
j=1

(Q2
mj −Qmj)(σ

2
j + µ2

j ) +
∑
j ̸=j′

QmjQmj′(ρjj′σjσj′ + µjµj′).

29 The (full game) equilibrium is unique up to (i) how the aggregate off-exchange liquidity supply is allocated across market
makers in each period, and (ii) how α(2) is specified for the off-path period-2 subgames in which ∆(2) = 0.

30 Interestingly, our model also entails a prediction on spread dynamics: It can be shown that for both marketplaces j,

s
(1)
j < s

(2)
j . Intuitively, this is because the dynamic model allows market makers to flexibly adjust their liquidity supply over

time. In fact, they have an incentive to frontload their liquidity supplies, because doing so resolves uncertainty while they still
have time to react, which permits them to reduce the variance of their terminal inventory. For example, if a market maker
received positive inventory after t = 1 and if she expects the t = 2 order flow to be buying (selling), then she can scale up
(down) her liquidity supply in t = 2. As liquidity supply is frontloaded, spreads are narrower in t = 1 than in t = 2.
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Finally, take the unconditional expectation to get

E
[
Z2
m

]
=

J∑
j=1

xmj +

J∑
j=1

(x2
mj + xmj − xmj)(σ

2
j + µ2

j ) +
∑
j ̸=j′

xmjxmj′(ρjj′σjσj′ + µjµj′)

=

J∑
j=1

xmj︸ ︷︷ ︸
=x⊤

m1

+

J∑
j=1

x2
mj

(
σ2
j + µ2

j

)
+
∑
j ̸=j′

xmjxmj′(ρjj′σjσj′ + µjµj′)︸ ︷︷ ︸
=x⊤

m(Σ+µµ⊤)xm

.

Proof of Proposition 1. Given the optimal supply (5), the market-clearing conditions (2) become

M

γ

(
Σ+ µµ⊤)−1

(
s− γ

2
1
)
= (λ1(s1), . . . , λJ(sJ))

⊤
. (D.1)

We now show the existence and the uniqueness of a solution s to (D.1).

Existence: Notice that a solution to (D.1) is equivalent to a fixed point of the function

G(s) =
γ

M

(
Σ+ µµ⊤)(λ1(s1), . . . , λJ(sJ))

⊤
+

γ

2
1.

Because each λj(·) is nonincreasing and nonnegative, the range of (λ1(s1), . . . , λJ(sJ))
⊤

is the compact,

convex set
∏J

j=1[0, λj(0)]. The range of G(s) is a linear transformation of that set, so is also compact and
convex. Moreover, G is continuous. It therefore follows from Brouwer’s fixed-point theorem that G has a
fixed point, and hence that (D.1) has a solution.

Uniqueness: Suppose there are two solutions to (D.1), denoted by s and s′ = s + δ, where the vector δ =
(δ1, . . . , δJ)

⊤ is the difference of the two solutions. For notational simplicity, write λ as the right-hand
side of (D.1) under s and λ′ for that under s′. Difference the two market-clearing conditions and then
left-multiply both sides with δ⊤ to get

δ⊤
(
M

γ

(
Σ+ µµ⊤)−1

)
δ = δ⊤(λ′ − λ),

where if δ ̸= 0, the left-hand side is positive, because
(
Σ+ µµ⊤)−1

is positive-definite. Suppose δj > 0
(< 0). Then, since the demand functions are monotonically weakly decreasing, λj(sj + δj) − λj(sj) ≤ 0
(≥ 0), and the right-hand side above is weakly negative. Therefore, the two solutions s and s′ must collapse
with δ = 0.

Proof of Proposition 2. We consider the three cases of α = 1, α = 0, and α ∈ (0, 1) separately, following
conditions (7a)–(7b).

Consider first the case of α = 1. Then Proposition 1 applies with λ1(s1) = λI(s1), λ2(s2) = λR(s2), and
weighting matrix F (1). To verify that this outcome satisfies the notion of equilibrium defined in Section 3.1,
it remains only to check (7b), which requires s1 ≥ s2. Recall that the demand λk(s) exhibits a kink at s = ζ.
We then have three subcases depending on the ranking of s1, s2, and ζ.
• If ζ > s1 ≥ s2, then λ1(s1) = (ζ − s1)ωI and λ2(s2) = (ζ − s2)ωR. Jointly solving the two market-clearing
conditions Mxmj = λj(sj) for s1 and s2, we obtain sj =

γ
2 +

(
ζ − γ

2

)
βj , where

β1 =
(σ2

IωI + ρσIσRωR)γM + (1− ρ2)σ2
Iσ

2
Rγ

2ωIωR

M2 + (σ2
IωI + σ2

RωR)γM + (1− ρ2)σ2
Iσ

2
Rγ

2ωIωR
; and (D.2)

β2 =
(σ2

RωR + ρσIσRωI)γM + (1− ρ2)σ2
Iσ

2
Rγ

2ωIωR

M2 + (σ2
IωI + σ2

RωR)γM + (1− ρ2)σ2
Iσ

2
Rγ

2ωIωR
. (D.3)
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It can be seen that ζ > s1 (equivalently, 1 > β1) is satisfied if and only if (12) holds. In addition, s1 ≥ s2
(equivalently, β1 ≥ β2) is satisfied if and only if ∆ ≤ 0.

• If s1 ≥ ζ > s2, then λ1(s1) = 0 and λ2(s2) = (ζ − s2)ωR. The market-clearing conditions then yield
sj =

γ
2 +

(
ζ − γ

2

)
βj , where

β1 =
ρσIσRωRγ

M + σ2
RωRγ

and β2 =
σ2
RωRγ

M + σ2
RωRγ

.

This solution is consistent with s1 ≥ ζ > s2 (equivalently, β1 ≥ 1 > β2) if and only if (12) fails. We also
note that the failure of (12) necessarily implies ∆ < 0. To see this, suppose the opposite is true, i.e., (12)
fails and that

(
σ2
RωR + ρσIσRωI

)
−
(
σ2
IωI + ρσIσRωR

)
≥ 0, the latter implying(

−σ2
I + ρσIσR

)
ωI ≥ (ρσI − σR)σRωR =⇒ ρ ≥ (ρσI − σR)ωR

σIωI
+

σI

σR
.

Note that for (12) to fail, we must have ρσI > σR, for otherwise the right-hand side of (12) is weakly
negative, which would mean that (12) must hold, because M > 0. It then follows that ρσI − σR > 0 and
σR < ρσI < σI =⇒ σI

σR
> 1. Therefore, we obtain from the above inequality that ρ > 1, a contradiction.

• Finally, if s1 ≥ s2 ≥ ζ, then λ1(s1) = λ2(s2) = 0. But then using the optimal demand (5), market clearing
requires s1 = s2 = γ

2 < ζ. Hence, this cannot be an equilibrium.
Hence, there is an equilibrium with α = 1 if and only if ∆ ≤ 0. Furthermore, this equilibrium is such
that s1 < ζ if and only if (12) also holds.

Next, suppose α = 0. Then Proposition 1 applies with λ1(s1) = λI(s1) + λR(s1), λ2(s2) = 0, and weighting
matrix F (0). To verify that this outcome satisfies the notion of equilibrium defined in Section 3.1, it remains
only to check (7a), which requires s1 ≤ s2. Because there is no demand in j = 2 in this case, we only need
to discuss two subcases.
• If s1 < ζ, then λ1(s1) = (ζ−s1)(ωI+ωR) and λ2(s2) = 0. By market clearing, we obtain sj =

γ
2+
(
ζ − γ

2

)
βj ,

where

β1 =
(σ2

Iω
2
I + 2ρσIσRωIωR + σ2

Rω
2
R)γ

M(ωI + ωR) + (σ2
Iω

2
I + 2ρσIσRωIωR + σ2

Rω
2
R)γ

; and (D.4)

β2 =
(ρσIωIσR + σRω

2
R)(ωI + ωR)γ

M(ωI + ωR) + (σ2
Iω

2
I + 2ρσIσRωIωR + σ2

Rω
2
R)γ

.

Note that β1 < 1 must hold, which guarantees s1 < ζ. Also, s1 ≤ s2 (equivalently, β1 ≤ β2) is satisfied if
and only if ∆ ≥ 0.

• If s1 ≥ ζ, then λ1(s1) = λ2(s2) = 0. But then market clearing requires s1 = s2 = γ
2 < ζ. Hence, this

cannot be an equilibrium.
Hence, there is an equilibrium with α = 0 if and only if ∆ ≥ 0.

Finally, suppose α ∈
(
0, 1
)
. Then Proposition 1 applies with λ1(s1) = λI(s1) + (1 − α)λR(s1), λ2(s2) =

αλR(s2), and weighting matrix F (α). To verify that this outcome satisfies the notion of equilibrium defined
in Section 3.1, it remains only to check (7a) and (7b), which jointly require s1 = s2 = s. There are then two
subcases.
• If s < ζ, then λ1(s) = (ζ − s)

(
ωI + (1− α)ωR

)
and λ2(s) = (ζ − s)αωR. The two remaining unknowns s

and α are pinned down by the market-clearing conditions, which yield s = γ
2 + (ζ − γ

2 )β with

β =
(1− ρ2)σ2

Iσ
2
R(ωI + ωR)γ

M(σ2
I − 2ρσIσR + σ2

R) + (1− ρ2)σ2
Iσ

2
R(ωI + ωR)γ

;

and for α:

(ωI + ωR − αωR)
[ (

σ2
RωR + ρσIσRωI

)
−
(
σ2
IωI + ρσIσRωR

)︸ ︷︷ ︸
=∆

]
= 0,
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which, for any α ∈ (0, 1), holds if and only if ∆ = 0. Note that β < 1 must hold, which guarantees s < ζ.
• If s ≥ ζ, then λ1(s) = λ2(s) = 0. But then market clearing requires s = γ

2 < ζ. Hence, this cannot be an
equilibrium.

Hence, for any α ∈ (0, 1), there is a corresponding equilibrium if and only if ∆ = 0.

Proof of Corollary 1. A segmentation ban exogenously forces α = 0. Then Proposition 1 applies, with λ1(sb) =
λI(sb) + λR(sb), λ2(s) = 0, and weighting matrix F (0). Although this completes the proof, it is useful for
subsequent proofs to derive an expression for sb, the spread prevailing in this equilibrium. We conjecture
(and subsequently verify) that sb < ζ. Under this conjecture, liquidity demand is λ1(sb) = (ζ−sb)(ωI +ωR),
so that market-clearing implies sb = γ

2 +
(
ζ − γ

2

)
βb, where βb has the same expression as (D.4). Note

that βb < 1 must hold, which guarantees sb < ζ.

Proof of Proposition 3. Equilibrium involves positive volume on-exchange, i.e.,
∫M

0
xm1dm > 0, if and only

if s1 < ζ. And equilibrium involves positive volume off-exchange, i.e.,
∫M

0
xm2dm > 0, if and only if both

α > 0 and s2 < ζ. According to Proposition 2, there is a unique equilibrium involving α > 0 if and only
if ∆ < 0. The proof of Proposition 2 establishes that when ∆ < 0, the equilibrium is guaranteed to feature
s2 < ζ. Finally, the proof of Proposition 2 additionally establishes that this equilibrium also features s1 < ζ
if and only if (12) also holds.

Proof of Lemma 2. Consider the average demand curve. With segmentation, s̄ as defined in (13) can be
rewritten as

s̄ = ζ − λI(s1)
2/ωI + λR(s2)

2/ωR

λI(s1) + λR(s2)
= ζ − (Mxm1)

2/ωI + (Mxm2)
2/ωR

Mxm1 +Mxm2
= ζ −

(
(1− fR)

2

ωI
+

f2
R

ωR

)
x,

where the first equality follows from the individual liquidity demand curves of the two investor types: λI(s1) =
(ζ−s1)ωI and λR(s2) = (ζ−s2)ωR; the second equality follows from market clearing; and the third equality
uses fR := xm2

xm2+xm1
and x := (xm1 + xm2)M . The expression also applies when segmentation is banned, in

which case fR = ωR

ωI+ωR
, implying sb = s̄ = ζ − x/(ωI + ωR).

Consider next the average supply curve. With segmentation, market makers’ equilibrium supply quanti-
ties satisfy the first-order conditions to (8):

s1 −
γ

2
− γ ·

(
σ2
Ixm1 + ρσIσRxm2

)
= 0; and s2 −

γ

2
− γ ·

(
σ2
Rxm2 + ρσIσRxm1

)
= 0.

Multiply the first with xm1 and the second with xm2, add them up, and finally divide the sum by xm1+xm2

to get

s̄ =
xm1s1 + xm2s2
xm1 + xm2

=
γ

2
+

σ2
Ix

2
m1 + 2ρσIσRxm1xm2 + σ2

Rx
2
m2

xm1 + xm2
γ =

γ

2
+

γvar[xm1DI + xm2DR]

xm1 + xm2

=
γ

2
+
( γ

M
var[(1− fR)DI + fRDR]

)
x,

where the last equality uses fR := xm2

xm2+xm1
and x := (xm1 + xm2)M . When segmentation is banned, the

above expression also applies, with fR = ωR

ωI+ωR
.

Proof of Proposition 4. Under ∆ < 0 and under (12), the equilibrium features both on-exchange and off-
exchange volume. Hence, following the proofs of Proposition 2 and Corollary 1, sj = γ

2 +
(
ζ − γ

2

)
βj for

j ∈ {1, 2, b}, where β1, β2, and βb are given by (D.2), (D.3), and (D.4), respectively. Compare first sb
and s2. Direct calculation shows that sign[s2 − sb] = sign[β2 − βb] = sign

[
(σ2

RωR + ρσIσRωI) − (σ2
IωI +

ρσIσRωR)
]
sign[M + γσ2

IωI + γρσIσRωR]. The first factor is exactly sign[∆], which is negative, as assumed.
For the second factor, note that M +γσ2

IωI +γρσIσRωR is increasing in ρ. We therefore examine this factor
at the minimum value of ρ that is jointly permitted by the assumptions ∆ < 0 and (12). To begin, (12)
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implies no lower bound for ρ (only the upper bound ρ < σR

σI
+ M

γσIσRωR
), so it suffices to consider only

the implications of ∆ < 0. On the one hand, suppose ∆ < 0 implies no lower bound for ρ, meaning that
0 ≥ limρ→−1 ∆(ρ) = (σI +σR)(σIωI −σRωR), and hence σIωI −σRωR ≥ 0. Then M+γσ2

IωI +γρσIσRωR >
M + γσI(σIωI − σRωR) > 0, so that the second factor is positive. On the other hand, suppose ∆ < 0 does

imply a lower bound for ρ: ρ ≥ σ2
IωI−σ2

RωR

(ωI−ωR)σIσR
≥ −1. Note that this can be the case only if both ωI < ωR and

σRωR > σIωI . At this constrained lower bound, M + γσ2
IωI + γρσIσRωR = M + γ(σIωI + σRωR)(σIωI −

σRωR)/(ωI − ωR) > 0, so that the second factor is positive. In either case, we conclude s2 < sb.
Next, compare sb and s1. Direct calculation shows that sign[s1− sb] = sign[β1−βb] = sign[−∆]sign[M +

γσ2
RωR + γρσIσRωI ]. Since ∆ < 0, it remains to sign the second part. It is negative if and only if

ρ < −(M + γσ2
RωR)/(σRσIωI).

Finally, we compare sb and s̄. To do so, we first define fR ∈ [0, 1] as the fraction of R-orders in a market
maker’s portfolio of orders. When segmentation is banned, both investor types pay the same spread, so we
have fban

R = ωR

ωR+ωI
. Let fno-ban

R denote the equilibrium value for fR when segmentation is allowed. Given

that ∆ < 0, market makers want to siphon R-orders off-exchange, so that fno-ban
R > ωR

ωR+ωI
. Specifically,

fno-ban
R = (ζ−s2)ωR

(ζ−s2)ωR+(ζ−s1)ωI
, which, following (D.2) and (D.3), becomes

fno-ban
R =

ωR + (σ2
I − ρσIσR)ωIωRγ/M

(ωI + ωR) + (σ2
I − 2ρσIσR + σ2

R)ωIωRγ/M
.

Let s̄(fR) denote the volume-weighted average spread as a function of fR, defined as the intersection of the
two curves from Lemma 2: the average liquidity demand curve s̄(fR) = ζ− v(fR)x and the average liquidity
supply curve s̄(fR) =

γ
2 + c(fR)x. Thus, s̄ < sb will follow if we show that s̄(fban

R ) > s̄(fno-ban
R ). To do so,

we solve for s̄(fR), by eliminating the aggregate volume x:

s̄(fR) =
γ
2 v(fR) + ζc(fR)

v(fR) + c(fR)
=

γ

2
+
(
ζ − γ

2

) c(fR)

v(fR) + c(fR)
=

γ

2
+
(
ζ − γ

2

) 1

1 + v(fR)/c(fR)
.

As observed in the text (in the two bullet points following Lemma 2), we have both v(fban
R ) < v(fno-ban

R )
and c(fban

R ) > c(fno-ban
R ), which together imply s̄(fban

R ) > s̄(fno-ban
R ), as desired.

Proof of Proposition 5. Under ∆ < 0 and under (12), the equilibrium features both on-exchange and off-
exchange volume. Hence, following the proof of Proposition 2, sj = γ

2 +
(
ζ − γ

2

)
βj for j ∈ {1, 2}, where β1

and β2 are given by (D.2) and (D.3), respectively. Hence, sign
[

ds2
dωR

]
= sign

[
dβ2

dωR

]
= sign[M + (σ2

I −
ρσIσR)γωI ]. Using (12), we have sign[M + (σ2

I − ρσIσR)γωI ] ≥ sign[σ2
IωI − (ωI − ωR)σIσRρ − σ2

RωR] =
sign[−∆] > 0. Therefore, ds2

dωR
> 0.

Likewise, sign
[

ds1
dωR

]
= sign

[
dβ1

dωR

]
= sign[ρ]sign[M + (σ2

I − ρσIσR)γωR]. The second factor was shown to

be positive above. Hence, sign
[

ds1
dωR

]
= sign[ρ].

Finally, sign
[
d(s1−s2)

dωR

]
= sign

[
d(β1−β2)

dωR

]
= sign

[
γσ2

IσRωIρ
2 +MσIρ− (M + γσ2

IωI)σR

]
. This quadratic

expression in ρ ∈ [−1, 1] is convex, is strictly negative at ρ = 0, and is strictly increasing at ρ = 0. Note

also that at ρ = −1, it becomes −(σI + σR)M < 0, implying that d(s1−s2)
dωR

< 0 for all ρ ∈ [−1, 0]. Therefore,
there exists a unique threshold ρ̂ > 0,

ρ̂ =
1

2γσIσRωI

(
−M +

√
M2 + 4Mγσ2

RωI + 4γ2σ2
Iσ

2
Rω

2
I

)
, (D.5)

which is the positive root of the above quadratic expression, such that d(s1−s2)
dωR

> 0 for ρ > ρ̂. (Note that
the threshold ρ̂ may or may not lie within the domain of ρ, i.e., ρ̂ can be ≶ 1.) In summary, the necessary

and sufficient condition for d(s1−s2)
dωR

< 0 is ρ < ρ̂.
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Proof of Proposition 6. Under ∆ < 0 and under (12), the equilibrium features both on-exchange and off-
exchange volume. Hence, following the proof of Proposition 2, sj = γ

2 +
(
ζ − γ

2

)
βj for j ∈ {1, 2}, where β1

and β2 are given by (D.2) and (D.3), respectively. Hence, sign
[
ds1
dM

]
= sign

[
dβ1

dM

]
= sign

[
(1 − ρ2)(ρσI −

σR)σIσ
3
RωIω

2
Rγ

2 − 2(1− ρ2)MγσIσ
2
RωIωR − (σIωI + ρσRωR)M

2
]
. That is, we need to evaluate the sign of

this quadratic expression in M . There are two cases, depending on whether M is constrained by (12).
• Suppose (12) is not binding, i.e., ρσIσR−σ2

R ≤ 0. First, we note that this implies that the intercept of the
quadratic expression is negative. Second, we show that the quadratic expression in M must be (weakly)
concave. To do so, we assume the opposite, i.e., the coefficient on M2 is positive, i.e., σIωI + ρσRωR < 0.
Next, ∆ < 0 implies, after some rearranging, that (σRωR + ρσIωI)σR < (σIωI + ρσRωR)σI . Hence,
σRωR+ρσIωI < 0. Summing σIωI+ρσRωR < 0 and σRωR+ρσIωI < 0 implies that (1+ρ)(σIωI+σRωR) <
0, which is a contradiction because ρ > −1. Third, in the limit of M → 0, the slope of the quadratic
expression is negative.

• Suppose (12) is binding, i.e., ρσIσR − σ2
R > 0. First, we note that this implies ρ > 0 and, hence, the

coefficient on M2 in the above quadratic expression is strictly negative. Second, just as in the previous
case, the slope of the quadratic expression is negative at M = 0. Note, however, that the relevant domain
for M is now bounded away from 0; rather, (12) implies M > (ρσIσR − σ2

R)ωRγ. Third, in the limit as
M → (ρσIσR − σ2

R)ωRγ, the quadratic expression evaluates to γ3ρσIσR(ρσIσR − σ2
R)ω

2
R∆ < 0.

Summing up, in either case, the quadratic expression above is negative for all M on the relevant domain.
Therefore, β1 (hence also s1) is always decreasing in M .

Likewise, sign
[
ds2
dM

]
= sign

[
dβ2

dM

]
. We first show that β2 is quasi-convex in M . Direct evaluation shows

dβ2

dM
=

γσR

h(M)

(
−(1− ρ2)(σI − ρσR)σ

3
IσRω

2
IωRγ

2 − 2(1− ρ2)γσ2
IσRωIωRM − (ρσIωI + σRωR)M

2
)
,

where h(M) is some strictly positive 4th-order polynomial in M , not affecting the sign of dβ2

dM . Consider a
stationary point denoted by M∗. We have

d2β2

dM2

∣∣∣
M=M∗

=
2γσR

h(M∗)

(
−(1− ρ2)γσ2

IσRωIωR − (ρσIωI + σRωR)M
∗)

=
2γ2(1− ρ2)

h(M∗)M∗ σ2
Iσ

2
RωIωR

(
M∗ + γ(σ2

I − ρσIσR)ωI

)
>

2γ2(1− ρ2)

h(M∗)M∗ σ2
Iσ

2
RωIωR · (−γ∆) > 0,

where the last equality follows from dβ2

dM

∣∣∣
M=M∗

= 0 by substituting (ρσIωI +σRωR)M
∗ = − 1

M∗ (1−ρ2)(σI −
ρσR)σ

3
IσRω

2
IωRγ

2 − 2(1 − ρ2)γσ2
IσRωIωR, the first inequality follows from (12), and the second inequality

follows from ∆ < 0. That is, at all stationary points (if any exist), β2 is strictly convex, and, hence, β2 is
quasi-convex on the domainM > 0. We then examine the limits of β2. Direct computation shows that ifM is
not constrained by (12), limM↓0 β2 = 1; that if M is constrained by (12), limM↓(ρσIσR−σ2

R)ωRγ β2 = σR

ρσI
(note

that ρ > 0 in this case); and that limM→∞ β2 = 0. That is, the left limit of β2, irrespective of whether M is
constrained, is always strictly larger than its right limit. Together with the quasi-convexity, it follows that β2

(hence also s2) is either monotonically decreasing or U-shaped in M , depending on limM→∞ sign
[
dβ2

dM

]
.

Since sign
[
dβ2

dM

]
= sign

[
M2 dβ2

dM

]
, we directly compute limM→∞ sign

[
M2 dβ2

dM

]
= sign[−(ρσIωI + σRωR)],

recalling that h(M) is a 4th-order polynomial in M . Therefore, if ρ < −σRωR

σIωI
, then the off-exchange spread

s2 is U-shaped in M ; or else, s2 is also monotonically decreasing in M .

Proof of Proposition 7. We first derive a market maker’s equilibrium expected profit π without the ban
and πb with the ban. To do so, we calculate market makers’ aggregate surplus as the area of the triangle, in
a supply-demand graph, formed by the vertical (price) axis, the aggregate supply in marketplace j, and the
horizontal line at sj . The per capita surplus, therefore, amounts to 1

2M

(
sj − γ

2

)
(ζ − sj)ωj , where ωj = ωI

if j = 1, ωj = ωR if j = 2, and ωj = (ωI + ωR) if j = b. We then further plug in sj = γ
2 + (ζ − γ

2 )βj for
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j ∈ {1, 2, b}, where the equilibrium values for β1, β2, and βb are given by (D.2), (D.3), and (D.4), respectively.

This gives π = (ζ−γ/2)2

2M

(
(1 − β1)β1ωI + (1 − β2)β2ωR

)
; and πb = (ζ−γ/2)2

2M (ωI + ωR)(1 − βb)βb. Directly
evaluating π − πb yields that sign[π − πb] is equivalent to the sign of the following cubic polynomial in M :

−2(ωI + ωR)︸ ︷︷ ︸
<0

M3 +
(
2ρσIσRωIωR + σ2

IωI(2ωI + ωR) + σ2
RωR(ωI + 2ωR)

)
γ︸ ︷︷ ︸

>0

M2

+ γ3
(
1− ρ2

)
σ2
Iσ

2
RωIωR

(
2ρσIσRωIωR + σ2

Iω
2
I + σ2

Rω
2
R

)︸ ︷︷ ︸
>0

.
(D.6)

Clearly, its derivative is a concave quadratic function of M , with one strictly negative root and the other
root at zero. That is, for all M > 0, the cubic expression is strictly decreasing in M . Since the intercept is
positive, the cubic polynomial always has a unique positive root M̂ > 0.

Proof of Proposition 8. Under ∆ < 0 and under (12), the equilibrium without a segmentation ban involves
all R-orders being siphoned off-exchange, as well as positive volume both on-exchange and off-exchange.
Hence, (xI , xR, sI , sR) are characterized by the following two conditions, which respectively capture market
maker optimization (following (5)) and market-clearing:(

xI

xR

)
=

1

γ
Σ−1

0

(
sI − γ

2
sR − γ

2

)
M

(
xI

xR

)
=

(
(ζ − sI)ωI

(ζ − sR)ωR

)
.

Eliminating (sI , sR), we obtain a condition involving xI and xR only:

γΣ0

(
xI

xR

)
=

(
ζ − γ

2 − M
ωI

xI

ζ − γ
2 − M

ωR
xR

)
.

It is straightforward to verify that this condition coincides with the first-order conditions of the expression
for welfare given by (14). Because (14) is concave, it follows that, as claimed in the text, the equilibrium
without a segmentation ban leads to the welfare-maximizing choices of (xI , xR). It follows trivially that
wb < w.

Proof of Lemma 3. We first derive the posterior order flow characteristics in each marketplace j. In equilib-

rium, a fraction α(2) ∈ [0, 1] ofR-orders are siphoned off-exchange. Hence, D
(2)
2 = D

(2)
R = 0 as all off-exchange

orders are R-type, and D
(2)
1 = w

(2)
I D

(2)
I +

(
1 − w

(2)
I

)
D

(2)
R = w

(2)
I D

(2)
I , where w

(2)
I := ωI

ωI+(1−α(2))ωR
is the

relative weight of I-orders on-exchange. Given E1

[
D

(2)
I

]
= ϕID

(1)
I , var1

[
D

(2)
I

]
= (1 − ϕ2

I)σ
2
I , E1

[
D

(2)
R

]
= 0,

and var1
[
D

(2)
R

]
= 0, we obtain31

µ(2|1) =

(
w

(2)
I ϕID

(1)
I

0

)
and Σ(2|1) =

((
w

(2)
I

)2
(1− ϕ2

I)σ
2
I 0

0 0

)
. (D.7)

Next, we derive the objective function (C.2) of a market makerm, who enters period 2 with inventory z
(1)
m .

Suppose her liquidity supply is x
(2)
m =

(
x
(2)
m1, x

(2)
m2

)⊤
. Then her number of trades Q

(2)
mj in each marketplace j

is Poisson distributed with expectation x
(2)
mj . Her expected spread revenue from marketplace j remains

E1

[
Q

(2)
mjs

(2)
j

]
= x

(2)
mjs

(2)
j . Denote her inventory from marketplace j by z

(2)
mj . At the beginning of period 2, her

31 Note that, because we assume D
(2)
R = 0 is a constant, var

[
D

(2)
R

]
= 0, and

(
Σ(2|1) + µ(2|1)µ(2|1)⊤

)
is no longer invertible.

Hence, unlike in (5), for example, an individual market maker’s optimal liquidity supply x
(2)
m cannot be uniquely determined.

Nevertheless, as the proof shows below, the on-exchange liquidity supply, the aggregate off-exchange liquidity supply, and the
half spreads s(2) all remain unique in equilibrium.
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expectation of her terminal squared inventory is E1

[(
z
(1)
m +

∑2
j=1 z

(2)
mj

)2]
=
(
z
(1)
m

)2
+ 2z

(1)
m E1

[∑2
j=1 z

(2)
mj

]
+

E1

[(∑2
j=1 z

(2)
mj

)2]
. The third term, following Lemma 1, is

E1

[( 2∑
j=1

z
(2)
mj

)2
]
= x(2)

m

⊤
1+ x(2)

m

⊤(
Σ(2|1) + µ(2|1)µ(2|1)⊤

)
x(2)
m .

Directly evaluating the expectation in the second term yields

E1

[
2∑

j=1

z
(2)
mj

]
=

2∑
j=1

E1

[
E1

[
z
(2)
mj

∣∣∣Q(2)
mj

]]
=

2∑
j=1

E1

[
E1

[Q
(2)
mj∑

i=1

(−1)
Bmji

]]

=−
2∑

j=1

E1

[
E1

[
Q

(2)
mjD

(2)
j

]]
= −

2∑
j=1

x
(2)
mjµ

(2|1) = −x(2)
m

⊤
µ(2|1),

where
(
Bmji

)Q(2)
mj

i=1
are i.i.d. Bernoulli draws with success rate 1

2

(
1 +D

(2)
j

)
. Combining the above results, we

obtain the objective π
(2)
m as given in (C.2).

The first-order condition regarding x
(2)
m1 uniquely solves the optimal x

(2)
m1 (and the second-order condition

clearly holds):

dπ
(2)
m

dx
(2)
m1

= s
(2)
1 − γ

2
+ w

(2)
I γϕID

(1)
I z(1)m − γ

(
w

(2)
I σI

)2
x
(2)
m1 = 0

=⇒ x
(2)
m1 =

s
(2)
1 − γ

2 + w
(2)
I γϕID

(1)
I z

(1)
m

γ
(
w

(2)
I σI

)2 . (D.8)

However,
dπ(2)

m

dx
(2)
m2

= s
(2)
2 − γ

2 does not depend on x
(2)
m ; in other words, the objective π

(2)
m is linear in x

(2)
m2.

Therefore, to satisfy the first-order condition
dπ(2)

m

dx
(2)
m2

= 0, the equilibrium off-exchange half spread must be

s
(2)
2 =

γ

2
. (D.9)

The on-exchange market-clearing condition is
∫M

0
x
(2)
m1dm = λI

(
s
(2)
1

)
+ (1− α(2))λR

(
s
(2)
1

)
, or

M

γ
(
w

(2)
I σI

)2(s(2)1 − γ

2
+ w

(2)
I γϕID

(1)
I z̄(1)

)
= max

{
0, ζ − s

(2)
1

} ωI

w
(2)
I

,

using (D.8) and λk(s) = max{0, ζ − s}ωk. Define

τ (2) := ζ − γ

2
+ γw

(2)
I ϕID

(1)
I z̄(1).

We then obtain the equilibrium on-exchange half spread

s
(2)
1 =


γ
2

M+2w
(2)
I

(
ζωIσ

2
I−ϕID

(1)
I z̄(1)M

)
M+w

(2)
I γωIσ2

I

if τ (2) > 0;

γ
2

(
1− 2w

(2)
I ϕID

(1)
I z̄(1)

)
if τ (2) ≤ 0.

(D.10)
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Plugging (D.10) into (D.8), an individual market maker m’s equilibrium on-exchange supply is

x
(2)
m1 =


(
z(1)
m −z̄(1)

)
MϕID

(1)
I +
(
ζ− γ

2 +w
(2)
I γϕID

(1)
I z(1)

m

)
σ2
IωI

Mw
(2)
I σ2

I+γ
(
w

(2)
I σ2

I

)2
ωI

if τ (2) > 0;

1

w
(2)
I σ2

I

(
z
(1)
m − z̄(1)

)
ϕID

(1)
I if τ (2) ≤ 0.

(D.11)

Similarly, the off-exchange market-clearing condition is
∫M

0
x
(2)
m2dm = α(2)λR

(
s
(2)
2

)
. Using (D.9), we obtain

the equilibrium aggregate off-exchange liquidity supply∫ M

0

x
(2)
m2dm = α(2)

(
ζ − γ

2

)
ωR. (D.12)

The best-execution requirement says that if s
(2)
2 < (>)s

(2)
1 , then all (no) R-orders are siphoned off-

exchange, i.e., α(2) = 1 (= 0). If s
(2)
2 = s

(2)
1 , then α(2) can take any value in [0, 1]. Recall the definition

of ∆(2) from (C.3). On the one hand, if τ (2) > 0, then using the spread expressions (D.9) and (D.10)
(the τ (2) > 0 case), we have

τ (2) > 0 =⇒

s
(2)
2 < s

(2)
1 ⇐⇒ w

(2)
I γωIσ

2
I < 2w

(2)
I

(
ζωIσ

2
I − ϕID

(1)
I z̄(1)M

)
⇐⇒ ∆(2) < 0;

s
(2)
2 > s

(2)
1 ⇐⇒ w

(2)
I γωIσ

2
I > 2w

(2)
I

(
ζωIσ

2
I − ϕID

(1)
I z̄(1)M

)
⇐⇒ ∆(2) > 0.

(D.13)

(Note that w
(2)
I is strictly positive and, hence, can be cancelled out without affecting the inequalities above.)

On the other hand, if τ (2) ≤ 0, then D
(1)
I z̄(1) ≤ 1

γw
(2)
I ϕI

(
ζ − γ

2

)
< 0. Using the spread expressions (D.9)

and (D.10) (the τ (2) ≤ 0 case), this inequality implies s
(2)
2 < s

(2)
1 . Recalling (C.3), the same inequality also

implies ∆(2) < 0. It follows that we have also the following (with the second case holding vacuously)

τ (2) ≤ 0 =⇒

{
s
(2)
2 < s

(2)
1 ⇐⇒ ∆(2) < 0;

s
(2)
2 > s

(2)
1 ⇐⇒ ∆(2) > 0.

(D.14)

Combining (D.13) and (D.14) with the best-execution requirement, the relationship between ∆(2) and α(2)

is precisely as stated in the lemma.

Finally, assume market clearing from t = 1. Then z̄(1) = − 1
M λI

(
s
(1)
1

)
D

(1)
I . Plugging this into (C.3), the

expression for ∆(2) becomes

∆(2) = −
ϕIλI

(
s
(1)
1

)
σ2
I

ζ − γ
2

− σ2
IωI ,

which is negative. Following the previous paragraph, best-execution therefore requires α(2) = 1, and, hence,

w
(2)
I = 1.

Proof of Proposition 9. The first step is to characterize the order flow characteristics in each marketplace j.

Similar to t = 2, defining w
(1)
I = ωI

ωI+(1−α(1))ωR
as the on-exchange weight of I-orders, we have

µ(1) = E

[
D

(1)
1

D
(1)
2

]
=

(
0
0

)
and Σ(1) = var

[
D

(1)
1

D
(1)
2

]
=

((
w

(1)
I

)2
σ2
I 0

0 0

)
.

The second step is to derive the objective function π
(1)
m = x

(1)
m

⊤
s
(1)
1 + E

[
π
(2)
m (·)

]
. In particular, we are

only interested in how it is affected by the supply x
(1)
m . To do so, we first evaluate π

(2)
m (·) using the t = 2

solution derived above. In particular, recall that under t = 1 market clearing, ∆(2) < 0 and so w
(2)
I = 1.
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Then plug into (C.2) the half spread s
(2)
2 as given by (D.9) and the posterior moments (D.7) to get

π(2)
m =

(
s
(2)
1 − γ

2

)
x
(2)
m1 −

γ

2

((
z(1)m

)2 − 2ϕID
(1)
I z(1)m x

(2)
m1 +

(
x
(2)
m1

)2)
.

To substitute in s
(2)
1 and x

(2)
m1, we need to discuss two cases.32

Case 1: Conjecture ζ − γ
2 ≤ γϕIσ

2
I

M λI

(
s
(1)
1

)
. Given market clearing at t = 1, it follows that τ (2) ≤ 0:

τ (2) = ζ − γ

2
+ γw

(2)
I ϕID

(1)
I z̄(1) = ζ − γ

2
− γϕIσ

2
I

M
λI

(
s
(1)
1

)
≤ 0,

where the first equality is the definition of τ (2), and the second equality uses that, as discussed in the proof of

Lemma 3, t = 1 market clearing implies (i) z̄(1) = − 1
M λI

(
s
(1)
1

)
D

(1)
I and (ii) w

(2)
I = 1. Substituting the τ (2) ≤

0 cases of (D.10) and (D.11) into π
(2)
m and then also, by market clearing, substituting z̄(1) = − 1

M λI

(
s
(1)
1

)
D

(1)
I

into π
(2)
m , we get

π(2)
m = −γ

2
(1− ϕI)

2
(
z(1)m

)2
+

γ

M
λI

(
s
(1)
1

)
ϕ2
ID

(1)
I z(1)m +

[
terms unaffected by x(1)

m

]
.

From the market maker’s point of view in t = 1, the above involves two random variables: z
(1)
m and D

(1)
I .

Recall that z
(1)
m = z

(1)
m1+z

(1)
m2 and, hence, by Lemma 1, E

[(
z
(1)
m

)2]
= x

(1)
m

⊤
1+x

(1)
m

⊤(
Σ(1) + µ(1)µ(1)⊤

)
x
(1)
m =

x
(1)
m1 + x

(1)
m2 +

(
w

(1)
I σI

)2(
x
(1)
m1

)2
. Note that z

(1)
m and D

(1)
I are correlated: E

[
D

(1)
I z

(1)
m

]
= E

[
D

(1)
I z

(1)
m1

]
=

−w
(1)
I x

(1)
m1σ

2
I . Therefore, taking the unconditional expectation of π

(2)
m and adding the t = 1 spread rev-

enues x
(1)
m

⊤
s(1), we obtain

π(1)
m =

(
s
(1)
1 − γ

2
(1− ϕ2

I)
)
x
(1)
m1 +

(
s
(1)
2 − γ

2
(1− ϕ2

I)
)
x
(1)
m2 −

γ

2
(1− ϕ2

I)
(
w

(1)
I x

(1)
m1σI

)2
− γσ2

Iϕ
2
I

M
λI

(
s
(1)
1

)
w

(1)
I x

(1)
m1 +

[
terms unaffected by x(1)

m

]
.

As in the case of t = 2, the first-order conditions with respect to x
(1)
m1 and x

(1)
m2 determine

x
(1)
m1 =

(
s
(1)
1 − γ

2 (1− ϕ2
I)
)
M − λI

(
s
(1)
1

)
w

(1)
I γσ2

Iϕ
2
I

(1− ϕ2
I)
(
w

(1)
I σI

)2
Mγ

; and (D.15)

s
(1)
2 =

γ

2
(1− ϕ2

I). (D.16)

On-exchange market clearing requires
∫M

0
x
(1)
m1dm = λI

(
s
(2)
1

)
+ (1− α(1))λR

(
s
(2)
1

)
, i.e.,(

s
(1)
1 − γ

2 (1− ϕ2
I)
)
M − λI

(
s
(1)
1

)
w

(1)
I γσ2

Iϕ
2
I

(1− ϕ2
I)γ
(
w

(1)
I σI

)2 = max
{
0, ζ − s

(1)
1

} ωI

w
(1)
I

.

Assuming ζ − s
(1)
1 ≤ 0, then λI

(
s
(1)
1

)
= 0, and the above equation gives s

(1)
1 = γ

2 (1 − ϕ2
I) ≤

γ
2 < ζ, which

contradicts the assumption. We conclude that ζ > s
(1)
1 , in which case λI

(
s
(1)
1

)
=
(
ζ − s

(1)
1

)
ωI and the above

market-clearing condition yields

s
(1)
1 =

γ

2

(1− ϕ2
I)M + 2w

(1)
I ωIσ

2
Iζ

M + w
(1)
I γωIσ2

I

. (D.17)

32 The off-exchange liquidity supply x
(2)
m2 is not needed: Recall from the proof of Lemma 3 that the equilibrium off-exchange

half spread s
(2)
2 as given in (D.9) ensures that the off-exchange supply x

(2)
m2 is irrelevant for π

(2)
m .
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Direct computation gives

s
(1)
1 − s

(1)
2 =

w
(1)
I γωIσ

2
I

M + w
(1)
I γωIσ2

I

(
ζ − γ

2
(1− ϕ2

I)
)
> 0.

Therefore, best-execution requires all R-orders to be siphoned off-exchange in period 1, yielding α
(1)
1 = 1

and w
(1)
I = 1. Finally, we need to verify the initial conjecture. Using (D.17) (with w

(1)
I = 1),

ζ − γ

2
≤ γϕIσ

2
I

M
λI

(
s
(1)
1

)
⇐⇒ ζ ≤ γ

2

M +
(
1− ϕI + ϕ3

I

)
γωIσ

2
I

M + (1− ϕI)γωIσ2
I

,

that is, this case applies if and only if the last inequality holds.

Case 2: Conjecture ζ − γ
2 >

γϕIσ
2
I

M λI

(
s
(1)
1

)
. Given market clearing at t = 1, it follows that τ (2) > 0:

τ (2) = ζ − γ

2
+ γw

(2)
I ϕID

(1)
I z̄(1) = ζ − γ

2
− γϕIσ

2
I

M
λI

(
s
(1)
1

)
> 0,

where the first equality is the definition of τ (2), and the second equality uses that, as discussed in the proof of

Lemma 3, t = 1 market clearing implies (i) z̄(1) = − 1
M λI

(
s
(1)
1

)
D

(1)
I and (ii) w

(2)
I = 1. Substituting the τ (2) >

0 cases of (D.10) and (D.11) into π
(2)
m and then also, by market clearing, substituting z̄(1) = − 1

M λI

(
s
(1)
1

)
D

(1)
I

into π
(2)
m , we get

π(2)
m = −γ

2
(1− ϕ2

I)
(
z(1)m

)2
+

(
ζ − γ

2

)
ωI + ϕIλI

(
s
(1)
1

)
M + γωIσ2

I

γϕID
(1)
I z(1)m +

[
terms unaffected by x(1)

m

]
.

As in the previous case, taking the unconditional expectation of π
(2)
m and adding the t = 1 spread rev-

enues x
(1)
m

⊤
s(1), we obtain

π(1)
m =

(
s
(1)
1 − γ

2
(1− ϕ2

I)
)
x
(1)
m1 +

(
s
(1)
2 − γ

2
(1− ϕ2

I)
)
x
(1)
m2 −

γ

2
(1− ϕ2

I)
(
w

(1)
I x

(1)
m1σI

)2
− γσ2

IϕI

M + γσ2
IωI

((
ζ − γ

2

)
ωI + ϕIλI

(
s
(1)
1

))
w

(1)
I x

(1)
m1 +

[
terms unaffected by x(1)

m

]
.

Then, as before, the first-order conditions pin down

x
(1)
m1 =

(
s
(1)
1 − γ

2 (1− ϕ2
I)
)(

M + γσ2
IωI

)
− λI

(
s
(1)
1

)
w

(1)
I γσ2

Iϕ
2
I −

(
ζ − γ

2

)
w

(1)
I ϕIγσ

2
IωI

(1− ϕ2
I)
(
w

(1)
I σI

)2
(M + γσ2

IωI)γ
; and (D.18)

s
(1)
2 =

γ

2

(
1− ϕ2

I

)
. (D.19)

On-exchange market clearing requires
∫M

0
x
(1)
m1dm = λI

(
s
(2)
1

)
+ (1− α(1))λR

(
s
(2)
1

)
, i.e.,

M ·

(
s
(1)
1 − γ

2 (1− ϕ2
I)
)(

M + γσ2
IωI

)
− λI

(
s
(1)
1

)
w

(1)
I γσ2

Iϕ
2
I −

(
ζ − γ

2

)
w

(1)
I ϕIγσ

2
IωI

(1− ϕ2
I)
(
w

(1)
I σI

)2
(M + γσ2

IωI)γ
= max

{
0, ζ − s

(1)
1

} ωI

w
(1)
I

.

Assuming ζ − s
(1)
1 ≤ 0, then λI

(
s
(1)
1

)
= 0, and the above equation then gives

s
(1)
1 − ζ =

γ
2 (1− ϕ2

I) ·M +
(

γ
2 (1− ϕ2

I) +
(
ζ − γ

2

)
ϕIw

(1)
I

)
γσ2

IωI

M + γσ2
IωI

− ζ,

which decreases in ζ and, hence, when ζ ↓ γ
2 , reaches its maximum of −γ

2ϕ
2
I < 0, thus rejecting the

assumption. We conclude that ζ > s
(1)
1 , in which case λI

(
s
(1)
1

)
=
(
ζ− s

(1)
1

)
ωI and the above market-clearing
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condition yields

s
(1)
1 =

γ

2

(1− ϕ2
I)(M + γωIσ

2
I )
(
M + 2ζw

(1)
I ωIσ

2
I

)
+
(
2(ϕI + ϕ2

I)ζ − ϕIγ
)
Mw

(1)
I ωIσ

2
I

(M + γωIσ2
I )
(
M + γw

(1)
I ωIσ2

I

)
− w

(1)
I ϕ2

Iγ
2ω2

Iσ
4
I

. (D.20)

Directly comparing the two half spreads in this case yields

s
(1)
1 − s

(2)
2 =

γ

2

[
2(1 + ϕI)ζ − γ

]
ϕIMw

(1)
I ωIσ

2
I + (1− ϕ2

I)w
(1)
I ϕ2

Iγ
2ω2

Iσ
4
I

M2 + (1 + w
(1)
I )MγωIσ2

I + (1− ϕ2
I)w

(1)
I γ2ω2

Iσ
4
I

> 0,

where the last inequality is guaranteed by ζ > γ
2 . Therefore, best-execution requires all R-orders to be routed

off-exchange in period 1, yielding α(1) = 1 and w
(1)
I = 1. Finally, we need to verify the initial conjecture.

Using (D.20) (with w
(1)
I = 1),

ζ − γ

2
>

γϕIσ
2
I

M
λI

(
s
(1)
1

)
⇐⇒ ζ >

γ

2

M +
(
1− ϕI + ϕ3

I

)
γωIσ

2
I

M + (1− ϕI)γωIσ2
I

,

Summary: As seen above, in either case, α(1) = 1 (and, hence, w
(1)
I = 1). Define

τ (1) := ζ − γ

2

M +
(
1− ϕI + ϕ3

I

)
γωIσ

2
I

M + (1− ϕI)γωIσ2
I

.

Then, combining (D.17) and (D.20), we obtain the equilibrium on-exchange half spread as

s
(1)
1 =


γ
2

(1−ϕ2
I)(M+γωIσ

2
I )
(
M+2ζωIσ

2
I

)
+
(
2(ϕI+ϕ2

I)ζ−ϕIγ
)
MωIσ

2
I(

M+γωIσ2
I

)2
−ϕ2

Iγ
2ω2

Iσ
4
I

if τ (1) > 0;

γ
2
(1−ϕ2

I)M+2ωIσ
2
Iζ

M+γωIσ2
I

if τ (1) ≤ 0.

(D.21)

Combining (D.15) and (D.18), then plugging in (D.21), we obtain an individual market maker m’s on-
exchange equilibrium liquidity supply as

x
(1)
m1 =


(ζ− γ

2 (1−ϕ2
I))MωI+((1−ϕI)ζ− γ

2 (1−ϕI−ϕ2
I))γω

2
Iσ

2
I

(M+γωIσ2
I)

2−ϕ2
Iγ

2ω2
Iσ

4
I

if τ (1) > 0;

(ζ− γ
2 (1−ϕ2

I))ωI

M+γωIσ2
I

if τ (1) ≤ 0.
(D.22)

Combining (D.16) and (D.19), we obtain the equilibrium off-exchange half spread as

s
(1)
2 =

γ

2

(
1− ϕ2

I

)
. (D.23)

Using (D.23), by market clearing, we obtain the equilibrium aggregate off-exchange liquidity supply∫ M

0

x
(1)
m2dm =

(
ζ −

(
1− ϕ2

I

)γ
2

)
ωR. (D.24)
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