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Abstract

When seeking to trade in over-the-counter markets, institutional investors typically contact

only a small number of potential counterparties and limit information disclosure (e.g., by asking

for two-sided rather than one-sided quotes). We rationalize these behaviors in a model featuring

endogenous front-running. Although contacting an additional dealer intensifies competition

and aids in finding a natural counterparty, it also intensifies information leakage—which can

be costly if it helps a losing dealer to front-run. Regarding information design, the client

optimally provides no information about her desired trade when soliciting quotes. We also

discuss implications for market design and regulation.
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1 Introduction

Most financial trading occurs over-the-counter—that is, away from centralized exchanges. Trading

in this way requires searching for a counterparty, which, due to regulatory reforms and technological

innovations, is now much easier than ever before. Nevertheless, when seeking to trade, institutional

traders typically request quotes from only a handful of dealers. Given the magnitude of institutional

transaction costs, as well as the clear benefits of competition and liquidity, these facts are difficult

to reconcile.1 We rationalize this tension in a model that features information leakage—the risk

that dealers who are contacted but not selected might front-run on the market—which, indeed,

market participants themselves recognize as an important consideration. Even if the explicit cost

of contacting an additional dealer is small, the implicit cost of information leakage may loom large.

Of course, institutions must balance this cost against the potential benefits of more competitive

quotes and better odds of locating a natural counterparty.

We formalize this tradeoff in a theoretical model. A client wishes to either buy or sell a security

and seeks fulfillment through a dealer. This client could represent either an institutional investor

(such as a pension fund or an endowment) or a traditional firm accessing the financial system. Our

main results answer how she optimally orchestrates her counterparty search. One lever is how many

dealers to contact. We show that the client may find it optimal to contact fewer than all available

dealers. In that sense, concerns about information leakage (and the front-running it leads to) act as

an endogenous search friction. Another lever is what information to provide while soliciting quotes.

Optimizing over all information structures, we show that the client finds it unambiguously optimal

to provide no information about her desired trade. These results further our understanding of the

complex tradeoffs faced by participants in over-the-counter markets, including some of the largest

markets in the world. As we discuss below, our results also have implications for the design and

regulation of trading platforms employed in many of these markets.

Model and equilibrium. In the model, the client issues a request for quotes (RFQ), contacting

either one or two dealers and providing them with a potentially informative signal of her desired

trade. Each dealer is either long or short the security, where these positions are unknown to the

client (although, for simplicity, we assume these positions to be common knowledge among the

dealers). The contacted dealers respond with two-sided quotes: one quote at which to buy and

another at which to sell. The client conducts a sealed-bid, second-price auction (with reserve).

The winning dealer then learns the client’s desired trade, while the losing dealer can only make

inferences based on the RFQ itself, together with the auction’s outcome. The winning dealer might

fulfill the client’s order in either of two ways. First, he might internalize the order against his

inventory. However, we assume position limits for the dealers, so that internalization is possible

only if the dealer is long (short) and the client’s order is to buy (sell). Second, the winning dealer

might fulfill the client’s order by trading on the market, where our model permits two periods of

1For example, Nasdaq (2022) and SIFMA (2021) estimate institutional transaction costs for U.S. equities of around
$70 billion per year.
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on-market trading. The other dealer might also trade on the market, whether he lost the RFQ or

was not contacted at all.

In equilibrium, a losing dealer trades on the market in roughly two distinct ways. If he is long

(short) while the client’s order is to buy (sell), then he might provide liquidity to the winning

dealer by selling (buying), which reduces the winning dealer’s trading costs. On the other hand, he

might front-run the winning dealer by buying (selling) initially and subsequently reversing those

trades, which increases the winning dealer’s trading costs. Both types of trading are profitable for

the losing dealer. Anticipating this, dealers’ bids account for both (i) the trading costs they would

incur if they won, and (ii) the opportunity cost consisting of the profits they would obtain if they

lost.

Our main results pertain to RFQ policies, which specify how the number of dealers she contacts,

the signal she provides, and her reserve prices will depend on characteristics of the client’s desired

trade. One question is what information the client ought to provide while issuing the RFQ. Simply

contacting a dealer already indicates that the client is seeking to trade, which may be informative,

even absent any information about how she is seeking to trade. Furthermore, the number of dealers

contacted might itself signal how she is seeking to trade (for instance, if her policy is to contact two

dealers more frequently when buying than when selling). But she might provide other information

beyond this. In the extreme of minimal disclosure, she provides no such additional information.

In our model, the prior distribution of desired client trades has two-point support: the client will

desire either to buy or to sell a fixed amount. Hence, minimal disclosure is equivalent to asking

contacted dealers to “make a two-sided market” (and saying nothing else about the desired trade).

Can the client do better by revealing additional information? In general, she provides the

dealers with a signal about her desired trade, as in Bayesian persuasion (Kamenica and Gentzkow,

2011). For example, one possibility is the opposite extreme: the case of full disclosure, in which she

fully reveals her desired trade (in other words, asking for a “one-sided market”). We obtain a strong

result: minimal disclosure is unambiguously optimal for the client among all information structures.

Notably, this result is in line with common industry practice, where additional information is rarely

volunteered at the RFQ stage (e.g., Risk.net, 2018).

To understand this optimality of minimal disclosure, notice that any such additional information

is relevant only through its effect on what the losing dealer knows. (The winning dealer learns the

direction of the client’s trade after the auction, regardless of what is revealed in conjunction with

the RFQ.) Thus, additional information facilitates a losing dealer’s ability to trade on the market,

potentially increasing the scope for both front-running and liquidity provision. This creates three

effects: (i) the losing dealer’s profits (i.e., the winning dealer’s opportunity cost) increase, (ii) the

winning dealer’s trading costs increase whenever the losing dealer uses the additional information to

front-run, and (iii) the winning dealer’s trading costs decrease whenever the losing dealer uses the

information to provide liquidity. The optimality of minimal disclosure indicates that the dominant

effects are (i) and (ii), both of which lead dealers to bid less aggressively, increasing the cost of

procurement for the client.

3



Finally, we answer the related question about how many dealers the client should contact. A

broad search has benefits. It intensifies competition among the dealers. It also improves the odds

of locating a natural counterparty—a dealer who might, by virtue of an existing position, be able

to internalize the client’s order rather than expose it to the market. Nevertheless, the client might

optimally contact fewer than all available dealers. This contrasts with conventional auction models,

where the presence of additional bidders tends to unambiguously benefit the auctioneer (Bulow and

Klemperer, 1996). The reason is that these dealers interact not only in the auction but also after

the auction, on the market. In particular, dealers who lose in the auction after being contacted

may front-run on the market, raising the winning dealer’s trading costs; a dealer may therefore bid

less aggressively when facing more competitors in the auction. Hence, information leakage raises

the client’s procurement cost not through its effect on first-order beliefs (i.e., that more dealers

know the client’s trade) but rather through second-order beliefs (i.e., that dealers know that more

dealers know). The client optimally contacts only a single dealer when this risk of front-running is

highest: when she needs to buy (or, respectively, sell) and when there is a sufficiently large prior

probability that the dealers are initially short (or, respectively, long).

Applications. Historically, over-the-counter trading was primarily conducted via telephone. Since

then, new technologies have reduced search costs. Bloomberg chat and email have largely replaced

the traditional phone call. Moreover, a variety of electronic RFQ platforms have emerged, where a

trader enters information about a desired trade, selects a set of dealers to simultaneously request

quotes from, and from the responses may then select one quote to trade against.2

Our model of the client’s procurement process most closely reflects the operation of these RFQ

platforms. Indeed, shedding light on trading incentives on RFQ platforms is valuable, given their

economic importance. These platforms dominate electronic trading in, for example, corporate

bonds. They are also used elsewhere in fixed income (e.g., treasuries, municipal bonds, mortgage-

backed securities), in derivatives (e.g., interest rate swaps, credit default swaps, options), as well

as in foreign exchange, equities, ETFs, energy markets, and crypto.3 And consistent with their

centrality to our analysis, information leakage and front-running are often cited as important con-

siderations by regulators and market participants in these settings (CFTC, 2013; BIS, 2016; CFTC,

2018; EDMA Europe, 2018; FX Markets, 2021; SEC, 2022).

These RFQ platforms can differ in various specifics, including whether they constrain a trader

in choosing how many potential counterparties to contact and whether to reveal the direction of

her trade. One interpretation of our results is as a positive description of the behavior to be

2Several such platforms have been studied in the academic literature. For example, Hendershott and Madhavan
(2015), Hendershott, Livdan and Schürhoff (2021), and O’Hara and Zhou (2021) study the trading of U.S. corporate
bonds on MarketAxess; Collin-Dufresne, Junge and Trolle (2020) and Riggs, Onur, Reiffen and Zhu (2020) study
index credit default swaps on swap execution facilities such as those of Bloomberg and Tradeweb; and Allen and
Wittwer (2021) study Canadian government bonds on CanDeal.

3The fraction of electronic dealer-to-client trading that takes place via RFQ platforms has been estimated at 95%
in corporate bonds (BIS, 2016), 70% in European ETFs (Financial Times, 2021), 60% in options (Traders Magazine,
2019), 57% in treasuries (PIFS, 2022), and 40% in foreign exchange forwards (Hau, Hoffmann, Langfield and Timmer,
2021).
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expected on platforms that do not constrain traders’ choices, where our results rationalize some

behaviors observed in practice. Another interpretation (explored further in Section 3.7) is that

our results have normative implications for constraints that might be imposed by platform design

and regulation. Regarding regulation, our analysis supports arguments against a CFTC rule that

mandates contacting a minimum number of potential counterparties when trading certain swaps.

Regarding platform design, our analysis highlights the welfare implications of details concerning

order exposure, information policy, and anonymity.

Beyond the application to RFQ platforms, our model of the client’s procurement process might

also be interpreted to represent off-platform over-the-counter trading (conducted via email or

Bloomberg chat). In that sense, our model speaks to block trades more broadly.

The on-market trading of our model could, depending on asset class, represent a centralized

exchange (as exists in, e.g., equities trading).4 Alternatively, it could represent an inter-dealer

market, in which case our analysis is most applicable to settings where the inter-dealer market is

active, as for index swaps, foreign exchange, or thickly-traded bonds (and less applicable to settings

with inactive inter-dealer markets, such as single-name swaps or thinly-traded bonds).

Related literature. One connection is to the literature on over-the-counter markets pioneered

by Duffie, Gârleanu and Pedersen (2005). In these models, exogenous technological constraints

explain why a client contacts only a small number of potential counterparties.5 This explanation

has, however, become increasingly less compelling as new technologies—electronic platforms, email,

Bloomberg chat—have largely eroded explicit search costs. Indeed, explicit search costs in many

modern electronic markets are not just small, but effectively zero (Budish, Lee and Shim, 2020).

Instead, our model suggests that the more pertinent search friction is the implicit cost of information

leakage.6

Although we are not the first to recognize that information leakage may constitute a search

friction, we contribute by proposing a model of trading in which it does so endogenously. In the

paper most closely related to ours, Hendershott and Madhavan (2015) explore a similar tradeoff

between competition and information leakage. Although their primary emphasis is an empirical

analysis of corporate bond trading, they offer a simple model to serve as a theoretical framework. In

their model, the tradeoff between competition and information leakage is represented by exogenous

4Such a centralized exchange is sometimes referred to as the “downstairs” market. In contrast, block trades (such
as that between the client and the winning dealer in our model) are sometimes referred to as occurring “upstairs.”

5In a similar spirit, a sequential searcher might stop before exploring every option if search entails explicit costs
(Stigler, 1961; Weitzman, 1979, or various IO search models). Likewise, an auctioneer might limit participation if it
is costly to solicit bidders (Lauermann and Wolinsky, 2017; Riggs, Onur, Reiffen and Zhu, 2020).

6Besides information leakage, several other frictions studied in previous literature could similarly inhibit compe-
tition. For example, an auctioneer might limit participation if it is costly for bidders to learn their values (Levin
and Smith, 1994) or to prepare their bids (Menezes and Monteiro, 2000; Wang, 2022); in common-value or almost-
common-value auction settings, due to a winner’s curse (Bulow and Klemperer, 2002; Riggs, Onur, Reiffen and Zhu,
2020); as well as in tournaments and contests (Taylor, 1995; Fullerton and McAfee, 1999; Che and Gale, 2003). Or
in sequential search, a trader might stop before reaching all potential counterparties if quotes expire immediately,
because a repeated contact signals that the trader has a low outside option (Zhu, 2012). And a trader might opt
for bilateral bargaining over simultaneous multilateral search if the former provides her with more bargaining power
(Glebkin, Yueshen and Shen, forthcoming).
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objects.7 Likewise, the cost of information leakage is exogenously represented also by Burdett and

O’Hara (1987), who analyze a related problem in which a block trader—essentially a dealer who

has already been approached by a large client and is now assembling a syndicate to participate in

the other side of the trade—determines how many potential counterparties to contact. In contrast,

in our model the cost of information leakage is fully endogenous, captured by the equilibrium of

the continuation trading game. Endogenizing the cost of information leakage not only puts sound

theoretical foundations underneath the intuitive tradeoffs but also allows us to analyze when this

cost is likely to loom large or small, as well as how it interacts with the information provided to

potential counterparties at the RFQ stage.

Another novel contribution is to explore the role of information design in this setting. Our

result on the optimality of minimal disclosure provides a microfoundation for the common practice

of asking for two-sided quotes. Methodologically, our analysis uses tools from the Bayesian per-

suasion literature (Kamenica and Gentzkow, 2011). Information design plays a role in our model

because bidders’ values in the client’s procurement auction are endogenous, determined by expecta-

tions about subsequent trading—which information provision affects. This distinguishes our setting

from auction models in which information provision serves instead to provide bidders with better

information about their own exogenous values (Milgrom and Weber, 1982; Bergemann and Pe-

sendorfer, 2007; Eső and Szentes, 2007; Ganuza and Penalva, 2010; Li and Shi, 2017; Bergemann et

al., 2022). The subsequent trading also connects our model to the literature on auctions with resale,

particularly to papers where the resale motive stems from bidders’ inventory constraints (Bikhchan-

dani and Huang, 1989).8 The relevant force is that information provision promotes front-running.

Similar front-running occurs also in the literature on predatory trading (Brunnermeier and Peder-

sen, 2005; Carlin, Lobo and Viswanathan, 2007; Sannikov and Skrzypacz, 2016). In our model the

extent of front-running is endogenous, influenced, for example, by the client’s information design

choices.

2 Model

We begin with a formal description of the model. We then discuss modeling choices and introduce

parametric assumptions.

7Specifically, d parametrizes the markup that a dealer sets in bilateral trade, π the competitiveness of a multi-
dealer auction, q the probability of auction failure, and s the adverse price movement due to information leakage if
the auction fails. Each object can flexibly depend on a vector of characteristics x. The benefits of competition are
therefore captured by [1− q(x)][d(x)− π(x)], and the costs of information leakage by q(x)s(x).

8In other models, the resale motive originates from ex-ante asymmetries among the bidders (Gupta and Lebrun,
1999; Zheng, 2002; Calzolari and Pavan, 2006; Garratt and Tröger, 2006; Hafalir and Krishna, 2008; Carroll and
Segal, 2019); from new information that is learned after the auction (Haile, 2003); or from collusion (Garratt, Tröger
and Zheng, 2009). Also related is the literature on auctions with externalities, which is motivated by settings with
downstream interaction among the bidders (Jehiel, Moldovanu and Stacchetti, 1996; Jehiel and Moldovanu, 1996,
2000). A difference is that, in our model, the auction affects the downstream interaction not only through the
allocation it generates (as in this literature) but also through the number of bidders who were invited to participate
and the information that was revealed.
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2.1 Setup

Players. There are three players: a client and two dealers. The dealers are labelled A and B,

and we define I0 = ∅, I1 = {A}, and I2 = {A,B}. The client realizes a trading need of size s̄ > 0

shares. Depending on whether this is to sell or to buy, we say that the client’s trading need is

s ∈ {−s̄, s̄}. We use the convention that s = s̄ means that she seeks to buy.

Timing and information sets. First, the client observably commits to an RFQ policy. Such a

policy consists of a finite realization space Σ together with a profile of distributions (πs′)s′∈{−s̄,s̄}

over Σ× {0, 1, 2} × R2. The interpretation is that, given the realized s, the distribution πs will be

used to generate a realization (σ,M, b̄) ∈ Σ× {0, 1, 2} ×R2. At that point, the dealers i ∈ IM will

be contacted, informed of σ, and invited to participate in a second-price auction with M bidders

and with reserve prices b̄ = (b̄−s̄, b̄s̄).
9

Second, Nature draws the client’s trading need s ∈ {−s̄, s̄}, where φ0 is the prior probability of

s̄. Nature also draws a vector of initial dealer inventories (eA, eB) ∈ {−ē, ē} × {−ē, ē}, with ē ≥ 0.

Both dealers commonly observe the entire vector of realized inventories. We parameterize the joint

distribution of (eA, eB) so that (i) ρ ∈ [−1, 1] is the correlation of eA and eB, and (ii) for each

dealer i, ψ ∈
( ρ−

1+ρ− ,
1

1+ρ−

)
is the marginal probability that ei = ē, where ρ− ≡ −min(ρ, 0). To

that end:

(eA, eB) =



(ē, ē) w.p. ψ[1− (1− ψ)(1− ρ)]

(ē,−ē) w.p. ψ(1− ψ)(1− ρ)

(−ē, ē) w.p. ψ(1− ψ)(1− ρ)

(−ē,−ē) w.p. (1− ψ)[1− ψ(1− ρ)]

Third, the client follows through on the RFQ policy to which she previously committed. That

is, (σ,M, b̄) ∼ πs is drawn and observed by each dealer i ∈ IM . Such a realization is an RFQ.

Fourth, each dealer i ∈ IM submits a bid: a vector bi = (bi−s̄, b
i
s̄) ∈ R2, where each component

represents the smallest commission that dealer i will accept to facilitate the corresponding trade.

Fifth, a second-price auction with reserve is held. Let b
(m)
s denote the mth order statistic among

(bis)i∈IM . As this is a procurement auction, low bids are preferred. The winning dealer is chosen

uniformly at random from
{
i ∈ IM : bis = min(b̄s, b

(1)
s )
}

. If there is a winner, then the auction also

determines a procurement cost c ≡ min(b̄s, b
(2)
s ). The winning dealer then observes s, while any

losing dealers observe only the identity of the winner. If there is no winner, the game ends.10

9As in Kamenica and Gentzkow (2011), RFQ policies can implement any Bayes-plausible distribution over posterior
beliefs about s. For example, let Σ = {Sell, Buy} and for α ∈ [0, 1]

π−s̄ =

{(
Sell, 2, (s̄2, s̄2)

)
w.p. 1+α

2(
Buy, 2, (s̄2, s̄2)

)
w.p. 1−α

2

πs̄ =

{(
Sell, 2, (s̄2, s̄2)

)
w.p. 1−α

2(
Buy, 2, (s̄2, s̄2)

)
w.p. 1+α

2

At one extreme, the policy with α = 0 reveals nothing about s. At the other, α = 1 fully reveals s.
10Ending the game here is equivalent to requiring that all subsequent on-market trades by the dealers be for zero

shares (i.e., xi1 = xi2 = 0 for i ∈ {A,B}). We could allow for nonzero on-market trades when there is no winner;
however, no such trading would take place in the equilibrium of any such subgame. Thus, ending the game is a
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Sixth, two periods of on-market trading occur. For the first such period, each dealer i ∈ {A,B}
simultaneously submits a market order to buy xi1 ∈ R shares. These first-period trades occur at the

price p1 = p0 + θ(xA1 + xB1 ), where θ > 0 and p0 ∈ R. Having observed p1, each dealer i ∈ {A,B}
then simultaneously submits a market order to buy xi2 ∈ R shares. These second-period trades

occur at the price p2 = p1 + θ(xA2 + xB2 ). In making trading decisions, each dealer i is constrained

to keep his final inventory within ē shares, long or short: if he wins, then ei + xi1 + xi2− s ∈ [−ē, ē],
and if he does not win, then ei + xi1 + xi2 ∈ [−ē, ē]. In addition, if a dealer i is not contacted,

then he cannot trade in the first period: xi1 = 0. And to simplify the proofs, we also assume the

constraint xi1 ∈ [−s̄, s̄], which never binds and is made only to reduce the number of cases that

must be formally checked.11

Seventh, the client pays the winning dealer c + sp0 in exchange for s shares. Outstanding

positions are then liquidated for a dividend of p0.

Payoffs. If there is no winner, the client’s payoff is ū ∈ [−∞,∞]. If there is a winner, her payoff

is −c. If dealer i wins, his payoff is c+ (ei + xi1 + xi2 − s)p0 − p1x
i
1 − p2x

i
2. If dealer i does not win,

his payoff is (ei+xi1 +xi2)p0−p1x
i
1−p2x

i
2. All players are risk-neutral expected utility maximizers.

2.2 Remarks

Modeling the client. We have assumed that the client can obtain execution only by trading

with a dealer (and cannot trade on the market directly).12 This assumption is realistic for many

institutional investors who commonly lack either the infrastructure, expertise, membership rights,

or regulatory clearance to access markets directly. Alternatively, the client’s outside option ū

might be interpreted as the expected utility she would derive from other modes of trading. (We do,

however, subsequently specialize the model to the case of ū = −∞ so as to ensure that the client

uses a dealer on path.)

The assumption that only two dealers are available to the client is not only useful for tractability

but also somewhat realistic: being costly to develop, a client will in practice have relationships

with only a limited number of dealers (as empirically documented by, e.g., Bernhardt, Dvoracek,

Hughson and Werner, 2004; Hendershott, Li, Livdan and Schürhoff, 2020; Riggs, Onur, Reiffen and

Zhu, 2020; Allen and Wittwer, 2021). Relationship formation costs include, for example, the need

to establish credit or clearing relationships, various administrative considerations, or the promise of

future rents necessary to delay holdup (as modeled by Board, 2011). Our analysis takes for granted

the limited set of dealers with which the client has a relationship, then seeks to understand how

she optimally orchestrates a procurement process within that set.

harmless assumption made only for simplicity.
11Here is the intuition for why this constraint on first-period trade sizes does not bind in equilibrium. The most

the winning dealer ever needs to trade on the market (to satisfy constraints on his final inventory) is s̄. Due to price
impact, he would not wish to trade more than that amount in total—and certainly not more than that amount in
the first period. Given that, the other dealer also would not wish to trade more than s̄ in the first period.

12For models of endogenous choice between trading on the market and trading with a dealer, see, e.g., Seppi (1990);
Lee and Wang (2022).
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Our formulation of the client’s RFQ policy generalizes how communication is modeled in the

Bayesian persuasion literature (Kamenica and Gentzkow, 2011). In that literature, a sender, who

will privately observe her type s ∈ S, commits to a signal realization space Σ together with

a profile of distributions (πs′)s′∈S over Σ. In our formulation, the client likewise commits to a

policy that determines the signal she will send—but also the number of dealers she will contact

and the reserve prices she will use. A standard justification for this commitment assumption is

that commitment power may come informally through reputation and repeated interaction. This

standard justification seems particularly well-suited to our setting, as clients in practice do indeed

typically have a limited number of dealers with whom they interact repeatedly. A second way in

which trading firms might commit to such policies is through the business protocols they formulate

and require their trader employees to follow. Moreover, Appendix B shows that some of our main

results in fact do not depend on the client’s ability to commit.13

The client-dealer interactions that we model are often of a repeated nature in reality. (Indeed, as

just discussed, the standard commitment assumption might be motivated by repeated interaction.)

Although this paper focuses on a one-shot version of this interaction, dynamics could introduce

several forces. For example, the client could threaten to punish a dealer who was detected to have

front-run in the past by avoiding him in the future. Such threats could deter front-running, making

the client better off.14 In Appendix D we solve the model under the assumption that the losing

dealer does not front-run, which we show does indeed make the client better off. However, this also

leads the client to behave differently in important ways: she ceases to restrict her search, and she

discloses weakly more information. Such behavior would be inconsistent with various stylized facts

about counterparty search: clients often restrict their searches, and they exhibit a strict preference

for secrecy. We conclude from this analysis that, in practice, front-running is not eliminated by

implicit threats to punish it, perhaps because of various barriers to carrying out such threats.15

We assume the client contacts dealers simultaneously. Although counterparty search was once

done primarily over the phone (and hence sequentially), it is today more commonly done via email,

Bloomberg chat, or through RFQ platforms, where search is more often simultaneous.16 A related

point is that we assume the contacted dealers know how many other dealers have been contacted,

which is consistent with the operation of many RFQ platforms.17 Thus, in our model, dealers are

13Specifically, our result that the client communicates no information about the direction of her trade (beyond
what is conveyed through the number of dealers that she contacts) holds regardless of her ability to commit. Thus,
allowing the client to commit only strengthens this result about the optimality of minimal disclosure.

14On the other hand, dynamics could also allow the dealers to soften their competition through tacit collusion,
making the client worse off. A natural way of dealing with this equilibrium multiplicity is to focus, as we do, on
equilibria of the one-shot version of the game.

15Barriers include: (i) data on dealer trades and/or market prices might be unavailable; (ii) even if available,
such data would permit only statistical detection of front-running; and (iii) clients have only a limited number of
relationships, so an implicit threat to destroy one such relationship might lack credibility.

16For example, at least 40% of customer-sell-to-dealer trades in U.S. collateralized loan obligations are conducted
via an auction-like mechanism in which bids are simultaneously solicited from dealers via email (Hendershott, Li,
Livdan and Schürhoff, 2022a).

17For example, this assumption is consistent with CanDeal (Allen and Wittwer, 2021), as well as the Bloomberg
and Tradeweb swap execution facilities (Riggs, Onur, Reiffen and Zhu, 2020). We also assume that all contacted
dealers observe the same signal, which likewise reflects the operation of RFQ platforms.
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uncertain about neither the number of dealers that have been contacted nor the sequence in which

they have been contacted. Instead, dealers’ uncertainty concerns the direction of the client’s desired

trade. Though our model contains no asymmetric information about the security’s fundamental

value, uncertainty about the client’s trading direction is relevant because trades have price impact.

We assume the client uses a second-price auction with reserve. Identical results would be

obtained if the auction mechanism were a first-price auction with reserve, essentially by the revenue

equivalence theorem (Myerson, 1981). However, as in Bertrand competition, we would then need

to either (i) specify an appropriate tie-breaking rule, or (ii) use a model with discrete bidding

increments. Our assumption of a second-price auction circumvents these issues. Nevertheless,

this assumption is not completely without loss: given that the dealers’ initial inventories may be

correlated, more complex auction formats permit full surplus extraction (e.g., Crémer and McLean,

1988). Our analysis rules out such possibilities because we think it is more realistic to focus on

standard auction formats.

We also treat the client’s order as an indivisible unit. Partly, this is for simplicity: it limits the

potential outcomes of the auction. Partly, this is to reflect reality: our discussions with industry

participants reveal that splitting an order among competing dealers would typically violate industry

norms (although a subsequent order might well go to a different dealer). Moreover, treating the

order as indivisible might in fact be optimal: share auctions often produce worse outcomes for the

auctioneer than corresponding unit auctions, due to the classic demand/supply reduction problem

(Wilson, 1979; Viswanathan and Wang, 2004).18

In assuming that the client’s desired trade is s ∈ {−s̄, s̄}, we permit uncertainty about only

the direction of her trade—not about its size. This modeling choice reflects the operation of many

RFQ platforms, where a trader can request two-sided quotes after specifying a trade size. Even

for off-platform trading, clients commonly disclose the size of their desired trade when requesting

quotes via phone, email, or Bloomberg chat. Nevertheless, Appendix F considers a version of the

model with uncertainty about trade size (but no longer uncertainty about trade side). We obtain

qualitatively similar results.

Modeling the dealers. We have assumed that dealers have position limits of ē shares, in that

each dealer’s final inventory (after both periods of on-market trading and after any trade with

the client) must not exceed ē shares, either long or short. This position limit can be interpreted

as either a risk limit or a capital constraint. We also assume that dealers are risk neutral (and

experience no holding costs) for inventories within the position limits. Because risk aversion would

create a separate trading motive for the dealers, this is to isolate trading dynamics that stem from

the client’s presence.19

18Share auctions are not the only way to permit divisibility. For example, the client could permit each dealer to
win exactly half of her total order. Appendix E shows this cannot be optimal for the client, essentially because a
dealer who receives part of the order fails to internalize the externalities its trading creates for dealers who receive
other parts.

19Another consideration is that it would be efficient for the client to insure a risk-averse dealer against price shocks.
For an investigation of optimal contracts for principal trading with a risk averse dealer (in a model with price shocks),
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The primary interpretation of a dealer’s inventory in our model is his proprietary position, which

could originate from speculation or from a previous (and unmodeled) interaction with a different

client. Alternatively, his inventory could represent the trading desires of his other (unmodeled)

clients. Indeed, if these other clients are inclined to buy (sell), then that would, all else equal,

induce the dealer to bid more aggressively for a selling (buying) order from the focal client—just

as a long (short) propriety position would.20

If not contacted, dealer i is constrained to set xi1 = 0. Without this constraint, such a dealer

might indeed want to trade in the first period—but only as an artifact of how we have structured

the model. To explain, a more realistic (albeit unnecessarily complicated) model would feature

many trading days, each with two trading periods (representing, perhaps, the morning and the

afternoon), where on only some days would a client arrive seeking to trade. As the probability

of a client arriving on any given day diminishes, so too would the first-period trading motive of a

dealer who was not contacted that day. On the other hand, simply being contacted tells a dealer

that a client has arrived, which may be informative in such a model.21 To simplify, we instead

model a single client arrival at a fixed time. Then, to align equilibrium behavior with what would

be expected in a more realistic model such as the one described above, that a dealer trades in the

first period only if contacted is something that must be imposed directly.

We have assumed that each dealer knows the other’s realized initial inventory. This assump-

tion of perfect knowledge—although extreme—captures in a stylized way that clients are likely

to have worse information about dealers than dealers have about each other. Owing to frequent

interactions, dealers might in practice be quite familiar with their competitors. They might also

learn about competitors’ positions by, for example, inspecting published indications of interest, by

inspecting trade data, or via communication (e.g., informal backroom chats or so-called “talking

your book”). This assumption is also useful for tractability, as without such perfect knowledge, a

dealer’s uncertainty would be two-dimensional (about both the client’s trading direction and his

competitor’s inventory), leading to a complex Bayesian updating problem.

A natural case of interest is that in which the client has symmetric buying and selling needs

(i.e., φ0 = 1
2) and in which the dealers have equal probabilities of being long and short (i.e., ψ = 1

2).

There is, however, value in allowing for asymmetric parametrizations. For example, settings where

the client expects that dealers are more likely to be long than short are captured by ψ > 1
2 .

Likewise, settings where the client is more likely to be buying than selling (e.g., because the client

is a pension fund with young members) are captured by φ0 >
1
2 .

Dealers in practice do not always respond to RFQs. In their dataset, Riggs, Onur, Reiffen and

see Baldauf, Frei and Mollner (2022a,b).
20A riskless principal trade is said to occur when a dealer conducts opposing trades with two separate clients.
21This elaboration of the model highlights a potential puzzle: why does a client not always request quotes from

dealers, even on days that she is not seeking to trade? With such a signal-jamming strategy, being contacted no
longer reveals to a dealer that the client is seeking to trade, potentially ameliorating information leakage. The answer
may be that such behavior—making RFQs that are not in good faith—violates industry norms. Indeed, Riggs, Onur,
Reiffen and Zhu (2020) find that, in their dataset of RFQs made on swap execution facilities, 92% result in trades,
which is inconsistent with significant use of such signal-jamming strategies in practice.
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Zhu (2020) find an overall response rate of nearly 90%. In our model, bids that do not meet the

client’s reserve price can be interpreted as non-responses.

Modeling the market. We assume an exogenous price process, with θ as the coefficient of per-

manent price impact. This process resembles, for example, the baseline model of Bertsimas and Lo

(1998). Moreover, it could be micro-founded by adding a competitive fringe of long-term investors

to the model. Specifically, assume that at each trading period the aggregate demand of these in-

vestors is Y (p) = 1
θ (p0 − p). Such a downward-sloping demand could stem from several sources,

including risk aversion, institutional frictions, or concerns about adverse selection (although, to be

clear, our model does not feature asymmetric information about fundamentals). Note also that

this aggregate demand depends only on the current price p, so that these traders do not attempt to

profit from short-term price swings. Brunnermeier and Pedersen (2005) make the same set of as-

sumptions, which they argue could be appropriate if these long-term traders lacked the information,

skills, or time necessary for predicting price changes.

The assumed price process is a deterministic function of the previous period’s price and the

current period’s trades. This is mainly for tractability: adding price shocks would complicate the

belief updating of losing dealers.

In modeling price impact, we aim to capture transitory price pressures away from efficient prices,

which revert over the long run and do not affect the security’s fundamental value. For this reason,

we assume that dealer positions are liquidated at p0, the initial price, rather than at p2, the price

prevailing in the last trading period.

2.3 Parametric assumptions

Henceforth, we set—without loss of generality—the initial price level to p0 = 0, the coefficient of

permanent price impact to θ = 1, and dealers’ position limits to ē = 1.

We also assume the client’s trade size is s̄ ≤ 2. This is not without loss of generality, but yields

conclusions qualitatively similar to what obtains with larger s̄.22

Our goal is to characterize the cost-minimizing RFQ policy among those ensuring execution with

probability one. To achieve this formally, we assume ū = −∞, meaning that the client experiences

infinite disutility from not trading.

3 Equilibrium

We begin by describing our solution concept, a refinement of weak perfect Bayesian equilibrium

(WPBE). With that in hand, we solve backward, first deriving outcomes following any RFQ policy,

then deriving an optimal policy.

22Larger values of s̄ would need to be handled as mathematically separate cases because additional constraints
come into play. For example, with s̄ > 2, the winning dealer can never fully internalize the client’s order, and so
must trade at least some amount on the market regardless of his initial position.
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3.1 Solution concept

The solution concept is a refinement of WPBE. To begin, observe that a WPBE consists of the

following elements: (i) an RFQ policy for the client, (ii) actions for the dealers (i.e., bids and

trades), and (iii) beliefs for the dealers.

Bidding behavior. The first three aspects of the refinement concern bidding behavior. In a clas-

sic second-price auction with private values, each bidder has two payoff-relevant outcomes (winning

and losing) and a unique dominant strategy—bidding the difference in its values across those out-

comes. Our setting, however, comprises not only an auction but also a continuation trading game

that affects the relative values of winning and losing in the auction. Thinking of the entire game,

the set of undominated strategies is quite large and in particular does little to pin down bidding

behavior. Nevertheless, the auction can be analyzed in isolation if the equilibrium of the continua-

tion trading game is computed and used to fix the dealers’ values for the auction (as by backward

induction). Conceiving of the auction in isolation in this way, a dealer has a unique dominant bid

if he is the only one contacted: to bid the difference in his values between winning and losing. Our

refinement requires this bid to be played.

The situation is somewhat more complicated when both dealers are contacted, because the

auction is then one with externalities. That is, each dealer has three payoff-relevant outcomes:

either he wins, his competitor wins, or neither wins. Even if values in the auction are fixed via

backward induction, there is in general no dominant strategy. But if such an auction’s reserve price

were non-binding (so that the outcome in which neither wins does not occur in equilibrium), then

there is an analogue: each dealer should bid the difference in its values between the outcomes in

which he wins and in which his competitor wins. Our refinement requires these bids to be played

when the reserves happen to be non-binding.

We also require bidders to use symmetric bidding strategies.

Beliefs. The final aspects of the refinement concern dealer beliefs. Although the winning dealer

observes whether the client seeks to buy or sell, the other dealer does not observe this directly and

must instead infer from what he does observe. Our refinement applies to how this other dealer

infers from the winning dealer’s first-period trades.

We focus on equilibria in which these beliefs have a threshold structure. To state this formally,

suppose (without loss of generality) that dealer A is the winner, and let µB2 (xA1 ) denote the prob-

ability that s = s̄ under B’s beliefs as a function of A’s first-period trade. We require this to be

a function that jumps from zero to one: (i) for all x ∈ [−s̄, s̄], µB2 (x) ∈ {0, 1}, and (ii) for all

x′ < x′′, µB2 (x′) = 1 =⇒ µB2 (x′′) = 1 and µB2 (x′′) = 0 =⇒ µB2 (x′) = 0. One implication of

this requirement is that we focus on separating equilibria in which the winning dealer’s first-period

trade fully reveals the realized s to the other dealer.

We also require these beliefs to satisfy an analogue of the intuitive criterion (Cho and Kreps,

1987). To explain, again suppose (without loss of generality) that dealer A is the winner. Dealer A’s
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objective in the continuation trading game is to minimize his trading costs p1x
A
1 + p2x

A
2 , subject to

the constraints on his final inventory. Given knowledge of A’s objective, what can dealer B believe

about s following an out-of-equilibrium choice for xA1 ? Fix an equilibrium. For s′ ∈ {−s̄, s̄}, let

CA∗ (s′) represent A’s equilibrium trading costs given s′, and let CA(s′, xA1 , µ
B
2 ) represent A’s trading

costs from xA1 and the equilibrium xB1 , together with the second-period trades in the equilibrium of

the game continuing from (xA1 , x
B
1 ) given s′ and given that B believes s = s̄ with probability µB2 .23

We require that for all out-of-equilibrium xA1 , neither of the following pairs of conditions holds:

CA∗ (s̄) < min
µB2 ∈[0,1]

CA(s̄, xA1 , µ
B
2 ) and CA∗ (−s̄) > CA(−s̄, xA1 , 0)

CA∗ (−s̄) < min
µB2 ∈[0,1]

CA(−s̄, xA1 , µB2 ) and CA∗ (s̄) > CA(s̄, xA1 , 1)

After stating Lemma 1, we provide an example to illustrate this criterion and to review the moti-

vation that Cho and Kreps (1987) provide for it.

Henceforth, we use equilibrium to refer to this refinement of WPBE.

3.2 Contacting one dealer

We begin by analyzing continuation equilibrium in subgames following RFQs that contact one

dealer. We have assumed that dealer A is the one contacted. This is without loss of generality

because dealers are symmetric from the client’s perspective.

Recall that an RFQ policy is defined by a signal realization space Σ and distributions (πs′)s′∈{−s̄,s̄}

over Σ× {0, 1, 2} × R2. Fix such an RFQ policy. Fix, moreover, some RFQ (σ,M, b̄) with M = 1.

It suffices to focus on RFQs that occur on path, so we assume π−s̄(σ,M, b̄) + πs̄(σ,M, b̄) > 0. We

also define

φ =
φ0πs̄(σ,M, b̄)

(1− φ0)π−s̄(σ,M, b̄) + φ0πs̄(σ,M, b̄)

as the posterior probability of s = s̄ induced by this RFQ. Note that φ ∈ [0, 1] and that it may

differ from the prior φ0.

Lemma 1. In the class of RFQs that contact M = 1 dealer and guarantee execution with probability

one, the minimum expected procurement cost is ĉ1 = 3s̄2

4 . It is achieved by RFQs featuring reserve

prices b̄ = (3s̄2

4 ,
3s̄2

4 ).

To prove Lemma 1, we begin by deriving the unique equilibrium actions in the subgame following

any RFQ that contacts one dealer. After sketching that derivation, we explain how the lemma’s

claims follow. Formal proofs are in Appendix A.

Continuation equilibrium. Because both dealers observe the entire vector (eA, eB), the four

possible realizations of that vector can be analyzed separately. Let us focus on the case of (eA, eB) =

23The main subtlety is in determining CA(s, xA1 , µ
B
2 ). Technically, the equilibrium that we have fixed does not

specify what second-period trades would be under out-of-equilibrium beliefs µB2 . Nevertheless, the structure of the
model allows these to be uniquely computed.
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(1,−1). Suppose that dealer B’s beliefs in this case are that s = s̄ with probability

µB2 =

1 if − s̄
6 ≤ x

A
1 ≤ s̄

0 if − s̄ ≤ xA1 < − s̄
6

(1)

In words, if dealer A’s first-period trade is above (below) the threshold − s̄
6 , then dealer B believes

with certainty that the client is a buyer (seller). For an informal derivation of the unique on-path

actions, consider two subcases:

• First, suppose the client’s order is to buy (i.e., s = s̄). Dealer A, being initially long (i.e.,

eA = 1), can simply internalize the order. As a result, no on-market trading happens in

equilibrium. Mathematically, if we use p1 = xA1 and p2 = xA1 + xA2 + xB2 , and if we ignore

constraints on final inventory (which are slack in the equilibrium), then dealer A minimizes his

trading cost xA1 x
A
1 + (xA1 + xA2 + xB2 )xA2 , and dealer B minimizes (xA1 + xA2 + xB2 )xB2 , leading

to xA2 = xB2 = −xA1
3 . Inducting backward, we obtain xA1 = 0, so that xA2 = xB2 = 0 on path.

Panel (d) of Figure 1 illustrates these equilibrium trades.

Plugging in these trades, dealer A incurs no trading costs if he wins, so that bidding bAs̄ = 0 is

optimal—and in fact required by the refinement described in Section 3.1.

• Second, suppose the client’s order is instead to sell (i.e., s = −s̄). Dealer A now cannot

internalize and must sell on the market. In equilibrium, dealer B provides liquidity to dealer A

by buying on the market. Mathematically, if we assume that xA2 = −s̄−xA1 (which ensures that

dealer A’s final inventory just meets the constraint eA + xA1 + xA2 − s ≤ 1) and if we ignore all

other constraints on final inventory, then dealer A minimizes xA1 x
A
1 + (−s̄+ xB2 )(−s̄− xA1 ), and

dealer B minimizes (−s̄+xB2 )xB2 , leading to xB2 = s̄
2 . Inducting backward, we obtain xA1 = − s̄

4 .

Panel (c) of Figure 1 illustrates these equilibrium trades.

Plugging in these trades, dealer A incurs trading costs of 7s̄2

16 if he wins, implying a bid of

bA−s̄ = 7s̄2

16 .

Note that the beliefs (1) comport with the above derivation of equilibrium actions. Implicit in the

derivation is that dealer B can condition xB2 on the realized s; although he cannot do so directly, he

can do so indirectly because xA1 reveals s under the beliefs (1). Moreover, these beliefs are indeed

consistent with dealer A’s equilibrium first-period trades xA1 whenever Bayes’ rule can be applied.

Alternatively, if (eA, eB) = (1, 1), then equilibrium trades are as illustrated in Panels (a) and (b)

of Figure 1. The remaining inventory configurations (in which dealer A is initially short) are handled

symmetrically.

The client’s cost of procurement. The client’s procurement cost is determined by a second-

price procurement auction. In this case where only one dealer is contacted, the reserve is what sets

the price. Of course, execution does not occur when the dealer’s bid exceeds the reserve. To ensure

execution with probability one, the client’s reserve must be at least the dealer’s bid in the worst
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Figure 1: Trading dynamics when contacting one dealer
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(d) (s, eA, eB) = (s̄, 1,−1)

Suppose dealer A is the only one contacted, and suppose he wins the client’s order. The four
panels depict trades on the continuation equilibrium path for four cases of the client’s trading
need s and the dealer inventories (eA, eB). The remaining four cases are symmetric. Positive
(negative) bars represent orders to buy (sell). No trading occurs in panels (b) and (d). Verti-
cal axes suppress units because all quantities scale linearly with s̄. Mathematical expressions
are provided by Lemma A1.

case. If the client sells, the worst case is (eA, eB) = (1, 1). As we specify in the proof of Lemma 1,

bA−s̄ = 3s̄2

4 in this case. (By symmetry, this is also the worst-case value for bAs̄ .) Therefore, the

expected procurement cost resulting from an RFQ that contacts one dealer, induces a belief that

φ is the probability of s = s̄, and guarantees execution with probability one is at least

ĉ1 = φ
3s̄2

4
+ (1− φ)

3s̄2

4
=

3s̄2

4
,

as claimed by Lemma 1. Moreover, the RFQ that uses reserve prices b̄ = (3s̄2

4 ,
3s̄2

4 ) both ensures

execution with probability one and achieves the cost ĉ1.

Note that ĉ1 does not depend on the probability of s = s̄ that the RFQ induces (which we have

labelled φ). This is for two reasons. First, the reserve prices specified by Lemma 1 are constant in

φ. Intuitively, this is because there is no role for information design when M = 1: the contacted
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dealer submits a separate quote for each state, and he will moreover learn the state before he trades.

Second, these reserve prices are equal, so that although ĉ1 can be thought of as a weighted average

of the two (with weight φ on b̄s̄), the weight does not matter. Intuitively, this is due to the model’s

symmetric structure. As we will see, this changes when two dealers are contacted: the analogous

quantity ĉ2 will be a non-constant (and in fact non-linear) function of φ, which creates a role for

information design.

Likewise, ĉ1 also does not depend on ρ and ψ, which govern the distribution of (eA, eB). This

is because the client’s cost is set by her reserve prices, and because the reserve prices specified by

Lemma 1 are driven by the worst case. Although (ρ, ψ) affect the distribution over the various

cases for (eA, eB), they do not affect equilibrium outcomes in those cases—and in particular do not

affect the worst case. As we will see, this also changes when two dealers are contacted: the client’s

cost may then be set by the losing dealer’s bid, and thus no longer driven solely by the worst case.

Finally, note that ĉ1 scales with the square of s̄. And if we divide by p0s̄ so as to express ĉ1

relative to the initial value of the position (as in typical measures of implementation shortfall), then

the resulting measure scales with s̄ itself. The same is true for the analogous quantity ĉ2, which

we subsequently derive. In particular, all these measures disappear in the limit as s̄ → 0 because

as traded quantities vanish, the amount of price impact vanishes also.

The intuitive criterion. Finally, we provide an example to illustrate what role the intuitive

criterion (Cho and Kreps, 1987) plays in our equilibrium selection. As above, focus on the case of

(eA, eB) = (1,−1). There is another WPBE in which dealer B’s beliefs entail a threshold lower

than that in (1)

µB2 =

1 if − s̄
2 < xA1 ≤ s̄

0 if − s̄ ≤ xA1 ≤ − s̄
2

(2)

and in which dealer A sells more in the first period when s = −s̄—in particular, selling just enough

to meet the threshold: xA1 = − s̄
2 . The intuition is that when s = −s̄, A’s inventory constraint binds,

and he must sell on the market. If B believes that s = −s̄, then in the second trading period, he

provides liquidity to A by buying on the market. And because A would like B to provide this

liquidity to him, xA1 = − s̄
2 is set at the threshold required for B to believe s = −s̄. If a less

extreme choice for xA1 (e.g., − s̄
4 , as in Lemma 1) would induce B to provide liquidity in the second

period, then A would prefer that. Intuitively, this outcome would allow A to sell only a minority

of the necessary amount in the first period when B is not providing liquidity, while waiting to

sell the majority until the second period when B is providing liquidity. This outcome is, however,

incompatible with the beliefs (2). Under (2), A must instead settle for selling the smallest amount

in the first period that does induce B to provide liquidity (i.e., xA1 = − s̄
2).

This alternative WPBE fails the version of the intuitive criterion described in Section 3.1.

Indeed, in terms of the notation introduced there, A’s equilibrium trading costs are CA∗ (s̄) = 0

and CA∗ (−s̄) = s̄2

2 . Then consider the out-of-equilibrium choice xA1 = − s̄
4 . We can compute

minµ̃B2 ∈[0,1]C
A(s̄,− s̄

4 , µ̃
B
2 ) = CA(s̄,− s̄

4 , 0) = 3s̄2

64 > CA∗ (s̄) = 0 and CA(−s̄,− s̄
4 , 0) = 7s̄2

16 < s̄2

2 .
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Intuitively, if s = s̄, then the best that A could expect to achieve from a choice of xA1 = − s̄
4 is a

trading cost of 3s̄2

64 (achieved if B believes s = s̄ with probability zero), which is strictly greater than

his equilibrium trading cost of zero.24 Thus, it would be difficult to make sense of this deviation if

s = s̄. Could the deviation make sense if s = −s̄? Suppose s = −s̄ and A deviates to xA1 = − s̄
4 ,

hoping that—since it would not make sense if s = s̄—the deviation will induce B to believe s = −s̄.
If the deviation does indeed induce B to believe this, then the deviation would make sense: A’s

trading cost would be 7s̄2

16 (as in Lemma 1’s equilibrium), which is strictly less than his trading cost

in this equilibrium of s̄2

2 . Thus, we have an argument that—contrary to the beliefs (2)—dealer B

should infer from a deviation to xA1 = − s̄
4 that s = −s̄.

3.3 Contacting two dealers

We proceed analogously to analyze continuation equilibrium in subgames following RFQs that

contact two dealers. To do so, fix an RFQ policy. Fix also some RFQ (σ,M, b̄) with M = 2. As

before, assume without loss of generality that π−s̄(σ,M, b̄) + πs̄(σ,M, b̄) > 0, and define

φ =
φ0πs̄(σ,M, b̄)

(1− φ0)π−s̄(σ,M, b̄) + φ0πs̄(σ,M, b̄)

as the posterior probability of s = s̄ induced by this RFQ.

Lemma 2. In the class of RFQs that contact M = 2 dealers, induce beliefs φ, and guarantee

execution with probability one, the minimum expected procurement cost is a convex and differentiable

function ĉ2(φ) that satisfies ĉ2(1
2) < ĉ1. It is achieved by RFQs featuring reserve prices b̄ = (s̄2, s̄2).

The client’s procurement cost is determined by a second-price procurement auction. In this

case where two dealers are contacted, it could in principle be set by either the reserve price or the

losing dealer’s bid. What would transpire if the reserves were low enough to occasionally set the

price? Given our restriction to symmetric bidding strategies, it can be shown that the continuation

equilibrium would entail mixed bidding strategies, in which with positive probability, neither dealer

would meet the reserve. Thus, to ensure execution with probability one, the reserves must be high

enough to never set the price.25 To prove Lemma 2, we therefore begin by analyzing equilibria of

subgames following RFQs that contact two dealers and in which the reserves are sufficiently high

in this sense. After sketching that derivation, we explain how the lemma’s claim follows.

Continuation equilibrium. In the previous section, only one dealer was contacted, and the

other dealer was unable to trade in the first period. Here, both dealers are contacted, and not

24When B believes that s = s̄ with probability µ̃B2 , he chooses xB2 =
(8−7µ̃B

2 )s̄

4(4−µ̃B
2 )

. If we actually have s = s̄ and

xA1 = − s̄
4
, then A best responds with xA2 =

(3µ̃B
2 −2)s̄

4(4−µ̃B
2 )

, leading to a total trading cost of
(3−2µ̃B

2 )(1+µ̃B
2 )s̄2

4(4−µ̃B
2 )

. This cost is

minimized at µ̃B2 = 0, where it evaluates to 3s̄2

64
.

25Equivalently, the client could run an auction without reserves. Reserve prices play a role only when the client
contacts just a single dealer (cf. Section 3.2).
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only the winner but also the loser may trade in the first period. In some cases the losing dealer

uses this ability to front-run the winner’s trades. To see this front-running, focus on the case of

(eA, eB) = (1, 1), where both dealers begin long. The losing dealer does not know the direction of

the client’s trade, but does know that the winning dealer, being initially long, will have to sell on

the market if the client’s order is to sell. To exploit this, the losing dealer sells in the first period

(as panels (a) and (b) of Figure 2 depict), which affords him flexibility to buy back in the second

period if the client’s order is indeed to sell. In this case, he will have sold high and bought low,

netting a profit. Hence, the amount that he sells in the first period depends on his beliefs. If φ = 1,

so that he is sure the client is buying, then there is no scope to front-run, and he in fact does not

trade. But as φ decreases, he gradually sells more in the first period (ultimately selling s̄
3 if φ = 0).

For the case of (eA, eB) = (1,−1), if dealer B loses the auction, he infers that the client’s order

is to buy. (This belief will be correct in equilibrium, given equilibrium bids that we subsequently

derive.) If the client’s order is indeed to buy, then A can internalize and need not trade on the

market. Anticipating that A will not trade, B does not trade either (as panels (c) and (d) depict).

Of course, if the client’s order is instead to sell, then A would need to sell on the market (as panel (c)

depicts), but this scenario is off-path, so B assigns no weight to it in deciding his first-period trade.

To explain how bidding behavior is pinned down, focus on a particular realization for (eA, eB)

and for s. Having characterized trading behavior, we can compute dealer A’s trading costs in each

of the three potential auction outcomes: (i) if he wins, (ii) if B wins, and (iii) if neither wins. If,

however, the reserve price b̄s is sufficiently high, then outcome (iii) becomes irrelevant. Given that,

the refinement described in Section 3.1 requires A’s bid to be determined by the difference in his

value across outcomes (i) and (ii). Having derived this bid, we can then fill in what it means for

the reserve price to be sufficiently high in this sense: b̄s must be at least this difference. Choosing

b̄ = (s̄2, s̄2), as in Lemma 2, satisfies all such constraints.

The client’s cost of procurement. To compute ĉ2, the expected procurement cost under

b̄ = (s̄2, s̄2)—or any other reserves high enough that they never set the price—we simply calculate

a weighted average of the losing bids. The weights are dictated by the parameters ψ and ρ, which

govern the distribution of (eA, eB), as well as φ, which captures the distribution of s conditional

on the RFQ. In addition to affecting these weights, φ also affects the bids themselves because the

losing dealer, unable to observe the realized s, relies on these beliefs to select his first-period trade.

The comparison between ĉ2(φ) and ĉ1 is driven by the following tradeoff. On the one hand,

contacting an additional dealer may intensify competition among the dealers for the client’s business

(the competition effect). The additional dealer might also be able to internalize the client’s order

and thereby provide fulfillment more efficiently (the sampling effect). On the other hand, dealers

who are contacted but not selected might front-run on the market (the front-running effect). (See

Appendix C for a formalization of these three effects.)

If the front-running effect dominates, then ĉ2(φ) > ĉ1. For example, consider the case of

(eA, eB) = (1, 1), in which both dealers begin long. We show in the proof of Lemma 2 that if
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Figure 2: Trading dynamics when contacting two dealers
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(d) (s, eA, eB) = (s̄, 1,−1)

Suppose both dealers are contacted, suppose dealer A wins the client’s order, and suppose
the client is believed to be a buyer with probability φ = 1/2. The four panels depict trades
on the continuation equilibrium path for four cases of the client’s trading need s and the
dealer inventories (eA, eB). The remaining four cases are symmetric. Likewise, symmetric
analysis covers the case in which dealer B wins. Positive (negative) bars represent orders to
buy (sell). No trading occurs in panel (d). Vertical axes suppress units because all quantities
scale linearly with s̄. Mathematical expressions are provided by Lemma A2.

φ = 0, so that the dealers are certain the client is a seller, then each dealer i bids bi−s̄ = s̄2 when

both are contacted. In contrast, as previously mentioned, 3s̄2

4 is the analogous bid when only one

dealer is contacted. The bid is larger here for two reasons. First, the losing dealer’s front-running

raises the winning dealer’s trading costs.26 Second, winning now entails an additional opportunity

cost—namely, the potential for profitable front-running that would exist if the other dealer were to

win. Both effects lead to less aggressive bidding.27 It follows that if the dealers are likely to begin

long (i.e., ψ ≈ 1), then ĉ2(0) > ĉ1—this means that for RFQs revealing the client to be a seller, she

26This is because price impact from the losing dealer’s first-period trade moves p1 against the winning dealer.
(On the other hand, because the model features permanent price impact, the losing dealer’s round-trip trade has no
influence on p2.)

27Hence, information leakage raises the client’s procurement cost not through its effect on first-order beliefs (i.e.,
that more dealers know the client’s trade) but rather through second-order beliefs (i.e., that dealers know that more
dealers know, and they account for this in their bids).
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is better off contacting only a single dealer.

If the competition and sampling effects dominate, then ĉ2(φ) < ĉ1. For example, Lemma 2

says that ĉ2(1
2) < ĉ1 (regardless of ψ and ρ). This means that for RFQs revealing the client to be

equally likely a seller or a buyer, she is better off contacting both dealers.

3.4 Optimal RFQ policies

The previous sections derived continuation outcomes following any RFQ. We now seek to induct

backward so as to obtain the optimal RFQ policy. This problem is potentially complex because the

set of policies to optimize over is large and rich. How many dealers should the client contact—always

one, always two, or should she randomize in some way? What signals should she provide about

her desired trade—full disclosure, minimal disclosure, or something intermediate? How should she

treat buying and selling—symmetrically or asymmetrically? Perhaps surprisingly, the model yields

sharp answers to these questions.

3.4.1 Optimality of minimal disclosure

Depending on the RFQ policy, the number of dealers contacted may be an informative signal about

the client’s desired trade. We say that an RFQ policy is minimally disclosing if it never reveals

anything beyond that—neither via the arbitrary signal σ nor via the reserve prices b̄. For example,

all policies of the following form are minimally disclosing: let Σ = {σ0}, fix b̄1, b̄2 ∈ R2, and let

(πs′)s′∈{−s̄,s̄} put positive weight on at most the two RFQs (σ0, 1, b̄1) and
(
σ0, 2, b̄2). An implication

of the following result is that one such policy is optimal.

Proposition 3. A minimally-disclosing RFQ policy is optimal. In particular, there exists an

optimal RFQ policy with the following properties: (i) Σ is a singleton {σ0}; and (ii) the distributions

(πs′)s′∈{−s̄,s̄} put positive weight on at most the two RFQs
(
σ0, 1, (

3s̄2

4 ,
3s̄2

4 )
)

and
(
σ0, 2, (s̄

2, s̄2)
)
.

RFQ policies of the form described in the proposition use reserve prices b̄ = (3s̄2

4 ,
3s̄2

4 ) when

M = 1 dealers are contacted and b̄ = (s̄2, s̄2) when M = 2. That this is consistent with optimality

follows from Lemmas 1 and 2. And given that the client seeks execution with probability one, we

must clearly rule out any RFQ policy that ever contacts zero dealers. So to establish the result,

it suffices to show that beginning from an RFQ policy of the form described in the proposition,

the client cannot benefit by deviating to a more informative signal structure. Given that ĉ1 is a

constant, a more informative signal has no effect when only one dealer is contacted. Furthermore,

ĉ2(φ) is convex, so that by standard arguments from Bayesian persuasion (Kamenica and Gentzkow,

2011), the client is worse off under a more informative signal when two dealers are contacted.

To build some intuition for this result, note that the disclosure policy is relevant only through

its effect on the information available to the losing dealer in trading period 1 (as the winning dealer

always learns s, and the loser always infers it after period 1.) So, the question is how the loser’s

period-1 trade depends on his information about s. In principle, better information could facilitate
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either front-running or liquidity provision. But in equilibrium, he uses better information to front-

run the winning dealer.28 Front-running raises both the winner’s trading costs and the loser’s

profits (hence, the winner’s opportunity cost). Both effects lead dealers to bid less aggressively,

increasing the cost of procurement for the client. It follows that the client optimally reveals nothing

about s (beyond what may be revealed through the number of dealers she contacts).

Notably, this result is in line with common industry practice, where additional information

is rarely volunteered at the RFQ stage. For example, clients typically attempt to disguise the

direction of their desired trades by asking for two-sided quotes instead of one-sided quotes (e.g.,

Risk.net, 2018). Our model rationalizes that behavior as optimal.

3.4.2 Optimal policy for determining the number of dealers to contact

We can therefore restrict attention to RFQ policies of the form described by Proposition 3. For such

RFQ policies, and for all s′ ∈ {−s̄, s̄}, let qs′ denote the probability with which only one dealer is

contacted (so that with complementary probability 1−qs′ two dealers are contacted). The problem

then reduces to choosing a policy for determining the number of dealers to contact by optimizing

over (q−s̄, qs̄) ∈ [0, 1]2. Such a policy has an effect in two ways: (i) given a fixed belief φ, it can

affect the client’s cost, doing so if ĉ1 6= ĉ2(φ), and (ii) it can manipulate the beliefs themselves.

To characterize the client’s optimal policy, we define C(φ) as the convex closure of min{ĉ1, ĉ2(φ)}:

C(φ) = inf
{
z
∣∣ (φ, z) ∈ co

(
min{ĉ1, ĉ2}

)}
,

where co
(

min{ĉ1, ĉ2}
)

denotes the convex hull of the graph of min{ĉ1, ĉ2}. By construction, C is

the largest convex function that is everywhere weakly less than both ĉ1 and ĉ2(φ). The next result

says that C(φ0) is a lower bound on the client’s procurement cost. What is more, this lower bound

is achievable.29 To describe an RFQ policy that achieves this bound, it is useful to define two

cutoffs: φ and φ, defined precisely to ensure that C(φ) = ĉ2(φ) if and only if φ ∈ [φ, φ].

Definition 1. Define φ, φ ∈ [0, 1] as follows. If ĉ2(0) ≤ ĉ1, define φ = 0; if ĉ2(1)− ĉ′2(1) ≥ ĉ1, define

φ = 1; otherwise, define it implicitly as the unique φ ∈ (0, 1) that solves ĉ2(φ) − φĉ′2(φ) = ĉ1. If

ĉ2(1) ≤ ĉ1, define φ = 1; if ĉ′2(0) + ĉ2(0) ≥ ĉ1, define φ = 0; otherwise, define it implicitly as the

unique φ ∈ (0, 1) that solves (1− φ)ĉ′2(φ) + ĉ2(φ) = ĉ1.30

28To see the intuition, focus on what the losing dealer does in the full-disclosure regime. In that case, he can
condition his first-period trade on s. Applying Lemma A2 in the appendix, he uses this ability to trade with the
winner in period 1 (while planning to trade against him in period 2). Although he may provide liquidity on net, his
period 1 trades reflect front-running. Garblings of the full-disclosure policy mitigate this front-running by interfering
with the loser’s ability to condition his trades on s (and hence the direction of the winner’s trading).

29This result also provides a measure of the second dealer’s marginal value to the client: ĉ1 − C(φ0). Suppose the
client has a relationship with dealer A but not dealer B. We could model this by assuming that the client must pay
an additional cost in exchange for the ability to query dealer B (roughly as in Riggs, Onur, Reiffen and Zhu, 2020).
She would optimally do so if this cost is smaller than ĉ1 − C(φ0).

30To see that this provides a unique definition for φ, it suffices to show that ĉ2(φ)−φĉ′2(φ) is strictly decreasing on
the unit interval. Because its derivative is −φĉ′′2 (φ), the conclusion follows from the convexity of ĉ2(·). Analogously,
φ is well defined because ĉ2(φ) + (1− φ)ĉ′2(φ) is strictly increasing on the unit interval.
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The next result reports some basic properties of these cutoffs.

Proposition 4. The cutoffs φ and φ (i) are each weakly increasing in ψ and (ii) satisfy φ ≤ φ.

So, as the notation suggests, we indeed have φ ≤ φ. Moreover, these cutoffs respond monoton-

ically to changes in the parameter ψ. (The same need not be true for ρ.) We can now characterize

the optimal RFQ policy.

Proposition 5. C(φ0) is a lower bound on the client’s cost of procurement. Moreover, this bound

is achieved by an RFQ policy of the form described by Proposition 3, where the probabilities of

contacting only a single dealer are

(q−s̄, qs̄) =


(

φ−φ0

φ(1−φ0) , 0
)

if φ0 ∈ (0, φ)

(0, 0) if φ0 ∈ [φ, φ](
0, φ0−φ

φ0(1−φ)

)
if φ0 ∈ (φ, 1)

In words, the three cases depend on how the prior φ0 relates to the cutoffs φ and φ. According

to the proposition, if the client is ex ante sufficiently likely to sell (in the sense that φ0 < φ), then

her optimal policy entails contacting one dealer only if her realized trading need is in fact to sell.

It follows that contacting two dealers must induce a belief that she is a buyer with a probability

greater than φ0, and in fact this belief is precisely φ under the optimal policy. Everything is reversed

if she is instead sufficiently likely to buy (in the sense that φ0 > φ). Otherwise, her optimal policy

is to always contact two dealers.

One implication of this result is that the client might optimally restrict the number of dealers

she contacts. This is in line with common industry practice. In swaps trading, for example, Riggs,

Onur, Reiffen and Zhu (2020) document that the modal number of dealers contacted is the legal

minimum of three (their Fig. 3). Our model rationalizes this behavior without exogenous search

frictions—as assumed by Duffie, Gârleanu and Pedersen (2005) and much of the follow-on literature.

Rather, the reason is that information leakage is an endogenous search friction: contacting a dealer

makes him aware that the client is seeking to trade, which may lead to front-running.

In one set of cases, the risk of front-running looms large, which may lead the client to contact

only a single dealer. Front-running looms large, for example, if the dealers are likely to be initially

long (so that φ is large, by Proposition 4(i)), while the client is ex ante likely to sell (so that φ0

is small), and the client’s realized trading need is indeed to sell. In such circumstances, the client

optimally contacts only a single dealer with positive probability; this is why Proposition 5 says that

q−s̄ > 0 is optimal when φ0 ∈ (0, φ). Symmetric intuition explains why qs̄ > 0 is optimal when

φ0 ∈ (φ, 1). In the other cases, the risk of front-running is small enough to endure in exchange for

the countervailing benefits of an additional dealer, so that the client contacts only a single dealer

with probability zero. This is why q−s̄ = qs̄ = 0 when φ0 ∈ [φ, φ], why qs̄ = 0 when φ0 ∈ (0, φ), and

why q−s̄ = 0 when φ0 ∈ (φ, 1) in Proposition 5.
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3.4.3 Examples

Asymmetric inventories. We illustrate with an example, which also provides a geometric in-

terpretation of Proposition 5. Suppose ψ = 0.85 and ρ = 1. Then ĉ1 and ĉ2(φ) are as depicted in

the first panel of Figure 3. With this parametrization, ĉ2(φ) is a decreasing function, and it in fact

crosses ĉ1 from above. The intuition is that when φ ≈ 0, the client is likely to be selling; at the

same time, because ψ = 0.85, the dealers are likely to be long. Hence, if two dealers are contacted,

the likely outcome is that the winning dealer will have to sell on the market, while the losing dealer

will front-run, which raises the client’s ultimate cost of procurement (relative to what it would have

been if only one dealer had been contacted). On the other hand, when φ ≈ 1, the client is likely

to be buying (and as before, the dealers are likely to be long). Hence, if two dealers are contacted,

the likely outcome is that both could internalize the client’s order, both will bid aggressively for

the order, and the client’s cost of procurement will be small (relative to what it would have been

if only one dealer had been contacted).

The second panel of Figure 3 depicts C(φ), which is the convexification of the lower envelope

of {ĉ1, ĉ2(φ)}. This second panel also depicts φ, which is defined to ensure that the line connecting

(0, ĉ1) to
(
φ, ĉ2(φ)

)
is tangent to c2(φ). Alternatively, this is the minimum value for which C(φ) =

ĉ2(φ). We also have φ = 1 in this example, but we suppress it in the figure because φ plays no role

what follows.

The third panel depicts the case of φ0 ∈ [φ, φ]. According to Proposition 5, the optimal RFQ

policy always contacts two dealers and discloses no information about the client’s order. Under

this policy, dealers’ beliefs therefore always coincide with the prior, and the client’s expected cost

is ĉ2(φ0).

Finally, the fourth panel depicts the case of φ0 ∈ (0, φ). According to Proposition 5, the optimal

RFQ policy always contacts two dealers when s = s̄; and it mixes between one and two dealers when

s = −s̄. Hence, if one dealer is contacted, dealers believe s = s̄ with probability φ = 0. Moreover,

the mixing that occurs when s = −s̄ is designed to ensure that, conditional on two dealers being

contacted, they are induced to believe that s = s̄ with probability φ = φ. No further information

is disclosed beyond this. Under this policy, the client’s expected procurement cost is therefore an

appropriate convex combination of ĉ1 and ĉ2(φ), which is precisely what C(φ0) captures.

Symmetric inventories. A potentially focal class of parametrizations consists of those cases in

which dealers are equally likely to be long and short (i.e., ψ = 1
2). In this case, ĉ2(·) is minimized at

φ = 1
2 and grows symmetrically in both directions to reach a maximum of ĉ2(0) = ĉ2(1) = (15+ρ)s̄2

32 .

It follows that regardless of ρ, ĉ2(·) is everywhere less than ĉ1, implying that φ = 0 and φ = 1, so

that by Proposition 5, in these cases it is optimal for the client to always contact both dealers.

The intuition is that when dealers are equally likely to be long and short, it is always suffi-

ciently likely that one of the dealers will be able to internalize the client’s order—indeed, any one

dealer will be able to internalize with probability 1
2 . The risk of front-running therefore does not

loom particularly large. As a result, the client unambiguously benefits from inducing additional
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Figure 3: Optimal RFQ policies
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ĉ2(φ)

C(φ)

φ

Dealer inventories are distributed according to the parameters ψ = 0.85 and ρ = 1. In all
panels, ĉ1 and ĉ2(φ) (in blue) respectively depict expected procurement costs when con-
tacting one or two dealers. Starting from the second panel, C(φ) (in orange) is the client’s
minimum expected procurement cost, and φ is as in Definition 1. There are two cases that
depend on the prior probability of the client buying (i.e., φ0). If φ0 ≥ φ (as in the third
panel), then the optimal RFQ policy always contacts two dealers, inducing a posterior belief
that the client is a buyer which coincides with the prior φ0. If φ0 < φ (as in the fourth
panel), then the optimal RFQ policy is such that contacting one dealer (two dealers) in-
duces a posterior belief that the client is a buyer with probability zero (with probability φ).

Vertical axes suppress units because all cost quantities scale linearly with s̄2.

competition for her order.

3.5 Robustness

Appendix B investigates the extent to which our results are robust to the assumption that the

client can commit to an RFQ policy. We find that the result of Proposition 3 (on the optimality

of minimal disclosure) does not hinge on the client’s ability to commit: she would not want to

deviate from a commitment to minimal disclosure even if she could. In contrast, the result of

Proposition 5 (on the optimal policy for determining the number of dealers to contact) does hinge

on the commitment assumption. Motivated by this observation, we then investigate how that result

would change if the client were to lack commitment power, and we obtain a qualitatively similar

result.
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3.6 Testable implications

Measurement. RFQ platforms provide a clean setting for testing the empirical implications of

our model. These tests would require data on some or all of the following variables:

• The client’s procurement cost. To measure procurement costs, one would compare the client’s

transaction price against a benchmark price. As appropriate, this benchmark could be based

on the most recent trade on the opposite side (Riggs, Onur, Reiffen and Zhu, 2020), the last

trade in the interdealer market (Hendershott and Madhavan, 2015; O’Hara and Zhou, 2021), the

Bloomberg mid-quote (Allen and Wittwer, 2021), the previous day’s Bank of America Merrill

Lynch end-of-day quote (Hendershott, Li, Livdan, Schürhoff and Venkataraman, 2022b), or the

Markit mid-quote (Collin-Dufresne, Junge and Trolle, 2020).

• Information disclosure. One measure of information disclosure is whether one-sided quotes

(more disclosure) or two-sided quotes (less disclosure) are requested. Variation could exist

within-platform (for platforms that offer a choice between one-sided or two-sided RFQs), across-

platform (for platforms that do not offer such a choice), or within-platform-and-across-time (for

platforms that changed their protocols).31

• Number of dealers contacted. The number of dealers contacted is directly recorded in many

datasets on RFQs (e.g., Hendershott and Madhavan, 2015; Riggs, Onur, Reiffen and Zhu, 2020).

• The client’s trading direction. The prior distribution of the client’s trading direction could be

proxied by her empirical frequency of buying/selling in historical data. Variation could exist

either across-client or within-client-and-across-time (in which case potentially exogenous shocks

could originate from mergers or changes in investment mandates). Realized trading directions

are directly recorded in most datasets on RFQs.

• Dealers’ initial inventories. In some cases, dealers’ positions could be observed (Coen and Coen,

2022) or estimated (e.g., using the methods of Hansch, Naik and Viswanathan, 1998; Friewald

and Nagler, 2016).

• Dealers’ on-market trading. Dealer trades are observed in the regulatory TRACE data (used

by, e.g., O’Hara and Zhou, 2021).

Predictions. One set of predictions concerns information disclosure: (i) if clients disclose more

information about their order, then their procurement costs will increase on average; (ii) moreover,

this effect will be stronger when more dealers are contacted; (iii) consequently, clients will tend to

avoid disclosing information.

Another set concerns the number of dealers contacted: (iv) contacting more dealers tends to

raise (lower) a client’s procurement costs when dealers have much (little) difficulty internalizing;

(v) consequently, in situations where dealers tend to be long, clients will tend to contact more dealers

31In some contexts, “RFQ” is used exclusively to indicate a request for one-sided quotes. In those contexts, a
request for two-sided quotes is instead referred to as a “request-for-market (RFM).”
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when buying than when selling; (vi) moreover, this difference is magnified when the client is ex ante

more likely to sell; (vii) in particular, clients will sometimes contact fewer than all available dealers.

Under the assumption that clients are pursuing their optimal RFQ policies, another prediction is:

(viii) procurement costs are convex in the prior probability that the client is a buyer.

A final set of implications concerns on-market trading: (ix) other dealers will initially tend to

trade “with the wind” (i.e., in the same direction as the winning dealer), before reversing their

direction to go “against the wind;” (x) moreover, the amount of initial “with the wind” trading

increases when more dealers are contacted and when more information is disclosed.

Some of these predictions are already confirmed by existing empirical evidence. As mentioned,

prediction (iii) is supported by the typical industry practice of asking for two-sided quotes when

possible. Likewise, a great deal of evidence supports prediction (vii). The other predictions provide

fertile ground for future empirical work.

3.7 Policy implications

Our analysis so far has solved for how an unconstrained client optimally behaves. But in practice,

clients are sometimes constrained by existing institutions and regulations; for these cases, our

analysis has implications for when such constraints have potential to harm the client.

3.7.1 Regulation

One application of our results is to regulations that require a minimum number of potential coun-

terparties to be contacted in certain situations. For example, the CFTC had once proposed to

mandate that, for certain swaps, RFQs be sent to no fewer than five dealers.32 (The proposal

was since adopted with the requirement reduced to three.) Comment letters from Bloomberg,

BlackRock, MetLife, Barclays, Morgan Stanley, and others objected, claiming that it is sometimes

advantageous to contact fewer dealers—precisely because doing so limits the front-running and

information leakage that we model:

Several commenters specifically noted that the five market participant requirement may

result in increased spreads for participants because non-executing market participants

in the RFQ could “front run” the transaction in anticipation of the executing market

participant’s forthcoming and offsetting transactions. (CFTC, 2013)

Our analysis resonates with this concern about front-running. Indeed, our results suggest that

there do exist circumstances in which concerns about front-running loom so large that a client

optimally contacts only a single dealer. In those cases, mandates such as this one constitute a

binding constraint and are likely to exacerbate transaction costs.

32The originally stated rationale for this requirement was “to ensure that multiple participants have the ability to
reach multiple counterparties” (CFTC, 2011).
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3.7.2 Platform design

In recent years, electronic trading platforms have been introduced with the goal of reducing search

costs for many asset classes that had traditionally traded over the counter. One might have expected

these platforms to be very popular. Indeed, in many classic models of over-the-counter markets (e.g.,

Duffie, Gârleanu and Pedersen, 2005), traders benefit from interventions that reduce or eliminate

search costs. Yet, even with regulatory pushes (e.g., the Dodd-Frank Act), traders have been slow

to adopt these platforms. As O’Hara and Zhou (2021, p. 369) write, “the puzzle remains why

electronic trading has not taken on a larger role.” Our analysis speaks to this puzzle by pointing

out that information leakage can function as an implicit search cost. Accordingly, it is not enough

to simply reduce explicit search costs: platforms must also mitigate the implicit search cost of

information leakage. The following design aspects are relevant:

Order exposure. Where information leakage is a concern, traders might rationally avoid plat-

forms that expose their orders to a large number of potential counterparties. Instead, traders might

be more receptive of platforms that permit them to fine-tune how broadly their orders are exposed.

Information policy. Many RFQ platforms require the client to reveal both the size and side

of her desired transaction, effectively mandating an information policy of full disclosure.33 Our

analysis highlights that clients might prefer more flexible information policies—in fact, our results

imply that full disclosure is the worst information policy for the client.

Trader anonymity. Another variable in RFQ platform design is whether quotes can be requested

anonymously or not. To capture a population of heterogenous clients, consider a version of the

model in which the parameter φ0 is first drawn from a distribution F . Suppose further that the client

is exogenously required to use the RFQ policy that always contacts two dealers and discloses no

information; this simplifies the analysis by making the client non-strategic, in particular preventing

her from signaling her realized φ0 through her RFQ policy. To capture a platform with name-

disclosed trading, assume that φ0 is observed by the dealers in conjunction with the RFQ. In this

regime, the average client procurement cost would be
∫
ĉ2(φ) dF (φ). To capture a platform with

anonymous trading, assume that φ0 is never revealed. Letting φavg =
∫
φdF (φ), the average client

procurement cost would be then ĉ2(φavg), which is less, by the convexity of ĉ2(·). Thus, clients are

better off on average under anonymity.34

Periodic auctions. Certain aspects of the RFQs that we model resemble the periodic auctions

held by some equities exchanges (e.g., Cboe BYX, Cboe Europe) and alternative trading systems

33For example, this is the case for MarketAxess (O’Hara and Zhou, 2021), the Bloomberg and Tradeweb swap
execution facilities (Riggs, Onur, Reiffen and Zhu, 2020), and CanDeal (Allen and Wittwer, 2021).

34Of course, we are unlikely to have φavg = arg min ĉ2(φ), and so a subset of client types may be worse off under
anonymity. Note that if such client types could signal or disclose who they are, then we might expect the anonymous
regime to unravel (as in, e.g., Grossman, 1981; Milgrom, 1981). Accordingly, it might be important for a platform to
prevent such signaling or disclosure.
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(e.g., CODA). Indeed, practitioners worry about information leakage and front-running in this

context also (e.g., ESMA, 2019; SEC, 2021). Typically, these venues allow investors to initiate a

uniform-price batch auction in a particular symbol. During the auction period, other investors,

seeing that an auction is in progress, may submit orders also. Although these auctions typically

conceal the direction of the initiating investor’s order, the simple fact that an auction has been

initiated could nevertheless be informative, potentially leading to front-running and suboptimal

execution for reasons similar to those we model. This type of information leakage would be mitigated

if—rather than being held only when initiated by an investor—batch auctions occurred at scheduled

intervals, as in proposals made by academic literature (Budish, Cramton and Shim, 2014, 2015;

Budish, Lee and Shim, 2020).

4 Conclusion

When seeking to trade in over-the-counter markets, institutional investors typically contact only

a small number of potential counterparties and limit information disclosure (e.g., by asking for

two-sided rather than one-sided quotes). Behaviors such as these mitigate information leakage.

Our analysis rationalizes them by demonstrating that in settings with price impact, information

leakage may lead to endogenous front-running.

In our model, a client, who is either a buyer or a seller of a security, contacts either one or

two dealers for a quote, potentially providing information about her trading direction. Dealers are

initially either long or short. The client’s trading direction is revealed to the winning dealer who

may then trade on the market in two periods. The other dealer does not directly observe the client’s

trading direction, yet he may also trade on the market, either to provide liquidity or to front-run.

In determining how many dealers to contact, the client faces a tradeoff. On the one hand, a

wider search both intensifies competition for the client’s order and improves the odds of finding

a good match, i.e., a dealer who can internalize parts of the trade. But as mentioned above,

information leakage is a countervailing force: a wider search alerts more dealers to the existence

of her trade, which can lead to costly front-running. In certain cases, the costs of information

leakage are strong enough that, with positive probability, the client contacts only a single dealer.

In that sense, front-running constitutes an endogenous search friction, which may limit the scope

of counterparty search.

Regarding information design, secrecy is always in the client’s best interest. She optimally

discloses no additional information about whether she intends to buy or sell—in other words, she

requests quotes for a two-sided market.

In addition to contributing a model of this search problem, our analysis also has implications

for the regulation and design of request-for-quote platforms.
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Online Appendix

A Proofs

A.1 Proof of Lemma 1

To establish Lemma 1, we in fact prove the stronger result stated in Lemma A1.

Lemma A1. In a subgame following an RFQ that contacts M = 1 dealer, the unique on-path

equilibrium behavior is as follows. Dealer A bids

(
bA−s̄, b

A
s̄

)
=



(
3s̄2

4 , 0
)

if (eA, eB) = (1, 1)(
7s̄2

16 , 0
)

if (eA, eB) = (1,−1)(
0, 7s̄2

16

)
if (eA, eB) = (−1, 1)(

0, 3s̄2

4

)
if (eA, eB) = (−1,−1)

If dealer A wins, the on-market trades are

(xA1 , x
A
2 , x

B
2 ) =



(0, 0, 0) if (s, eA, eB) = (s̄, 1, 1)

(− s̄
2 ,−

s̄
2 , 0) if (s, eA, eB) = (−s̄, 1, 1)

(0, 0, 0) if (s, eA, eB) = (s̄, 1,−1)

(− s̄
4 ,−

3s̄
4 ,

s̄
2) if (s, eA, eB) = (−s̄, 1,−1)

( s̄4 ,
3s̄
4 ,−

s̄
2) if (s, eA, eB) = (s̄,−1, 1)

(0, 0, 0) if (s, eA, eB) = (−s̄,−1, 1)

( s̄2 ,
s̄
2 , 0) if (s, eA, eB) = (s̄,−1,−1)

(0, 0, 0) if (s, eA, eB) = (−s̄,−1,−1)

Lemma 1 follows from Lemma A1 for reasons discussed in the main text. To ensure execution

with probability one, the client’s reserve must be at least the dealer’s bid in the worst case. If

the client sells, the worst case is (eA, eB) = (1, 1), where bA−s̄ = 3s̄2

4 , according to Lemma A1.

Symmetrically, if the client buys, the worst case is (eA, eB) = (−1,−1), where bAs̄ = 3s̄2

4 . Therefore,

it follows that the expected procurement cost resulting from an RFQ that contacts one dealer,

induces a belief that φ is the probability of s = s̄, and guarantees execution with probability one

results is at least

ĉ1 = φ
3s̄2

4
+ (1− φ)

3s̄2

4
=

3s̄2

4
,

as claimed by Lemma 1. Moreover, the RFQ that uses reserve prices b̄ = (3s̄2

4 ,
3s̄2

4 ) both ensures

execution with probability one and achieves the cost ĉ1.
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Proof of Lemma A1. Because both dealers observe the entire vector (eA, eB), the four possible

realizations of that vector can be analyzed separately. Below, we analyze the cases of (1, 1) and

(1,−1); the remaining cases can be handled symmetrically.

Case 1: (eA, eB) = (1, 1). Here is a full specification of an equilibrium for this case. Dealer A bids(
bA−s̄, b

A
s̄

)
=
(

3s̄2

4 , 0
)

. If he loses, the game ends. Therefore, suppose henceforth that he wins. If

s = s̄, dealer A sets xA1 = 0 and

xA2 =


−xA1

3 if 0 ≤ xA1 ≤ s̄

−xA1
2 if max{−s̄, 2s̄− 4} ≤ xA1 < 0

s̄− 2− xA1 if − s̄ ≤ xA1 ≤ 2s̄− 4

(3)

If s = −s̄, dealer A sets xA1 = − s̄
2 and

xA2 =
{
−s̄− xA1 if − s̄ ≤ xA1 ≤ s̄ (4)

Dealer B sets

xB2 =

−
xA1
3 if 0 ≤ xA1 ≤ s̄

0 if − s̄ ≤ xA1 < 0
(5)

Dealers’ beliefs prior to bidding are µA0 = µB0 = φ. Dealer B’s beliefs prior to second-period trading

are

µB2 =

1 if 0 ≤ xA1 ≤ s̄

0 if − s̄ ≤ xA1 < 0

We claim that the specified strategies and beliefs satisfy the solution concept described in Section 3.1

and moreover that anything else also satisfying the solution concept must feature the same on-path

behavior. The argument consists of three parts.

Part (i): We check the consistency of dealer B’s beliefs. Given the specified strategy for dealer A,

Bayes’ rule requires only that

µB2 =

1 if xA1 = 0

0 if xA1 = − s̄
2

This is indeed consistent with the specified beliefs.

Part (ii): Given the specified beliefs, we check that the solution concept uniquely pins down the

specified strategies. We proceed by backward induction:

• Period-2 reaction functions. Dealer A’s trading costs are xA1 x
A
1 + (xA1 + xA2 + xB2 )xA2 . For s ∈

{−s̄, s̄}, dealer A best responds with xA2 =
[
−xA1 +xB2

2

]s−xA1
s−2−xA1

.35 Dealer B’s trading costs are

(xA1 + xA2 + xB2 )xB2 . Dealer B best responds with xB2 =
[
−xA1 +xA2

2

]0

−2
.

35We use the notation [x]ba to denote truncation to the interval [a, b]: [x]ba = max
(
a,min(b, x)

)
.
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• Dealer B’s period-2 action. If 0 ≤ xA1 ≤ s̄ so that µB2 = 1, then xB2 is pinned down by the

intersection of xA2 =
[
−xA1 +xB2

2

]s̄−xA1
s̄−2−xA1

and xB2 =
[
−xA1 +xA2

2

]0

−2
, so that we indeed have xB2 =

−xA1
3 . If −s̄ ≤ xA1 < 0 so that µB2 = 0, then xB2 is pinned down by the intersection of xA2 =[
−xA1 +xB2

2

]−s̄−xA1
−s̄−2−xA1

and xB2 =
[
−xA1 +xA2

2

]0

−2
, so that we indeed have xB2 = 0. Together, these two

cases verify (5).

• Dealer A’s period-2 action. If s = s̄, then xA2 is pinned down by the intersection of xA2 =[
−xA1 +xB2

2

]s̄−xA1
s̄−2−xA1

and (5), which verifies (3).

If s = −s̄, then xA2 is pinned down by the intersection of xA2 =
[
−xA1 +xB2

2

]−s̄−xA1
−s̄−2−xA1

and (5), which

verifies (4).

• Dealer A’s period-1 action. Dealer A’s trading costs are xA1 x
A
1 + (xA1 + xA2 + xB2 )xA2 . If s = s̄,

then we can plug in (3) and (5) to express dealer A’s trading costs as a function of xA1 :
xA1 x

A
1 − (

xA1
3 )2 if 0 ≤ xA1 ≤ s̄

xA1 x
A
1 − (

xA1
2 )2 if max{s, 2s̄− 4} ≤ xA1 < 0

xA1 x
A
1 + (s̄− 2)(s̄− 2− xA1 ) if − s̄ ≤ xA1 < 2s̄− 4

which is indeed minimized by xA1 = 0.

Alternatively, if s = −s̄, then we can plug in (4) and (5) to express dealer A’s trading costs as a

function of xA1 : xA1 xA1 + (−s̄− xA1
3 )(−s̄− xA1 ) if 0 ≤ xA1 ≤ s̄

xA1 x
A
1 + (−s̄)(−s̄− xA1 ) if − s̄ ≤ xA1 < 0

which is indeed minimized by xA1 = − s̄
2 .

• Dealer A’s bid. Plugging in the trading behavior derived above, we have the following. If s = s̄,

then dealer A’s continuation utility is c if he wins and 0 if he loses. If s = −s̄, then dealer A’s

continuation utility is c− 3
4 s̄

2 if he wins and 0 if he loses. Based on the solution concept described

in Section 3.1, dealer A must therefore bid
(
bA−s̄, b

A
s̄

)
=
(

3
4 s̄

2, 0
)
.

Part (iii): We check that the equilibrium specified above satisfies the restrictions on beliefs de-

scribed in Section 3.1. And we also show that any equilibrium satisfying those conditions must

feature on-path behavior coinciding with that of the equilibrium specified above. Let µ̃B2 be can-

didate beliefs. One requirement is that µ̃B2 must have the step-function structure described in the

text.36

36That is, (i) for all x ∈ [−s̄, s̄], µ̃B2 (x) ∈ {0, 1}, and (ii) for all x′ < x′′, µ̃B2 (x′) = 1 =⇒ µ̃B2 (x′′) = 1 and
µ̃B2 (x′′) = 0 =⇒ µ̃B2 (x′) = 0.
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• We start by establishing an upper bound for the location of the jump. Suppose, by way of

contradiction, that we have an equilibrium with beliefs such that µ̃B2 (0) = 0. By the step-function

structure of µ̃B2 and because beliefs must be correct on path, this means that on path, dealer A sets

xA1 > 0 when s = s̄. Arguments similar to those given above imply that we would subsequently

have (xA2 , x
B
2 ) = (−xA1

3 ,−
xA1
3 ), leading to total trading costs for dealer A of (xA1 )2−(

xA1
3 )2 = 8

9(xA1 )2.

On the other hand, suppose that dealer A deviated to set xA1 = 0 when s = s̄. Arguments similar

to those given above imply that we would subsequently have (xA2 , x
B
2 ) = (0, 0), leading to trading

costs of 0. This constitutes a profitable deviation, contradicting the putative equilibrium.

• We next establish a corresponding lower bound. Suppose, by way of contradiction, that we have

an equilibrium with beliefs such that µ̃B2 (− s̄
2) = 1. By the step-function structure of µ̃B2 and

because beliefs must be correct on path, this means that on path, dealer A sets xA1 < − s̄
2 when s =

−s̄. Arguments similar to those given above imply that we would subsequently have (xA2 , x
B
2 ) =

(−s̄−xA1 , 0), leading to trading costs for dealer A of (xA1 )2 +(−s̄)(−s̄−xA1 ) = 3
4 s̄

2 +( s̄2 +xA1 )2. On

the other hand, suppose that dealer A deviated to set xA1 = − s̄
2 when s = s̄. Arguments similar to

those given above imply that we would subsequently have (xA2 , x
B
2 ) = (− s̄

2 , 0), leading to trading

costs of 3
4 s̄

2. This constitutes a profitable deviation, contradicting the putative equilibrium.

• Finally, we turn to the remaining possibilities. Suppose we have an equilibrium with beliefs

such that both µ̃B2 (0) = 1 and µ̃B2 (− s̄
2) = 0. Using arguments similar to those given above,

we can show that any such equilibrium induces the same on-path behavior as the equilibrium

specified above. In particular, dealer A’s equilibrium trading costs are as above: CA∗ (s̄) = 0 and

CA∗ (−s̄) = 3
4 s̄

2. We can also use arguments similar to those given above to compute

CA(s̄, xA1 , 1) =


(xA1 )2 − (

xA1
3 )2 if 0 ≤ xA1 ≤ s̄

(xA1 )2 − (
xA1
2 )2 if 2s̄− 4 ≤ xA1 ≤ 0

(xA1 )2 + (s̄− 2)(s̄− 2− xA1 ) if − s̄ ≤ xA1 ≤ 2s̄− 4

CA(s̄, xA1 , 0) =
{

(xA1 )2 + (−s̄)(−s̄− xA1 ) if − s̄ ≤ xA1 ≤ s̄

And so we conclude that for all xA1 ∈ [−s̄, s̄], CA(s̄, xA1 , 1) ≥ 0 = CA∗ (s̄) and CA(−s̄, xA1 , 0) ≥
3
4 s̄

2 = CA∗ (−s̄). Hence, the intuitive criterion does not rule out any such equilibrium (e.g., the

equilibrium specified above).

Case 2: (eA, eB) = (1,−1). Here is a full specification of a WPBE for this case. Dealer A bids(
bA−s̄, b

A
s̄

)
=
(

7s̄2

16 , 0
)

. If he loses, the game ends. Therefore, suppose henceforth that he wins. If
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s = s̄, dealer A sets xA1 = 0 and

xA2 =



−xA1
2 if 0 ≤ xA1 ≤ s̄

−xA1
3 if max{3s̄

2 − 3,− s̄
6} ≤ x

A
1 < 0

s̄− 2− xA1 if − s̄
6 ≤ x

A
1 < 3s̄

2 − 3

−xA1
2 −

s̄
4 if max{−s̄, 5s̄

2 − 4} ≤ xA1 < − s̄
6

s̄− 2− xA1 if − s̄ ≤ xA1 < min{5s̄
2 − 4,− s̄

6}

(6)

If s = −s̄, dealer A sets xA1 = − s̄
4 and

xA2 =
{
−s̄− xA1 if − s̄ ≤ xA1 ≤ s̄ (7)

Dealer B sets

xB2 =



0 if xA1 ≥ 0

−xA1
3 if max{3s̄

2 − 3,− s̄
6} ≤ x

A
1 < 0

− s̄
2 + 1 if − s̄

6 ≤ x
A
1 < 3s̄

2 − 3

s̄
2 if − s̄ ≤ xA1 < − s̄

6

(8)

Dealers’ beliefs prior to bidding are µA0 = µB0 = φ. Dealer B’s beliefs prior to second-period trading

are

µB2 =

1 if − s̄
6 ≤ x

A
1 ≤ s̄

0 if − s̄ ≤ xA1 < − s̄
6

We claim that the specified strategies and beliefs satisfy the solution concept described in Section 3.1

and moreover that anything else also satisfying the solution concept must feature the same on-path

behavior. The argument consists of three parts.

Part (i): We check the consistency of dealer B’s beliefs. Given the specified strategy for dealer A,

Bayes’ rule requires only that

µB2 =

1 if xA1 = 0

0 if xA1 = − s̄
4

This is indeed consistent with the specified beliefs.

Part (ii): Given the specified beliefs, we check that the solution concept uniquely pins down the

specified strategies. We proceed by backward induction:

• Period-2 reaction functions. Dealer A’s trading costs are xA1 x
A
1 + (xA1 + xA2 + xB2 )xA2 . For s ∈

{−s̄, s̄}, dealer A best responds with xA2 =
[
−xA1 +xB2

2

]s−xA1
s−2−xA1

. Dealer B’s trading costs are

(xA1 + xA2 + xB2 )xB2 . Dealer B best responds with xB2 =
[
−xA1 +xA2

2

]2

0
.

• Dealer B’s period-2 action. If − s̄
6 ≤ xA1 ≤ s̄ so that µB2 = 1, then xB2 is pinned down by the
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intersection of xA2 =
[
−xA1 +xB2

2

]s̄−xA1
s̄−2−xA1

and xB2 =
[
−xA1 +xA2

2

]2

0
, so that we indeed have

xB2 =


0 if xA1 ≥ 0

−xA1
3 if max{3s̄

2 − 3,− s̄
6} ≤ x

A
1 < 0

− s̄
2 + 1 if − s̄

6 ≤ x
A
1 < 3s̄

2 − 3

If −s̄ ≤ xA1 < − s̄
6 so that µB2 = 0, then xB2 is pinned down by the intersection of xA2 =[

−xA1 +xB2
2

]−s̄−xA1
−s̄−2−xA1

and xB2 =
[
−xA1 +xA2

2

]2

0
, so that we indeed have xB2 = s̄

2 . Together, these two

cases verify (8).

• Dealer A’s period-2 action. If s = s̄, then xA2 is pinned down by the intersection of xA2 =[
−xA1 +xB2

2

]s̄−xA1
s̄−2−xA1

and (8), which verifies (6).

If s = −s̄, then xA2 is pinned down by the intersection of xA2 =
[
−xA1 +xB2

2

]−s̄−xA1
−s̄−2−xA1

and (8), which

verifies (7).

• Dealer A’s period-1 action. Dealer A’s trading costs are xA1 x
A
1 + (xA1 + xA2 + xB2 )xA2 . If s = s̄,

then we can plug in (6) and (8) to express dealer A’s trading costs as a function of xA1 :

xA1 x
A
1 − (

xA1
2 )2 if 0 ≤ xA1 ≤ s̄

xA1 x
A
1 − (

xA1
3 )2 if max{3s̄

2 − 3,− s̄
6} ≤ x

A
1 < 0

xA1 x
A
1 + ( s̄2 − 1)(s̄− 2− xA1 ) if − s̄

6 ≤ x
A
1 < 3s̄

2 − 3

xA1 x
A
1 − (

xA1
2 + s̄

4)2 if max{−s̄, 5s̄
2 − 4} ≤ xA1 < − s̄

6

xA1 x
A
1 + (3s̄

2 − 2)(s̄− 2− xA1 ) if − s̄ ≤ xA1 < min{5s̄
2 − 4,− s̄

6}

which is indeed minimized by xA1 = 0.

Alternatively, if s = −s̄, then we can plug in (7) and (8) to express dealer A’s trading costs as a

function of xA1 : 

xA1 x
A
1 + (−s̄)(−s̄− xA1 ) if xA1 ≥ 0

xA1 x
A
1 + (−s̄− xA1

3 )(−s̄− xA1 ) if max{3s̄
2 − 3,− s̄

6} ≤ x
A
1 < 0

xA1 x
A
1 + (−3s̄

2 + 1)(−s̄− xA1 ) if − s̄
6 ≤ x

A
1 < 3s̄

2 − 3

xA1 x
A
1 + (− s̄

2)(−s̄− xA1 ) if − s̄ ≤ xA1 < − s̄
6

which is indeed minimized by xA1 = − s̄
4 .

• Dealer A’s bid. Plugging in the trading behavior derived above, we have the following. If s = s̄,

then dealer A’s continuation utility is c if he wins and 0 if he loses. If s = −s̄, then dealer A’s
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continuation utility is c− 7s̄2

16 if he wins and 0 if he loses. Based on the solution concept described

in Section 3.1, dealer A must therefore bid
(
bA−s̄, b

A
s̄

)
=
(

7s̄2

16 , 0
)

.

Part (iii): We check that the equilibrium specified above satisfies the restrictions on beliefs de-

scribed in Section 3.1. And we also show that any equilibrium satisfying those conditions must

feature on-path behavior coinciding with that of the equilibrium specified above. Let µ̃B2 be can-

didate beliefs. One requirement is that µ̃B2 must have the step-function structure described in the

text.

• We start by establishing an upper bound for the location of the jump. Suppose, by way of

contradiction, that we have an equilibrium with beliefs such that µ̃B2 (− s̄
6 + ε) = 0 for some

ε > 0. By the step-function structure of µ̃B2 and because beliefs must be correct on path, we

can choose ε > 0 arbitrarily small (and in particular less than 2s̄
3 ). The step-function structure

of µ̃B2 , together with the fact that beliefs must be correct on path, also implies that on path,

dealer A sets xA1 > − s̄
6 + ε when s = s̄. Arguments similar to those given above imply that we

would subsequently have

(xA2 , x
B
2 ) =

(−xA1
2 , 0) if 0 ≤ xA1 ≤ s̄

(−xA1
3 ,−

xA1
3 ) if − s̄

6 + ε < xA1 ≤ 0

leading to total trading costs for dealer A of3
4(xA1 )2 if 0 ≤ xA1 ≤ s̄
8
9(xA1 )2 if − s̄

6 + ε < xA1 ≤ 0

which are bounded below by 0. On the other hand, suppose that dealer A deviated to set

xA1 = − s̄
6 + ε when s = s̄. Arguments similar to those given above imply that we would

subsequently have (xA2 , x
B
2 ) = (− s̄

6 −
ε
2 ,

s̄
2), leading to trading costs of − ε

4(2s̄ − 3ε) < 0. This

constitutes a profitable deviation, contradicting the putative equilibrium.

• We next establish a corresponding lower bound. Suppose, by way of contradiction, that we

have an equilibrium with beliefs such that µ̃B2 (− s̄
4) = 1. By the step-function structure of µ̃B2

and because beliefs must be correct on path, this means that on path, dealer A sets xA1 < − s̄
4

when s = −s̄. Arguments similar to those given above imply that we would subsequently have

xA2 = −s̄−xA1 and xB2 = s̄
2 , leading to trading costs for dealer A of CA∗ (−s̄) = (xA1 )2 + s̄

2(s̄+xA1 ) =
7
16 s̄

2+( s̄4 +xA1 )2. On the other hand, suppose that dealer A deviated to set xA1 = − s̄
4 when s = −s̄

and that—contrary to the putative beliefs—this were to induce a belief µB2 = 0. Arguments

similar to those given above imply that we would subsequently have (xA2 , x
B
2 ) = (−3s̄

4 ,
s̄
2), leading

to trading costs of CA(−s̄,− s̄
4 , 0) = 7

16 s̄
2 < CA∗ (−s̄).

Given that µ̃B2 (− s̄
4) = 1, we can use arguments similar to those given above to show that on-

path behavior coincides with that in the equilibrium specified above when s = s̄. In particular,
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dealer A’s equilibrium trading costs are as above: CA∗ (s̄) = 0. On the other hand, suppose

that dealer A deviated to set xA1 = − s̄
4 when s = s̄ and that this were to induce a belief

µB2 ∈ [0, 1]. Arguments similar to those given above imply that we would subsequently have

(xA2 , x
B
2 ) =

(
(3µB2 −2)s̄

4(4−µB2 )
,

(8−7µB2 )s̄

4(4−µB2 )

)
, leading to trading costs of CA(s̄,− s̄

4 , µ
B
2 ) =

(3−2µB2 )(1+µB2 )s̄2

4(4−µB2 )2 .

This is minimized at µB2 = 0, and hence minµB2 ∈[0,1]C
A(s̄,− s̄

4 , µ
B
2 ) = 3s̄2

64 > CA∗ (s̄). The putative

equilibrium therefore fails our intuitive criterion test.

• Finally, we turn to the remaining possibilities. Suppose we have an equilibrium with beliefs such

that both µ̃B2 (− s̄
6 + ε) = 1 for all ε > 0 and µ̃B2 (− s̄

4) = 0. Using arguments similar to those

given above, we can show that any such equilibrium induces the same on-path behavior as the

equilibrium specified above. In particular, dealer A’s equilibrium trading costs are as above:

CA∗ (s̄) = 0 and CA∗ (−s̄) = 7
16 s̄

2. We can also use arguments similar to those given above to

compute

CA(s̄, xA1 , 1) =


(xA1 )2 − (

xA1
2 )2 if 0 ≤ xA1 ≤ s̄

(xA1 )2 − (
xA1
3 )2 if 3s̄

2 − 3 ≤ xA1 ≤ 0

(xA1 )2 + ( s̄2 − 1)(s̄− 2− xA1 ) if − s̄ ≤ xA1 ≤ 3s̄
2 − 3

CA(s̄, xA1 , 0) =
{

(xA1 )2 + (− s̄
2)(−s̄− xA1 ) if − s̄ ≤ xA1 ≤ s̄

And so we conclude that for all xA1 ∈ [−s̄, s̄], CA(s̄, xA1 , 1) ≥ 0 = CA∗ (s̄) and CA(−s̄, xA1 , 0) ≥
7
16 s̄

2 = CA∗ (−s̄). Hence, the intuitive criterion does not rule out any such equilibrium (e.g., the

equilibrium specified above).

This completes the proof.

A.2 Proof of Lemma 2

To establish Lemma 2, we in fact prove the stronger result stated in Lemma A2.

Lemma A2. In a subgame following an RFQ that contacts M = 2 dealers, induces dealer beliefs φ,

and entails reserve prices b̄−s̄ ≥ (2304−560φ−157φ2)s̄2

4(24−φ)2 and b̄s̄ ≥ (1587+874φ−157φ2)s̄2

4(23+φ)2 , the unique on-path

equilibrium behavior is as follows. Dealer A bids

(
bA−s̄, b

A
s̄

)
=



(
(2304−560φ−157φ2)s̄2

4(24−φ)2 ,−207(1−φ)2s̄2

4(24−φ)2

)
if (eA, eB) = (1, 1)(

7s̄2

16 ,
s̄2

4

)
if (eA, eB) = (1,−1)(

s̄2

4 ,
7s̄2

16

)
if (eA, eB) = (−1, 1)(

− 207φ2s̄2

4(23+φ)2 ,
(1587+874φ−157φ2)s̄2

4(23+φ)2

)
if (eA, eB) = (−1,−1)
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If dealer A wins, the on-market trades are

(xA1 , x
A
2 , x

B
1 , x

B
2 ) =



(
7(1−φ)s̄
2(24−φ) ,

3(1−φ)s̄
2(24−φ) ,−

8(1−φ)s̄
24−φ , 3(1−φ)s̄

2(24−φ)

)
if (s, eA, eB) = (s̄, 1, 1)(

− (16+7φ)s̄
2(24−φ) ,−

(32−9φ)s̄
2(24−φ) ,−

8(1−φ)s̄
24−φ , 8(1−φ)s̄

24−φ

)
if (s, eA, eB) = (−s̄, 1, 1)

(0, 0, 0, 0) if (s, eA, eB) = (s̄, 1,−1)(
− s̄

4 ,−
3s̄
4 , 0,

s̄
2

)
if (s, eA, eB) = (−s̄, 1,−1)(

s̄
4 ,

3s̄
4 , 0,−

s̄
2

)
if (s, eA, eB) = (s̄,−1, 1)

(0, 0, 0, 0) if (s, eA, eB) = (−s̄,−1, 1)(
(23−7φ)s̄
2(23+φ) ,

(23+9φ)s̄
2(23+φ) ,

8φs̄
23+φ ,−

8φs̄
23+φ

)
if (s, eA, eB) = (s̄,−1,−1)(

− 7φs̄
2(23+φ) ,−

3φs̄
2(23+φ) ,

8φs̄
23+φ ,−

3φs̄
2(23+φ)

)
if (s, eA, eB) = (−s̄,−1,−1)

Dealer B’s bids and the on-market trades if dealer B wins are specified symmetrically.

Lemma 2 follows from Lemma A2 for reasons discussed in the main text. For an RFQ that

contacts two dealers to ensure execution with probability one, the client’s reserve must be high

enough to ensure that it never sets the price. Mathematically, this means b̄−s̄ ≥ (2304−560φ−157φ2)s̄2

4(24−φ)2

and b̄s̄ ≥ (1587+874φ−157φ2)s̄2

4(23+φ)2 , where φ denotes the probability of s = s̄ induced by the RFQ. These

inequalities are in particular satisfied by b̄ = (s̄2, s̄2).

It therefore follows from Lemma A2 that the expected cost of procurement achieved by an

RFQ that contacts M = 2 dealers, induces a belief that φ is the probability of s = s̄, and ensures

execution with probability one can be computed as

ĉ2(φ) ≡ (1− φ)(2304− 767φ+ 50φ2)s̄2

4(24− φ)2
ψ[1− (1− ψ)(1− ρ)]

+
φ(1587 + 667φ+ 50φ2)s̄2

4(23 + φ)2
(1− ψ)[1− ψ(1− ρ)] +

7s̄2

8
ψ(1− ψ)(1− ρ).

(9)

Indeed, with probability φψ[1 − (1 − ψ)(1 − ρ)], we have (s, eA, eB) = (s̄, 1, 1), and the auction’s

clearing price is −207(1−φ)2s̄2

4(24−φ)2 . With probability (1− φ)ψ[1− (1− ψ)(1− ρ)], we have (s, eA, eB) =

(−s̄, 1, 1), and the auction’s clearing price is (2304−560φ−157φ2)s̄2

4(24−φ)2 . With probability φ(1 − ψ)[1 −

ψ(1− ρ)], we have (s, eA, eB) = (s̄,−1,−1), and the auction’s clearing price is (1587+874φ−157φ2)s̄2

4(23+φ)2 .

With probability (1− φ)(1− ψ)[1− ψ(1− ρ)], we have (s, eA, eB) = (s̄,−1,−1), and the auction’s

clearing price is − 207φ2s̄2

4(23+φ)2 . With the remaining probability 2ψ(1−ψ)(1−ρ), the auction’s clearing

price is max{7s̄2

16 ,
s̄2

4 } = 7s̄2

16 . It follows that the expected procurement cost is as in (9).

The claims made by Lemma 2 about ĉ2(φ) follow readily from (9). Indeed, we can see that it

is differentiable and we can moreover compute

ĉ′′2(φ) =
529(624− 95φ)s̄2

2(24− φ)4
ψ[1− (1− ψ)(1− ρ)] +

529(529 + 95φ)s̄2

2(23 + φ)4
(1− ψ)[1− ψ(1− ρ)],
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which is positive on the domain φ ∈ [0, 1]. We can also compute ĉ2(1
2) = 1933s̄2

4418 ψ[1 − (1 − ψ)(1 −
ρ)] + 1933s̄2

4418 (1− ψ)[1− ψ(1− ρ)] + 7s̄2

8 ψ(1− ψ)(1− ρ) < 3s̄2

4 = ĉ1.

Proof of Lemma A2. Because both dealers observe the entire vector (eA, eB), the four possible

realizations of that vector can be analyzed separately. Below, we analyze the cases of (1, 1) and

(1,−1); the remaining cases can be handled symmetrically (i.e., by flipping signs and exchanging

the roles of φ and 1 − φ). Within each case, we focus on the event in which dealer A wins; the

events in which dealer B wins can be handled symmetrically.

Case 1: (eA, eB) = (1, 1). Here is a full specification of a WPBE for this case. Dealer A bids(
bA−s̄, b

A
s̄

)
=
(

(2304−560φ−157φ2)s̄2

4(24−φ)2 ,−207(1−φ)2s̄2

4(24−φ)2

)
. Henceforth, suppose that dealer A wins. If s = s̄,

dealer A sets xA1 = 7(1−φ)s̄
2(24−φ) and

xA2 =



−xA1
2 if 0 ≤ xA1 ≤ s̄ and

xA1
2 ≤ x

B
1 ≤ s̄

−xA1 +xB1
3 if 0 ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤

xA1
2

−xA1
2 if max{−s̄, 2s̄− 4} ≤ xA1 < 0 and − s̄ ≤ xB1 ≤ s̄

s̄− 2− xA1 if − s̄ ≤ xA1 < 2s̄− 4 and − s̄ ≤ xB1 ≤ s̄

(10)

If s = −s̄, dealer A sets xA1 = − (16+7φ)s̄
2(24−φ) and

xA2 =
{
−s̄− xA1 if − s̄ ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤ s̄ (11)

Dealer B sets xB1 = −8(1−φ)s̄
24−φ and

xB2 =


−xB1 if 0 ≤ xA1 ≤ s̄ and

xA1
2 ≤ x

B
1 ≤ s̄

−xA1 +xB1
3 if 0 ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤

xA1
2

−xB1 if − s̄ ≤ xA1 < 0 and − s̄ ≤ xB1 ≤ s̄

(12)

Dealers’ beliefs prior to bidding are µA0 = µB0 = φ. Dealer B’s beliefs prior to first-period trading

are µB1 = φ. Dealer B’s beliefs prior to second-period trading are

µB2 =

1 if 0 ≤ xA1 ≤ s̄

0 if − s̄ ≤ xA1 < 0

We claim that the specified strategies and beliefs satisfy the solution concept described in Section 3.1

and moreover that anything else also satisfying the solution concept must feature the same on-path

behavior. The argument consists of three parts.

Part (i): We check the consistency of dealer B’s beliefs. First, consider dealer B’s beliefs (condi-

tional on losing) at the point just after having observed the auction’s outcome. Given symmetry

of the specified bidding strategies and the fact that the auction’s tie-breaking rule does not depend
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on the realized s, the auction’s outcome is uninformative so that posterior beliefs must equal the

prior. Thus, we indeed have µB1 = φ. Second, consider dealer B’s beliefs (conditional on losing) at

the point just after having observed the first trading period’s outcome. Given the specified strategy

for dealer A, Bayes’ rule requires only that

µB2 =

1 if xA1 = 7(1−φ)s̄
2(24−φ)

0 if xA1 = − (16+7φ)s̄
2(24−φ)

This is indeed consistent with the specified beliefs.

Part (ii): Given the specified beliefs, we check that the solution concept uniquely pins down the

specified strategies. We proceed by backward induction:

• Period-2 reaction functions. Dealer A’s trading costs are (xA1 +xB1 )xA1 + (xA1 +xB1 +xA2 +xB2 )xA2 .

For s ∈ {−s̄, s̄}, dealer A best responds with xA2 =
[
−xA1 +xB1 +xB2

2

]s−xA1
s−2−xA1

. Dealer B’s trading costs

are (xA1 +xB1 )xB1 +(xA1 +xB1 +xA2 +xB2 )xB2 . Dealer B best responds with xB2 =
[
−xA1 +xB1 +xA2

2

]−xB1
−2−xB1

.

• Dealer B’s period-2 action. If 0 ≤ xA1 ≤ s̄ so that µB2 = 1, then xB2 is pinned down by the

intersection of xA2 =
[
−xA1 +xB1 +xB2

2

]s̄−xA1
s̄−2−xA1

and xB2 =
[
−xA1 +xB1 +xA2

2

]−xB1
−2−xB1

, so that we indeed

have:

xB2 =

−xB1 if 0 ≤ xA1 ≤ s̄ and
xA1
2 ≤ x

B
1 ≤ s̄

−xA1 +xB1
3 if 0 ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤

xA1
2

If −s̄ ≤ xA1 < 0 so that µB2 = 0, then xB2 is pinned down by the intersection of xA2 =[
−xA1 +xB1 +xB2

2

]−s̄−xA1
−s̄−2−xA1

and xB2 =
[
−xA1 +xB1 +xA2

2

]−xB1
−2−xB1

, so that we indeed have:

xB2 =
{
−xB1 if − s̄ ≤ xA1 < 0 and − s̄ ≤ xB1 ≤ s̄

Together, these two cases verify (12).

• Dealer A’s period-2 action. If s = s̄, then xA2 is pinned down by the intersection of xA2 =[
−xA1 +xB1 +xB2

2

]s̄−xA1
s̄−2−xA1

and (12), which verifies (10). If s = −s̄, then xA2 is pinned down by the

intersection of xA2 =
[
−xA1 +xB1 +xB2

2

]−s̄−xA1
−s̄−2−xA1

and (12), which verifies (11).

• Period-1 actions. Dealer A’s trading costs are (xA1 + xB1 )xA1 + (xA1 + xB1 + xA2 + xB2 )xA2 . If s = s̄,

then we can plug in (10) and (12) to express dealer A’s trading costs as a function of (xA1 , x
B
1 ):
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(xA1 + xB1 )xA1 − (
xA1
2 )2 if 0 ≤ xA1 ≤ s̄ and

xA1
2 ≤ x

B
1 ≤ s̄

(xA1 + xB1 )xA1 − (
xA1 +xB1

3 )2 if 0 ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤
xA1
2

(xA1 + xB1 )xA1 − (
xA1
2 )2 if max{−s̄, 2s̄− 4} ≤ xA1 < 0 and − s̄ ≤ xB1 ≤ s̄

(xA1 + xB1 )xA1 + (s̄− 2)(s̄− 2− xA1 ) if − s̄ ≤ xA1 < 2s̄− 4 and − s̄ ≤ xB1 ≤ s̄

Optimizing, we can express xA1 (s̄) in terms of xB1 :

xA1 (s̄) =


−7xB1

16 if − s̄ ≤ xB1 ≤ 0

−2xB1
3 if 0 ≤ xB1 ≤ min{−3s̄+ 6, s̄}

s̄
2 − 1− xB1

2 if − 3s̄+ 6 ≤ xB1 ≤ s̄

(13)

Alternatively, if s = −s̄, then we can plug in (11) and (12) to express dealer A’s trading costs as

a function of (xA1 , x
B
1 ):

(xA1 + xB1 )xA1 + (−s̄)(−s̄− xA1 ) if 0 ≤ xA1 ≤ s̄ and
xA1
2 ≤ x

B
1 ≤ s̄

(xA1 + xB1 )xA1 + (−s̄− xA1
3 +

2xB1
3 )(−s̄− xA1 ) if 0 ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤

xA1
2

(xA1 + xB1 )xA1 + (−s̄)(−s̄− xA1 ) if − s̄ ≤ xA1 < 0 and − s̄ ≤ xB1 ≤ s̄

Optimizing, we can express xA1 (−s̄) in terms of xB1 :

xA1 (−s̄) =
{
− s̄

2 −
xB1
2 if − s̄ ≤ xB1 ≤ s̄ (14)

The derivation of dealer B’s equilibrium period-1 action consists of two parts.

– First, we show that there is a unique equilibrium in which xB1 ∈ [−s̄, 0]. Suppose s = s̄. If xA1
is a best response to some x̂B1 ∈ [−s̄, 0], then by (13), we have xA1 = −7x̂B1

16 , so that xA1 ∈ [0, 7s̄
16 ].

Dealer B’s trading costs are (xA1 +xB1 )xB1 + (xA1 +xB1 +xA2 +xB2 )xB2 . We can then plug in (10)

and (12) to express dealer B’s trading costs, conditional on s = s̄, as a function of (xB1 , x̂
B
1 ):

CBs̄ (xB1 , x̂
B
1 ) =

(−7x̂B1
16 + xB1 )xB1 + (−7x̂B1

32 )(−xB1 ) if − 7x̂B1
32 ≤ x

B
1 ≤ s̄

(−7x̂B1
16 + xB1 )xB1 − (−7x̂B1

48 +
xB1
3 )2 if − s̄ ≤ xB1 ≤ −

7x̂B1
32

Suppose s = −s̄. If xA1 is a best response to the same x̂B1 ∈ [−s̄, 0], then by (14), we have

xA1 = − s̄
2 −

x̂B1
2 , so that xA1 ∈ [− s̄

2 , 0]. We can then plug in (11) and (12) to express dealer B’s

trading costs, conditional on s = −s̄, as a function of (xB1 , x̂
B
1 ):

CB−s̄(x
B
1 , x̂

B
1 ) =

{
(− s̄

2 −
x̂B1
2 + xB1 )xB1 + (−s̄)(−xB1 ) if − s̄ ≤ xB1 ≤ s̄
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Because φ represents the probability of s̄, dealer B’s unconditional expected trading costs as

a function of (xB1 , x̂
B
1 ) are

φCBs̄ (xB1 , x̂
B
1 ) + (1− φ)CB−s̄(x

B
1 , x̂

B
1 ),

which is minimized by xB1 = −9(1−φ)s̄
4(9−φ) +

(72−23φ)x̂B1
32(9−φ) . Equilibrium occurs when this optimal

value of xB1 coincides with x̂B1 . This obtains at xB1 = −8(1−φ)s̄
24−φ , which is indeed an element of

[−s̄, 0].

– Second, we show that there is no equilibrium in which xB1 > 0. Suppose s = s̄. Let x̂B1 > 0.

Assume that xA1 best responds to x̂B1 ; it can be derived from (13). We can then plug in (10)

and (12) to express dealer B’s trading costs, conditional on s = s̄, as a function of (xB1 , x̂
B
1 ):

CBs̄ (x̂B1 , x̂
B
1 ) =

2
3(x̂B1 )2 if 0 ≤ x̂B1 ≤ min{−3s̄+ 6, s̄}
(−s̄+2+x̂B1 )x̂B1

2 if − 3s̄+ 6 ≤ x̂B1 ≤ s̄

Similarly, suppose s = −s̄. Let x̂B1 > 0 as above. Assume that xA1 best responds to x̂B1 ; it can

be derived from (14). We can then plug in (11) and (12) to express dealer B’s trading costs,

conditional on s = s̄, as a function of (xB1 , x̂
B
1 ):

CB−s̄(x̂
B
1 , x̂

B
1 ) =

{
(s̄+x̂B1 )x̂B1

2 if 0 ≤ x̂B1 ≤ s̄

Because φ represents the probability of s̄, dealer B’s unconditional expected trading costs from

setting xB1 = x̂B1 would be φCBs̄ (x̂B1 , x̂
B
1 ) + (1−φ)CB−s̄(x̂

B
1 , x̂

B
1 ), which by the above expressions

is strictly positive. But this cannot correspond to an equilibrium because dealer B could do

strictly better by deviating: setting xB1 = xB2 = 0 guarantees trading costs of zero.

In conclusion, we have derived dealer B’s period-1 action as xB1 = −8(1−φ)s̄
24−φ . Plugging this

into (13) and (14), we indeed obtain xA1 (s̄) = 7(1−φ)s̄
2(24−φ) and xA1 (−s̄) = − (16+7φ)s̄

2(24−φ) , respectively.

Finally, given these period-1 actions, (10)–(12) imply that the following period-2 actions will

occur on the equilibrium path

(xA2 , x
B
2 ) =


(

3(1−φ)s̄
2(24−φ) ,

3(1−φ)s̄
2(24−φ)

)
if s = s̄(

− (32−9φ)s̄
2(24−φ) ,

8(1−φ)s̄
24−φ

)
if s = −s̄

• Bids. Plugging in the trading behavior derived above, we have the following. If s = s̄ and if

dealer A wins, then dealer A’s continuation utility is c+ 18(1−φ)2s̄2

(24−φ)2 , and dealer B’s continuation

utility is −135(1−φ)2s̄2

4(24−φ)2 . By symmetry, if dealer B wins, then dealer A’s continuation utility would

be −135(1−φ)2s̄2

4(24−φ)2 .

If s = −s̄ and if dealer A wins, then dealer A’s continuation utility is c − (64+5φ)(32−9φ)s̄2

4(24−φ)2 , and
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dealer B’s continuation utility is 4(1−φ)(16+7φ)s̄2

(24−φ)2 . By symmetry, if dealer B wins, then dealer A’s

continuation utility would be 4(1−φ)(16+7φ)s̄2

(24−φ)2 .

Because the dealer sets a non-binding reserve, the event in which neither dealer wins is not

relevant. Based on the solution concept described in Section 3.1, dealer A must therefore bid

(
bA−s̄, b

A
s̄

)
=


(64 + 5φ)(32− 9φ)s̄2

4(24− φ)2
+

4(1− φ)(16 + 7φ)s̄2

(24− φ)2︸ ︷︷ ︸
= (2304−560φ−157φ2)s̄2

4(24−φ)2

,−18(1− φ)2s̄2

(24− φ)2
− 135(1− φ)2s̄2

4(24− φ)2︸ ︷︷ ︸
= −207(1−φ)2s̄2

4(24−φ)2

 .

Part (iii): We check that the equilibrium specified above satisfies the restrictions on beliefs de-

scribed in Section 3.1. And we also show that any equilibrium satisfying those conditions must

feature on-path behavior coinciding with that of the equilibrium specified above. Let µ̃B2 be can-

didate beliefs. One requirement is that µ̃B2 must have the step-function structure described in the

text.

• We start by establishing an upper bound for the location of the jump. Suppose, by way of

contradiction, that we have an equilibrium with beliefs such that µ̃B2
( 7(1−φ)s̄

2(24−φ)

)
= 0. By the step-

function structure of µ̃B2 and because beliefs must be correct on path, this means that on path,

dealer A sets xA1 = x∗ > 7(1−φ)s̄
2(24−φ) when s = s̄. Arguments similar to those given above imply

that we have xA1 = 7φx∗−(9+7φ)s̄
27+5φ when s = −s̄ and xB1 = −14φx∗+9(1−φ)s̄

27+5φ . And when s = s̄, we

subsequently have xA2 = xB2 = −x∗+xB1
3 , leading to total trading costs for dealer A of

(x∗ + xB1 )x∗ − 1

9
(x∗ + xB1 )2, (15)

evaluated at xB1 = −14φx∗+9(1−φ)s̄
27+5φ . Now consider two cases:

– First, suppose there exists a ε > 0 such that µ̃B2 (x∗ − ε) = 1. In that case, it follows from

equation (15) that x∗ can be a locally optimal choice for dealer A only if xA1 = −7xB1
16 . Given

that xB1 = −14φx∗+9(1−φ)s̄
27+5φ , this requires x∗ = 7(1−φ)s̄

2(24−φ) , a contradiction.

– Second, suppose that for all ε > 0, µ̃B2 (x∗ − ε) = 0. In that case, if dealer A deviates to

xA1 = x∗ − ε when s = s̄, then we subsequently have xB2 = −xB1 and xA2 = −xA1
2 , leading to

total trading costs for dealer A that, for small ε, are well approximated by

(x∗ + xB1 )x∗ − 1

4
(x∗)2, (16)

evaluated at xB1 = −14φx∗+9(1−φ)s̄
27+5φ . Comparing (16) to (15) and using xB1 = −14φx∗+9(1−φ)s̄

27+5φ ,

we see that this is a profitable deviation if x∗ > 6(1−φ)s̄
45−φ , which is implied by x∗ > 7(1−φ)s̄

2(24−φ) .

• We then strengthen this upper bound. We know from above that µ̃B2
( 7(1−φ)s̄

2(24−φ)

)
= 1. Arguments
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similar to those given above imply that our only candidate equilibrium entails xA1 = 7(1−φ)s̄
2(24−φ) when

s = s̄, xA1 = − (16+7φ)s̄
2(24−φ) when s = −s̄, and xB1 = −8(1−φ)s̄

24−φ . And when s = s̄, we subsequently have

xA2 = xB2 = −xA1 +xB1
3 , leading to total trading costs for dealer A of

− 18(1− φ)2s̄2

(24− φ)2
. (17)

Now suppose, by way of contradiction, that we have an equilibrium with beliefs such that

µ̃B2
(2(1−φ)(8−

√
10)s̄

3(24−φ) + ε
)

= 0 for some ε > 0. Suppose then that dealer A deviated to set

xA1 = 2(1−φ)(8−
√

10)s̄
3(24−φ) + ε when s = s̄. Arguments similar to those given above imply that we

would subsequently have xB2 = −xB1
2 and xA2 = −xA1

2 , leading to total trading costs for dealer A

of

(xA1 + xB1 )xA1 −
(xA1 )2

4
. (18)

Comparing (18) to (17), we see that this is a profitable deviation for sufficiently small ε > 0.

• We next establish a corresponding lower bound. Suppose, by way of contradiction, that we

have an equilibrium with beliefs such that µ̃B2
(
− (16+7φ)s̄

2(24−φ)

)
= 1. By the step-function structure

of µ̃B2 and because beliefs must be correct on path, this means that on path, dealer A sets

xA1 = x∗ < − (16+7φ)s̄
2(24−φ) when s = −s̄. Arguments similar to those given above imply that we have

xA1 = 7(1−φ)(s̄+x∗)
32−9φ when s = s̄ and xB1 = −16(1−φ)(s̄+x∗)

32−9φ . When s = −s̄, we subsequently have

xA2 = −s̄−xA1 and xB2 = −xB1 , leading to equilibrium trading costs for dealer A, denoted CA∗ (−s̄),
equal to (

xA1 −
16(1− φ)(s̄+ x∗)

32− 9φ

)
xA1 + s̄(s̄+ xA1 ) (19)

evaluated at xA1 = x∗. Alternatively, when s = s̄, we subsequently have xA2 = xB2 = −xA1 +xB1
3 .

Plugging in, dealer A’s equilibrium trading costs are

CA∗ (s̄) = −72(1− φ)2(s̄+ x∗)2

(32− 9φ)2
. (20)

Now define x̂ ≡ − (16+7φ)s̄−16(1−φ)x∗

2(32−9φ) . Note that x̂ > x∗, which follows from x∗ < − (16+7φ)s̄
2(24−φ) .

Suppose that dealer A deviated to set xA1 = x̂ when s = −s̄ and that—perhaps contrary to the

putative beliefs—this were to induce a belief µB2 = 0. Arguments similar to those given above

imply that we would subsequently have xA2 = −s̄ − xA1 and xB2 = −xB1 , leading to trading costs

for dealer A, denoted CA(−s̄, x̂, 0), equal to (19) evaluated at xA1 = x̂. Note that this choice

optimizes (19). On the other hand, because x∗ 6= x̂, x∗ does not optimize (19). We therefore

conclude CA(−s̄, x̂, 0) < CA∗ (−s̄).

On the other hand, suppose that dealer A deviated to set xA1 = x̂ when s = s̄ and that this

were to induce a belief µB2 ∈ [0, 1]. Arguments similar to those given above imply that we would
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subsequently have

xA2 =
[16(1− φ)x∗ + (48− 25φ)s̄]µB2

2(32− 9φ)(4− µB2 )
xB2 =

[(48− 25φ)s̄+ 16(1− φ)x∗](4− 3µB2 )

2(32− 9φ)(4− µB2 )
,

leading to trading costs of

CA
(
s̄, x̂, µB2

)
=

2[(48− 25φ)s̄+ 16(1− φ)x∗]
(
[2(16 + 7φ)− (16 + 7φ)µB2 − 4(1− φ)(µB2 )2]s̄− 4(1− φ)x∗[(µB2 )2 − 4µB2 + 8]

)
(32− 9φ)2(4− µB2 )2

This is minimized at µB2 = 0, and hence

min
µB2 ∈[0,1]

CA
(
s̄, x̂, µB2

)
=

[(48− 25φ)s̄+ 16(1− φ)x∗][(16 + 7φ)s̄− 16(1− φ)x∗]

4(32− 9φ)2
. (21)

Comparing (21) to (20), it can be shown that CA∗ (s̄) < minµB2 ∈[0,1]C
A
(
s̄, x̂, µB2

)
. The putative

equilibrium therefore fails our intuitive criterion test.

• Finally, we turn to the remaining possibilities. Suppose we have an equilibrium with beliefs such

that both µ̃B2
(2(1−φ)(8−

√
10)s̄

3(24−φ) + ε
)

= 1 for all ε > 0 and µ̃B2
(
− (16+7φ)s̄

2(24−φ)

)
= 0. Using arguments

similar to those given above, we can show that any such equilibrium induces the same on-path

behavior as the equilibrium specified above. In particular, dealer A’s equilibrium trading costs

are as above: CA∗ (s̄) = −18(1−φ)2s̄2

24−φ)2 and CA∗ (−s̄) = (62+5φ)(32−9φ)s̄2

4(24−φ)2 . We can also use arguments

similar to those given above to compute

CA(s̄, xA1 , 1) =


(
xA1 −

8(1−φ)s̄
24−φ

)
(xA1 )− 1

9

(
xA1 −

8(1−φ)s̄
24−φ

)2
if − 16(1−φ)s̄

24−φ ≤ xA1 ≤ s̄(
xA1 −

8(1−φ)s̄
24−φ

)
(xA1 )− (

xA1
2 )2 if 2s̄− 4 ≤ xA1 ≤ −

16(1−φ)s̄
24−φ(

xA1 −
8(1−φ)s̄

24−φ

)
(xA1 ) + (s̄− 2)(s̄− 2− xA1 ) if − s̄ ≤ xA1 ≤ 2s̄− 4

CA(s̄, xA1 , 0) =
{(
xA1 −

8(1−φ)s̄
24−φ

)
(xA1 ) + s̄(s̄+ xA1 ) if − s̄ ≤ xA1 ≤ s̄

And so we conclude that for all xA1 ∈ [−s̄, s̄], CA(s̄, xA1 , 1) ≥ CA∗ (s̄) and CA(−s̄, xA1 , 0) ≥ CA∗ (−s̄).
Hence, the intuitive criterion does not rule out any such equilibrium (e.g., the equilibrium spec-

ified above).

Case 2: (eA, eB) = (1,−1). Here is a full specification of a WPBE for this case. Dealer A bids
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(
bA−s̄, b

A
s̄

)
=
(

7s̄2

16 ,
s̄2

4

)
. Henceforth, suppose that dealer A wins. If s = s̄, dealer A sets xA1 = 0 and

xA2 =



−xA1 +xB1
3 if max{3s̄

2 +
xB1
2 − 3,− s̄

6} ≤ x
A
1 ≤ s̄ and

xA1
2 ≤ x

B
1 ≤ s̄

s̄− 2− xA1 if − s̄
6 ≤ x

A
1 ≤ 3s̄

2 +
xB1
2 − 3 and max{−s̄, s̄− 2} ≤ xB1 ≤ s̄

−xA1
2 max{− s̄

6 , 2s̄− 4} ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤
xA1
2

s̄− 2− xA1 if − s̄
6 ≤ x

A
1 ≤ 2s̄− 4 and − s̄ ≤ xB1 ≤ s̄− 2

− s̄
4 −

xA1
2 −

xB1
4 if max{−s̄, 5s̄+xB1

2 − 4} ≤ xA1 < − s̄
6 and − s̄ ≤ xB1 ≤ s̄

s̄− 2− xA1 if − s̄ ≤ xA1 < min{5s̄+xB1
2 − 4,− s̄

6} and − s̄ ≤ xB1 ≤ s̄

(22)

If s = −s̄, dealer A sets xA1 = − s̄
4 and

xA2 =
{
−s̄− xA1 if − s̄ ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤ s̄ (23)

Dealer B sets xB1 = 0 and

xB2 =



−xA1 +xB1
3 if max{3s̄

2 +
xB1
2 − 3,− s̄

6} ≤ x
A
1 ≤ s̄ and

xA1
2 ≤ x

B
1 ≤ s̄

− s̄
2 + 1− xB1

2 if − s̄
6 ≤ x

A
1 ≤ 3s̄

2 +
xB1
2 − 3 and max{−s̄, s̄− 2} ≤ xB1 ≤ s̄

−xB1 if max{− s̄
6 , 2s̄− 4} ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤

xA1
2

−xB1 if − s̄
6 ≤ x

A
1 ≤ 2s̄− 4 and − s̄ ≤ xB1 ≤ s̄− 2

s̄
2 −

xB1
2 if − s̄ ≤ xA1 < − s̄

6 and − s̄ ≤ xB1 ≤ s̄

(24)

Dealers’ beliefs prior to bidding are µA0 = µB0 = φ. Dealer B’s beliefs prior to first-period trading

are µB1 = 1. Dealer B’s beliefs prior to second-period trading are

µB2 =

1 if − s̄
6 ≤ x

A
1 ≤ s̄

0 if − s̄ ≤ xA1 < − s̄
6

We claim that the specified strategies and beliefs satisfy the solution concept described in Section 3.1

and moreover that anything else also satisfying the solution concept must feature the same on-path

behavior. The argument consists of three parts.

Part (i): We check the consistency of dealer B’s beliefs. First, consider dealer B’s beliefs (con-

ditional on losing) at the point just after having observed the auction’s outcome. In this case,

dealer A bids
(
bA−s̄, b

A
s̄

)
=
(

7s̄2

16 ,
s̄2

4

)
, while dealer B bids

(
bB−s̄, b

B
s̄

)
=
(
s̄2

4 ,
7s̄2

16

)
. It follows that

dealer B loses iff s = s̄. Thus, we indeed have µB1 = 1. Second, consider dealer B’s beliefs (condi-

tional on losing) at the point just after having observed the first trading period’s outcome. Given
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the specified strategy for dealer A, Bayes’ rule requires only that

µB2 =

1 if xA1 = 0

0 if xA1 = − s̄
4

This is indeed consistent with the specified beliefs.

Part (ii): Given the specified beliefs, we check that the solution concept uniquely pins down the

specified strategies. We proceed by backward induction:

• Period-2 reaction functions. Dealer A’s trading costs are xA1 x
A
1 + (xA1 + xA2 + xB2 )xA2 . For s ∈

{−s̄, s̄}, dealer A best responds with xA2 =
[
−xA1 +xB1 +xB2

2

]s−xA1
s−2−xA1

. Dealer B’s trading costs are

(xA1 + xA2 + xB2 )xB2 . Dealer B best responds with xB2 =
[
−xA1 +xB1 +xA2

2

]2−xB1

−xB1
.

• Dealer B’s period-2 action. If − s̄
6 ≤ xA1 ≤ s̄ so that µB2 = 1, then xB2 is pinned down by the

intersection of xA2 =
[
−xA1 +xB1 +xB2

2

]s̄−xA1
s̄−2−xA1

and xB2 =
[
−xA1 +xB1 +xA2

2

]2−xB1

−xB1
, so that we indeed have:

xB2 =



−xA1 +xB1
3 if max{3s̄

2 +
xB1
2 − 3,− s̄

6} ≤ x
A
1 ≤ s̄ and

xA1
2 ≤ x

B
1 ≤ s̄

− s̄
2 + 1− xB1

2 if − s̄
6 ≤ x

A
1 ≤ 3s̄

2 +
xB1
2 − 3 and max{−s̄, s̄− 2} ≤ xB1 ≤ s̄

−xB1 if max{− s̄
6 , 2s̄− 4} ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤

xA1
2

−xB1 if − s̄
6 ≤ x

A
1 ≤ 2s̄− 4 and − s̄ ≤ xB1 ≤ s̄− 2

If −s̄ ≤ xA1 < − s̄
6 so that µB2 = 0, then xB2 is pinned down by the intersection of xA2 =[

−xA1 +xB1 +xB2
2

]−s̄−xA1
−s̄−2−xA1

and xB2 =
[
−xA1 +xB1 +xA2

2

]2−xB1

−xB1
, so that we indeed have:

xB2 =
{
s̄
2 −

xB1
2 if − s̄ ≤ xA1 < − s̄

6 and − s̄ ≤ xB1 ≤ s̄

Together, these two cases verify (24).

• Dealer A’s period-2 action. If s = s̄, then xA2 is pinned down by the intersection of xA2 =[
−xA1 +xB1 +xB2

2

]s̄−xA1
s̄−2−xA1

and (24), which verifies (22). If s = −s̄, then xA2 is pinned down by the

intersection of xA2 =
[
−xA1 +xB1 +xB2

2

]−s̄−xA1
−s̄−2−xA1

and (24), which verifies (23).

• Period-1 actions. Dealer A’s trading costs are (xA1 + xB1 )xA1 + (xA1 + xB1 + xA2 + xB2 )xA2 . If s = s̄,
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then we can plug in (22) and (24) to express dealer A’s trading costs as a function of (xA1 , x
B
1 ):

(xA1 + xB1 )xA1 − (
xA1 +xB1

3 )2 if max{3s̄
2 +

xB1
2 − 3,− s̄

6} ≤ x
A
1 ≤ s̄ and

xA1
2 ≤ x

B
1 ≤ s̄

(xA1 + xB1 )xA1 + ( s̄2 − 1 +
xB1
2 )(s̄− 2− xA1 ) if − s̄

6 ≤ x
A
1 ≤ 3s̄

2 +
xB1
2 − 3 and max{−s̄, s̄− 2} ≤ xB1 ≤ s̄

(xA1 + xB1 )xA1 − (
xA1
2 )2 max{− s̄

6 , 2s̄− 4} ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤
xA1
2

(xA1 + xB1 )xA1 + (s̄− 2)(s̄− 2− xA1 ) if − s̄
6 ≤ x

A
1 ≤ 2s̄− 4 and − s̄ ≤ xB1 ≤ s̄− 2

(xA1 + xB1 )xA1 − ( s̄4 +
xA1
2 +

xB1
4 )2 if max{−s̄, 5s̄+xB1

2 − 4} ≤ xA1 < − s̄
6 and − s̄ ≤ xB1 ≤ s̄

(xA1 + xB1 )xA1 + (3s̄
2 − 2 +

xB1
2 )(s̄− 2− xA1 ) if − s̄ ≤ xA1 < min{5s̄+xB1

2 − 4,− s̄
6} and − s̄ ≤ xB1 ≤ s̄

Rather than derive dealer A’s function of best responses to xB1 , we instead derive two auxiliary

functions. First, we derive dealer A’s best response among first-period trades satisfying − s̄
6 ≤

xA1 ≤ s̄:

xA1 (xB1 ) =



−2xB1
3 if − s̄ ≤ xB1 ≤ 0

−7xB1
16 if 0 ≤ xB1 ≤ min{ 8s̄

21 ,
8(2−s̄)

5 }

− s̄
6 if 8s̄

21 ≤ x
B
1 ≤ −10s̄

3 + 6

3s̄
2 +

xB1
2 − 3 if max{8(2−s̄)

5 ,−10s̄
3 + 6} ≤ xB1 ≤

5(2−s̄)
3

s̄
4 −

1
2 −

xB1
4 if 5(2−s̄)

3 ≤ xB1 ≤ 5s̄
3 − 2

− s̄
6 if max{−10s̄

3 + 6, 5s̄
3 − 2} ≤ xB1 ≤ s̄

(25)

Second, we derive dealer A’s best response among first-period trades satisfying xA1 < − s̄
6 . Because

the domain is not compact, this function is not defined everywhere:

xA1 (xB1 ) =


undefined if − s̄ ≤ xB1 ≤ max{2s̄

3 ,
11s̄
3 − 4}

s̄
6 −

xB1
2 if 2s̄

3 < xB1 ≤ −7s̄
3 + 4

3s̄
2 +

xB1
2 − 3 if max{−7s̄

3 + 4, 11s̄
3 − 4} < xB1 ≤ s̄

(26)

Dealer B’s trading costs are (xA1 + xB1 )xB1 + (xA1 + xB1 + xA2 + xB2 )xB2 . If s = s̄, then we can plug

in (22) and (24) to express dealer B’s trading costs as a function of (xA1 , x
B
1 ):

(xA1 + xB1 )xA1 − (
xA1 +xB1

3 )2 if max{3s̄
2 +

xB1
2 − 3,− s̄

6} ≤ x
A
1 ≤ s̄ and

xA1
2 ≤ x

B
1 ≤ s̄

(xA1 + xB1 )xB1 − ( s̄2 − 1 +
xB1
2 )2 if − s̄

6 ≤ x
A
1 ≤ 3s̄

2 +
xB1
2 − 3 and max{−s̄, s̄− 2} ≤ xB1 ≤ s̄

(xA1 + xB1 )xB1 + (
xA1
2 )(−xB1 ) max{− s̄

6 , 2s̄− 4} ≤ xA1 ≤ s̄ and − s̄ ≤ xB1 ≤
xA1
2

(xA1 + xB1 )xB1 + (s̄− 2)(−xB1 ) if − s̄
6 ≤ x

A
1 ≤ 2s̄− 4 and − s̄ ≤ xB1 ≤ s̄− 2

(xA1 + xB1 )xB1 + ( s̄4 +
xA1
2 +

xB1
4 )( s̄2 −

xB1
2 ) if max{−s̄, 5s̄+xB1

2 − 4} ≤ xA1 < − s̄
6 and − s̄ ≤ xB1 ≤ s̄

(xA1 + xB1 )xB1 + (3s̄
2 − 2 +

xB1
2 )( s̄2 −

xB1
2 ) if − s̄ ≤ xA1 < min{5s̄+xB1

2 − 4,− s̄
6} and − s̄ ≤ xB1 ≤ s̄

Because dealer B attaches probability one to s = s̄ (i.e., µB1 = 1), dealer B selects xB1 to minimize
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this objective. Optimizing, we can express xB1 in terms of xA1 :

xB1 (xA1 ) =


s̄−2

3 −
2xA1

3 if − s̄ ≤ xA1 ≤ max{− s̄
6 ,

16(s̄−2)
13 }

−7xA1
16 if max{− s̄

6 ,
16(s̄−2)

13 } ≤ xA1 ≤ 0

−xA1
4 if 0 ≤ xA1 ≤ s̄

(27)

To determine equilibrium period-1 actions, we argue as follows. First, observe that (26) and (27)

do not intersect. This implies that there is no equilibrium in which xA1 ∈ [−s̄,− s̄
6) when s = s̄.

Second, observe that (25) and (27) have a unique intersection at (xA1 , x
B
1 ) = (0, 0). This is

the unique candidate for an equilibrium involving a choice of xA1 ∈ [− s̄
6 , s̄] when s = s̄. To

show that this is in fact an equilibrium, we simply need to additionally verify that no choice of

xA1 ∈ [−s̄,− s̄
6) yields smaller trading costs for dealer A than xA1 = 0 when s = s̄ and xB1 = 0,

which is easily shown.37

Having pinned down xB1 = 0 and that xA1 = 0 if s = s̄, the final step is to derive what xA1 would

be if s = −s̄. Using xB1 = 0, as derived above, we can plug in (23) and (24) to express dealer A’s

trading costs as a function of xA1 :

xB2 =



xA1 x
A
1 + (−s̄)(−s̄− xA1 ) if 0 ≤ xA1 ≤ s̄

xA1 x
A
1 + (−s̄− xA1

3 )(−s̄− xA1 ) if max{3s̄
2 − 3,− s̄

6} ≤ x
A
1 ≤ 0

xA1 x
A
1 + (−3s̄

2 + 1)(−s̄− xA1 ) if − s̄
6 ≤ x

A
1 ≤ 3s̄

2 − 3

xA1 x
A
1 + (− s̄

2)(−s̄− xA1 ) if − s̄ ≤ xA1 < − s̄
6

which is indeed minimized by xA1 = − s̄
4 .

• Bids. Plugging in the trading behavior derived above, we have the following. If s = s̄ and if

dealer A wins, then dealer A’s continuation utility is c, and dealer B’s continuation utility is 0.

If s = −s̄ and if dealer A wins, then dealer A’s continuation utility is c − 7s̄2

16 , and dealer B’s

continuation utility is s̄2

4 .

By symmetry, if s = s̄ and if dealer B wins, then dealer A’s continuation utility is s̄2

4 . If s = −s̄
and if dealer B wins, then dealer A’s continuation utility is 0. Because the dealer sets a non-

binding reserve, the event in which neither dealer wins is not relevant. Based on the solution

concept described in Section 3.1, dealer A must therefore bid

(
bA−s̄, b

A
s̄

)
=

(
7s̄2

16
,
s̄2

4

)
.

37Plugging xB1 = 0 into the previously-derived expression for dealer A’s trading costs when s = s̄, we obtain that
a choice of xA1 = 0 yields trading costs of zero and that choices of xA1 ∈ [−s̄,− s̄

6
) yield the strictly positive trading

costs {
1
16

(2xA1 − s̄)(6xA1 + s̄) if max{−s̄, 5s̄
2
− 4} ≤ xA1 < − s̄

6
1
16

(2xA1 − s̄)(6xA1 + s̄) + 1
16

(5s̄− 2xA1 − 8)2 if − s̄ ≤ xA1 < min{ 5s̄
2
− 4,− s̄

6
}
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Part (iii): We check that the equilibrium specified above satisfies the restrictions on beliefs de-

scribed in Section 3.1. And we also show that any equilibrium satisfying those conditions must

feature on-path behavior coinciding with that of the equilibrium specified above. Let µ̃B2 be can-

didate beliefs. One requirement is that µ̃B2 must have the step-function structure described in the

text.

• We start by establishing an upper bound for the location of the jump. Suppose, by way of

contradiction, that we have an equilibrium with beliefs such that µ̃B2 (0) = 0. By the step-

function structure of µ̃B2 and because beliefs must be correct on path, this means that on path,

dealer A sets xA1 = x∗ > 0 when s = s̄. Arguments similar to those given above imply that we

have xB1 = −x∗

4 , and subsequently, xA2 = −x∗

2 and xB2 = −xB1 , leading to total trading costs for

dealer A of

(x∗ + xB1 )x∗ − 1

4
(x∗)2, (28)

evaluated at xB1 = −x∗

4 . Now consider two cases:

– First, suppose there exists a ε > 0 such that µ̃B2 (x∗ − ε) = 1. In that case, it follows from

equation (28) that x∗ can be a locally optimal choice for dealer A only if xA1 = −2xB1
3 . Given

that xB1 = −x∗

4 , this requires x∗ = 0, a contradiction.

– Second, suppose that for all ε > 0, µ̃B2 (x∗ − ε) = 0. In that case, if dealer A deviates to

xA1 = x∗ − ε when s = s̄, then we subsequently have xB2 = s̄
2 −

xB1
2 and xA2 = − s̄+2xA1 +xB1

4 ,

leading to total trading costs for dealer A that, for small ε, are well approximated by

(x∗ + xB1 )x∗ −
(
s̄

4
+

7x∗

16

)2

, (29)

evaluated at xB1 = −x∗

4 . Comparing (29) to (28) and using x∗ > 0, we see that this is a

profitable deviation.

• We then strengthen this upper bound. We know from above that µ̃B2 (0) = 1. Arguments

similar to those given above imply that our only candidate equilibrium entails that when s = s̄,

xA1 = 0, xB1 = 0, and subsequently, xA2 = xB2 = 0, leading to total trading costs for dealer A

of 0. Now suppose, by way of contradiction, that we have an equilibrium with beliefs such that

µ̃B2 (− s̄
6 +ε) = 0 for some ε > 0. By the step-function structure of µ̃B2 and because beliefs must be

correct on path, we can choose ε > 0 arbitrarily small (and in particular less than 2s̄
3 ). Suppose

then that dealer A deviated to set xA1 = − s̄
6 + ε when s = s̄. Arguments similar to those given

above imply that we would subsequently have xB2 = s̄
2 and xA2 = − s̄

4−
xA1
2 , leading to total trading

costs for dealer A of − ε
4(2s̄− 3ε), which is a profitable deviation for sufficiently small ε > 0.

• We next establish a corresponding lower bound. Suppose, by way of contradiction, that we have

an equilibrium with beliefs such that µ̃B2 (− s̄
4) = 1. The same arguments used in the proof of

Lemma 1 can be used to show that the putative equilibrium fails our intuitive criterion test.
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• Finally, we turn to the remaining possibilities. Suppose we have an equilibrium with beliefs such

that both µ̃B2 (− s̄
6 + ε) = 1 for all ε > 0 and µ̃B2 (− s̄

4) = 0. The same arguments used in the

proof of Lemma 1 can be used to show that the intuitive criterion does not rule out any such

equilibrium (e.g., the equilibrium specified above).

This completes the proof.

A.3 Proof of Proposition 3

Proof. Begin with an arbitrary RFQ policy that contacts one dealer with probabilities (qs′)s′∈{−s̄,s̄}

and two dealers with the complementary probabilities (1− qs′)s′∈{−s̄,s̄}. It suffices to show that the

following RFQ policy does no worse: (i) define Σ as the singleton {σ0}; (ii) for s′ ∈ {−s̄, s̄}, define

the distribution πs′ to attach probability qs′ to
(
σ0, 1, (

3s̄2

4 ,
3s̄2

4 )
)

and complementary probability

1− qs′ to
(
σ0, 2, (s̄

2, s̄2)
)
. Indeed:

• This new policy does no worse conditional on contacting a single dealer, since, by Lemma 1,

it ensures execution with probability one and achieves the cost lower bound ĉ1. Note that the

information about s communicated by this new policy is a garbling of that communicated by

the original policy. However, there is no role for information design when only one dealer is

contacted, because ĉ1 is constant in φ for the reasons discussed at the end of Section 3.2.

• This new policy also does no worse conditional on contacting two dealers—and may in fact do

strictly better. By Lemma 2, this policy ensures execution with probability one and achieves

the cost ĉ2 evaluated at the belief φ0(1−qs̄)
(1−φ0)(1−q−s̄)+φ0(1−qs̄) . As mentioned, the information about s

communicated by this new policy is a garbling of that communicated by the original policy. Thus,

by standard arguments from the Bayesian persuasion literature (e.g., Kamenica and Gentzkow,

2011), the new policy is guaranteed to reduce the client’s cost if ĉ2(φ) is convex, which by

Lemma 2 is indeed the case.

It only remains to argue that such an RFQ policy achieves optimality. To see this, note that

policies of this form are described by two numbers: q−s̄ ∈ [0, 1] and qs̄ ∈ [0, 1]. Thus, the claim

follows because (i) this class of policies is compact, and (ii) within this class of policies, the client’s

procurement cost is a continuous function of (q−s̄, qs̄).

A.4 Proof of Proposition 5

The proof of Proposition 4 uses one fact that we establish in the course of proving Proposition 5.

So as to mitigate repetition, we therefore give the proof of Proposition 5 first.

Proof. To begin, we observe that it follows from Definition 1 that φ = 0 implies ĉ2(φ)−φĉ′2(φ) ≤ ĉ1;

φ ∈ (0, 1) implies ĉ2(φ)− φĉ′2(φ) = ĉ1; and φ = 1 implies ĉ2(φ)− φĉ′2(φ) ≥ ĉ1.

As noted in the text, it suffices to focus on RFQ policies of the form described in Proposition 3.

Such RFQ policies are described by two numbers: q−s̄ and qs̄, which capture the probability with
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which the client contacts only one dealer when s = −s̄ and s = s̄, respectively. This implies that if

two dealers are contacted, then the posterior probability of s = s̄ is φ0(1−qs̄)
(1−φ0)(1−q−s̄)+φ0(1−qs̄) . Hence,

the client’s expected procurement cost is

[
(1− φ0)q−s̄ + φ0qs̄

]
ĉ1 +

[
(1− φ0)(1− q−s̄) + φ0(1− qs̄)

]
ĉ2

(
φ0(1−qs̄)

(1−φ0)(1−q−s̄)+φ0(1−qs̄)

)
. (30)

Proof of that C(φ0) is a lower bound. ĉ1 ≥ min{ĉ1, ĉ2(φ)} ≥ C(φ) and ĉ2(φ) ≥ min{ĉ1, ĉ2(φ)} ≥
C(φ) for all φ ∈ [0, 1] imply that (30) is bounded below by

[
(1− φ0)q−s̄ + φ0qs̄

]
C
(

φ0qs̄
(1−φ0)q−s̄+φ0qs̄

)
+
[
(1− φ0)(1− q−s̄) + φ0(1− qs̄)

]
C
(

φ0(1−qs̄)
(1−φ0)(1−q−s̄)+φ0(1−qs̄)

)
,

which is bounded below by C(φ0), by the convexity of C(·).

The case of φ0 ∈ [φ, φ]. Plugging q−s̄ = 0 and qs̄ = 0 into (30) yields ĉ2(φ0). Therefore, we need to

show that C(φ0) ≥ ĉ2(φ0). Begin by defining the following linear function

L(φ) = ĉ2(φ0)− φ0ĉ
′
2(φ0) + ĉ′2(φ0)φ.

We claim that for all φ ∈ [0, 1], L(φ) ≤ min{ĉ1, ĉ2(φ)}:

• First, we show that L(φ) ≤ ĉ1 for all φ ∈ [0, 1]. By linearity, it suffices to check the endpoints.

By assumption, φ0 ≥ φ, and since we also have φ0 ∈ (0, 1), this implies that φ < 1. Hence, as

observed at the beginning of the proof, we have ĉ2(φ)−φĉ′2(φ) ≤ ĉ1. Additionally, as established

in footnote 30, ĉ2(φ)− φĉ′2(φ) is strictly decreasing. Thus, because φ0 ≥ φ, it follows that

L(0) = ĉ2(φ0)− φ0ĉ
′
2(φ0) ≤ ĉ2(φ)− φĉ′2(φ) ≤ ĉ1.

An analogous argument establishes that L(1) ≤ ĉ1.

• Second, note that L(φ) is tangent to ĉ2(φ) at φ = φ0. Indeed, we have both L(φ0) = ĉ2(φ0) and

also L′(φ0) = ĉ′2(φ0). Thus, convexity of ĉ2(φ) implies that L(φ) ≤ ĉ2(φ) for all φ ∈ [0, 1].

It follows that C(φ0) ≥ L(φ0) = ĉ2(φ0), as desired.

The case of φ0 ∈ (0, φ). Plugging q−s̄ =
φ−φ0

φ(1−φ0) and qs̄ = 0 into (30) yields ĉ1 + φ0

φ [ĉ2(φ) − ĉ1].

Therefore, we need to show that C(φ0) ≥ ĉ1 + φ0

φ [ĉ2(φ) − ĉ1]. For this part of the proof, redefine

L(·) as a new linear function:

L(φ) = ĉ1 +
ĉ2(φ)− ĉ1

φ
φ.

We claim that for all φ ∈ [0, 1], L(φ) ≤ min{ĉ1, ĉ2(φ)}:

• First, we show that L(φ) ≤ ĉ2(φ) for all φ ∈ [0, 1]. By assumption, φ0 < φ, which implies that

φ > 0. On the one hand, if φ ∈ (0, 1), then L(φ) is tangent to ĉ2(φ) at φ = φ. Indeed, we

have both L(φ) = ĉ2(φ) and also L′(φ) =
ĉ2(φ)−ĉ1

φ = ĉ′2(φ), where the last equality is because,
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as observed at the beginning of the proof, φ ∈ (0, 1) implies ĉ2(φ) − φĉ′2(φ) = ĉ1. On the other

hand, if φ = 1, then by analogous arguments we have both L(φ) = ĉ2(φ) and L′(φ) ≥ ĉ′2(φ). In

either case, convexity of ĉ2(φ) implies that L(φ) ≤ ĉ2(φ) for all φ ∈ [0, 1].

• Second, we show that L(φ) ≤ ĉ1 for all φ ∈ [0, 1]. We showed above that L(φ) ≤ ĉ2(φ) for all

φ ∈ [0, 1]; so in particular, we have L(1
2) ≤ ĉ2(1

2). According to Lemma 2, ĉ2(1
2) < ĉ1. Hence,

L(1
2) < ĉ1. Because L(·) is a linear function with vertical intercept at ĉ1, the fact that it is

strictly less than ĉ1 at one point on the domain [0, 1] means that it is weakly less than ĉ1 on the

entire domain, as claimed.38

It follows that

C(φ0) ≥ L(φ0) = ĉ1 +
ĉ2(φ)− ĉ1

φ
φ0,

as desired. The case of φ0 ∈ (φ, 1) is symmetric.

A.5 Proof of Proposition 4

Proof. Proof of claim (i). As noted in footnote 30, ĉ2(φ) − φĉ′2(φ) is strictly decreasing on the

unit interval. Hence, the claim about φ—that it is weakly increasing in ψ—would follow from

Definition 1 if we can establish that d
dψ

[
ĉ2(φ) − φĉ′2(φ)

]
≥ 0. Because this derivative is linear

in s̄2, ψ, and ρ, it suffices to check the inequality at s̄ = 1 and at the four possibilities (ψ, ρ) ∈
{(0,−1), (0, 1), (1,−1), (1, 1)}, which yield

d

dψ

[
ĉ2(φ)− φĉ′2(φ)

]
|ψ=0,ρ=−1

=
7

4
− 1583φ3 − 13466φ2 − 6912φ+ 55296

4(24− φ)3
+

69φ2(71φ+ 529)

4(23 + φ)3

d

dψ

[
ĉ2(φ)− φĉ′2(φ)

]
|ψ=0,ρ=1

d

dψ

[
ĉ2(φ)− φĉ′2(φ)

]
|ψ=1,ρ=1

 =
1583φ3 − 13466φ2 − 6912φ+ 55296

4(24− φ)3
+

23φ2(71φ+ 529)

4(23 + φ)3

d

dψ

[
ĉ2(φ)− φĉ′2(φ)

]
|ψ=1,ρ=−1

=
3(1583φ3 − 13466φ2 − 6912φ+ 55296)

4(24− φ)3
− 23φ2(71φ+ 529)

4(23 + φ)3
− 7

4

It is easily checked that each of these are positive for all φ ∈ [0, 1], as required. By symmetric

arguments, φ is also weakly increasing in ψ.

Proof of claim (ii). The claim is non-vacuous only if φ > 0, in which case ĉ2(φ)− φĉ′2(φ) ≥ ĉ1. As

noted in footnote 38 (in the proof of Proposition 5), φ > 0 implies that ĉ2(φ) − ĉ1 < 0. Together,

these imply that ĉ′2(φ) < 0. Analogously, the claim is non-vacuous only if φ < 1, in which case we

can likewise argue that ĉ′2(φ) > 0. Convexity of ĉ2(·) therefore delivers the desired φ ≤ φ.

38This also means that L(·) slopes downward. Hence, we have established in the course of proving this part of the
result that φ > 0 implies ĉ2(φ)− ĉ1 < 0.
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B Robustness to the commitment assumption

This appendix investigates the extent to which our results are robust to the assumption that the

client can commit to an RFQ policy. We find that the result of Proposition 3 (on the optimality

of minimal disclosure) does not hinge on the client’s ability to commit: she would not want to

deviate from a commitment to minimal disclosure even if she could. In contrast, the result of

Proposition 5 (on the optimal policy for determining the number of dealers to contact) does hinge

on the commitment assumption. Motivated by this observation, we then investigate how that result

would change if the client were to lack commitment power.

B.1 Does the commitment assumption matter?

To investigate these issues, we define interim analogues of ĉ1(φ) and ĉ2(φ). Suppose an RFQ

contacts one dealer. Arguments analogous to those given before pin down the client’s procurement

cost conditional on her type: it is 3s̄2

4 , regardless of her realized type s ∈ {−s̄, s̄} and regardless

of the belief φ induced by the RFQ. Hence, we write ĉ1,−s̄ = ĉ1,s̄ = 3s̄2

4 . Note that these interim

expressions agree with the earlier ex ante expression in that they satisfy ĉ1 = (1− φ)ĉ1,−s̄ + φĉ1,s̄.

Next, suppose an RFQ contacts two dealers and induces a belief φ. A derivation analogous to

that in the proof of Lemma 2 pins down the client’s expected procurement cost conditional on her

type, ĉ2,−s̄(φ) and ĉ2,s̄(φ). These expressions similarly agree with the ex ante cost in that they

satisfy ĉ2(φ) = (1 − φ)ĉ2,−s̄(φ) + φĉ2,s̄(φ). These expressions moreover imply the following result.

Proofs are in Appendix A.

Lemma B6. ĉ′2,−s̄(φ) ≤ 0 and ĉ′2,s̄(φ) ≥ 0 on the domain φ ∈ [0, 1].

Optimality of minimal disclosure. The optimality of minimal disclosure does not depend on

the client’s ability to commit. To argue this point, we first recall that information design does not

matter when only one dealer is contacted. Hence, it suffices to focus on the case of M = 2. Given an

arbitrary RFQ policy of the form described in Proposition 3 (i.e., entailing minimal disclosure), let

φ2 denote the posterior beliefs about the client’s type induced by a realization of M = 2. Suppose

the client’s realized type is s = s̄. If she follows through on her commitment not to disclose,

then her expected procurement cost will be ĉ2,s̄(φ2). Alternatively, suppose she were to deviate

by verifiably revealing her type (as in, e.g., Grossman, 1981; Milgrom, 1981); in that case, her

expected procurement cost would be ĉ2,s̄(1). This is always greater, by Lemma B6. Symmetrically,

the client would also not wish to deviate from her commitment not to disclose when her realized

type is s = −s̄.

Number of dealers to contact. In contrast, what may hinge on the client’s ability to commit

is her policy for determining the number of dealers to contact. To illustrate with an example,

let us consider the parametrization corresponding to the fourth panel of Figure 3: ψ = 0.85,

ρ = 1, and φ0 = 0.2. The optimal policy has the feature that under the realization s = −s̄, the
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client randomizes between contacting one and two dealers—and in such a way that contacting two

dealers induces a belief φ = 0.632. Yet given this belief, the client would not be indifferent between

contacting one or two dealers at this interim stage. Indeed, we can compute ĉ1,−s̄ = 0.75s̄2 and

ĉ2,−s̄(φ) ≈ 0.7289s̄2. Thus, the client would wish to deviate from her commitment to sometimes

contact only a single dealer when her realized type is s = s̄.39

B.2 If the client could not commit

A natural question is what would happen in our model if the client lacked the ability to commit.

Based on the analysis in Appendix B.1, the client will continue to use a minimally-disclosing RFQ

policy—any difference will be only in terms of the number of dealers she contacts.

Analogous to before, we begin by defining two cutoffs:
˜
φ and φ̃.

Definition 1′. Define
˜
φ, φ̃ ∈ [0, 1] as follows. If ĉ2,−s̄(0) ≤ ĉ1, define

˜
φ = 0; if ĉ2,−s̄(1) ≥ ĉ1,

define
˜
φ = 1; otherwise, define it implicitly as the unique

˜
φ ∈ (0, 1) that solves ĉ2,−s̄(φ) = ĉ1. If

ĉ2,s̄(1) ≤ ĉ1, define φ̃ = 1; if ĉ2,s̄(0) ≥ ĉ1, define φ̃ = 0; otherwise, define it implicitly as the unique

φ̃ ∈ (0, 1) that solves ĉ2,s̄(φ) = ĉ1.40

As the notation suggests,
˜
φ ≤ φ̃. In fact, an even stronger result holds:

Proposition 4′.
˜
φ = 0 or φ̃ = 1 (or both).

To analyze what would happen without commitment, we characterize the client’s constrained-

optimal RFQ policy, where the constraint is that she would not want to deviate from the policy

after learning her type. By arguments similar to those given earlier, it again suffices to focus on

RFQ policies of the form described in Proposition 3. But we now select a different member of that

class, one characterized by the following counterpart to Proposition 5:

Proposition 5′. Without commitment,
(1− φ0)ĉ1 + φ0ĉ2,s̄(

˜
φ) if φ0 ∈ (0,

˜
φ)

(1− φ0)ĉ2,−s̄(φ0) + φ0ĉ2,s̄(φ0) if φ0 ∈ [
˜
φ, φ̃]

(1− φ0)ĉ2,−s̄(φ̃) + φ0ĉ1 if φ0 ∈ (φ̃, 1)

is a lower bound on the client’s cost of procurement. Moreover, this bound is achieved by an RFQ

policy of the form described by Proposition 3, where the probabilities of contacting only a single

39Recall that our model assumes that each dealer observes the number of other dealers that the client has contacted.
Without such observability, the no-commitment outcome would entail unraveling: in equilibrium, the client would
always contact all available dealers. With observability, the client must do no worse. This suggests that, at least in
the no-commitment regime, clients benefit from RFQ platforms that reveal the number of market participants that
an RFQ has been sent to, as is the case for many such platforms in practice (cf. footnote 17).

40That this provides a well-defined definition for
˜
φ and φ̃ follows from the monotonicity of ĉ2,−s̄(φ) and ĉ2,s̄(φ), as

established by Lemma B6.
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dealer are

(q−s̄, qs̄) =


(

˜
φ−φ0

˜
φ(1−φ0) , 0

)
if φ0 ∈ (0,

˜
φ)

(0, 0) if φ0 ∈ [
˜
φ, φ̃](

0, φ0−φ̃
φ0(1−φ̃)

)
if φ0 ∈ (φ̃, 1)

The takeaway of our main-text analysis is that information leakage can act as a search friction,

leading the client to limit the number of dealers that she contacts. Proposition 5′ demonstrates

that this conclusion does not depend on the commitment power we had assumed for the client.

Even without commitment, the client might sometimes contact only a single dealer.

Example. We next illustrate Proposition 5′ by revisiting the example underlying Figure 3. The

parametrization is as before: ψ = 0.85 and ρ = 1. Then ĉ1, ĉ2,−s̄(φ), and ĉ2,s̄(φ) are as depicted

in the first panel of Figure 3′. For comparability with the first panel of Figure 3, we also depict

ĉ2(φ) = (1− φ)ĉ2,−s̄(φ) + φĉ2,s̄(φ) but suppress it in the subsequent panels.

The second panel of Figure 3′ depicts
˜
φ, which is defined as the intersection between ĉ2,−s̄(φ)

and ĉ1. We also have φ̃ = 1 in this example, but we suppress it in the figure because φ̃ plays no

role what follows.

The third panel depicts the case of φ0 ∈ [
˜
φ, φ̃]. According to Proposition 5′, the optimal RFQ

policy always contacts two dealers and discloses no information about the client’s order. Under

this policy, dealers’ beliefs therefore always coincide with the prior, so that the client’s expected

procurement cost is (1− φ0)ĉ2,−s̄(φ0) + φ0ĉ2,s̄(φ0), or simply ĉ2(φ0).

Finally, the fourth panel depicts the case of φ0 ∈ (0,
˜
φ). According to Proposition 5′, the

optimal RFQ policy always contacts two dealers when s = s̄; and it mixes between one and two

dealers when s = −s̄. Moreover, this mixing is designed to ensure that, conditional on two dealers

being contacted, they are induced to believe that s = s̄ with probability
˜
φ, which renders a selling

client indifferent between contacting one or two dealers, since ĉ2,−s̄(
˜
φ) = ĉ1. It is this indifference

that permits the policy to entail randomization even in this no-commitment version of the model.

Under this policy, the client’s expected procurement cost is therefore (1− φ0)ĉ1 + φ0ĉ2,s̄(
˜
φ).
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Figure 3′: Optimal RFQ policies under limited commitment power

ĉ1

ĉ2(φ)

ĉ2,s̄(φ)

ĉ2,−s̄(φ)

φ

˜
φ

ĉ1

ĉ2,−s̄(φ)

ĉ2,s̄(φ)

φ

˜
φ φ0

ĉ1

ĉ2,−s̄(φ)

ĉ2,s̄(φ)

φ

˜
φφ0

ĉ1

ĉ2,−s̄(φ)

ĉ2,s̄(φ)

φ

Dealer inventories are distributed according to the parameters ψ = 0.85 and ρ = 1. In all panels, ĉ1 (in blue)
depicts expected procurement cost when contacting one dealers; likewise, ĉ2,−s̄(φ) and ĉ2,−s̄(φ) (in blue)
depict expected procurement cost when contacting two dealers, conditional on the client being a seller or a
buyer, respectively. The first panel also depicts ĉ2(φ) (in dashed blue), which is the unconditional expected
procurement cost when contacting two dealers. Starting from the second panel,

˜
φ is as in Definition 1′.

There are two cases that depend on the prior probability of the client buying (i.e., φ0). If φ0 ≥
˜
φ (as in the

third panel), then the commitment-free RFQ policy always contacts two dealers, inducing a posterior belief
that the client is a buyer which coincides with the prior φ0. If φ0 <

˜
φ (as in the fourth panel), then the

commitment-free RFQ policy is such that contacting two dealers induces a posterior belief that the client
is a buyer with probability

˜
φ. In both cases, the unconditional expected procurement cost realized by the

policy is represented by the large orange dot. Vertical axes do not depict units because all cost quantities
scale linearly with s̄2.
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B.3 Proofs

Proof sketch of Lemma B6. A derivation analogous to that in the proof of Lemma 2 allows us

to characterize the client’s expected procurement cost conditional on her type:

ĉ2,−s̄(φ) =
(2304− 560φ− 157φ2)s̄2

4(24− φ)2
ψ[1− (1− ψ)(1− ρ)]

− 207φ2s̄2

4(23 + φ)2
(1− ψ)[1− ψ(1− ρ)] +

7s̄2

8
ψ(1− ψ)(1− ρ)

ĉ2,s̄(φ) =
(1587 + 874φ− 157φ2)s̄2

4(23 + φ)2
(1− ψ)[1− ψ(1− ρ)]

− 207(1− φ)2s̄2

4(24− φ)2
ψ[1− (1− ψ)(1− ρ)] +

7s̄2

8
ψ(1− ψ)(1− ρ).

To establish the claim, we simply compute

ĉ′2,−s̄(φ) = −184(12 + 11φ)s̄2

(24− φ)3
ψ[1− (1− ψ)(1− ρ)]− 4761φs̄2

2(23 + φ)3
(1− ψ)[1− ψ(1− ρ)],

which is indeed weakly negative on the domain φ ∈ [0, 1].

ĉ′2,s̄(φ) =
184(23− 11φ)s̄2

(23 + φ)3
(1− ψ)[1− ψ(1− ρ)] +

4761(1− φ)s̄2

2(24− φ)3
ψ[1− (1− ψ)(1− ρ)],

which is indeed weakly positive on the domain φ ∈ [0, 1].

Proof of Proposition 4′. Computing, c2,−s̄(0) + ĉ2,s̄(1) = s̄2
[
ψ[1− (1− ψ)(1− ρ)] + (1− ψ)[1−

ψ(1 − ρ)] + 7
8ψ(1 − ψ)(1 − ρ)

]
≤ s̄2 < 3

2 s̄
2 = 2ĉ1. Thus, we cannot have both ĉ2,−s̄(0) ≥ ĉ1 and

ĉ2,s̄(1) ≥ ĉ1 Applying Definition 1′, we cannot have both
˜
φ > 0 and φ̃ < 1.

Proof of Proposition 5′. The case of φ0 ∈ [
˜
φ, φ̃]. Under the stated policy (q−s̄, qs̄) = (0, 0),

when the client contacts two dealers, she induces a belief φ0. Because φ0 ∈ [
˜
φ, φ̃], we have both

ĉ2,−s̄(φ0) < ĉ1 and ĉ2,s̄(φ0) < ĉ1, so regardless of the realized s, the client does not want to deviate

from the stated policy.

Do there exist any other policies that she would similarly not want to deviate from? The

answer is no. In the proof of Proposition 4′, we showed that ĉ2,−s̄(0) < ĉ1 or ĉ2,s̄(1) < ĉ1 (or both).

Without loss of generality, suppose ĉ2,s̄(1) < ĉ1. By the monotonicity of ĉ2,s̄(·) (i.e., Lemma B6),

we have ĉ2,s̄(φ) < ĉ1 for all φ ∈ [0, 1]. Therefore, if the client will not deviate when s = s̄, then the

policy must entail qs̄ = 0. Under any such policy, when the client contacts two dealers, she induces

a belief φ2 ≥ φ0. By monotonicity of ĉ2,−s̄(·) (i.e., Lemma B6), we have ĉ2,−s̄(φ2) ≤ ĉ2,−s̄(φ0) < ĉ1.

Therefore, if the client will not deviate when s = −s̄, then the policy must entail q−s̄ = 0.

The case of φ0 ∈ (0,
˜
φ). Under the stated policy (q−s̄, qs̄) =

(
˜
φ−φ0

˜
φ(1−φ0) , 0

)
, when the client contacts

two dealers, she induces a belief
˜
φ. Here, we have

˜
φ > 0, which by Proposition 4′ implies φ̃ = 1,

and hence ĉ2,s̄(1) ≤ ĉ1. We also have ĉ2,−s̄(
˜
φ) = ĉ1, so that the client (weakly) does not want to
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deviate from the stated policy when s = −s̄. And by monotonicity of ĉ2,s̄(·) (i.e., Lemma B6), we

have ĉ2,s̄(
˜
φ) ≤ ĉ2,s̄(1) ≤ ĉ1, so that the client also does not want to deviate when s = s̄.

Do there exist any other policies that she would similarly not want to deviate from? Again,

the answer is no. As argued in the previous case, if the client will not deviate when s = s̄, then

the policy must entail qs̄ = 0. Next, suppose by way of contradiction that q−s̄ < ˜
φ−φ0

˜
φ(1−φ0) . Then

when the client contacts two dealers, she induces a belief φ2 <
˜
φ. By monotonicity of ĉ2,−s̄(·) (i.e.,

Lemma B6), we have ĉ2,−s̄(φ2) > ĉ2,−s̄(
˜
φ) = ĉ1, which means that the client will deviate when

s = −s̄, unless q−s̄ = 1. But q−s̄ = 1 is incompatible with q−s̄ < ˜
φ−φ0

˜
φ(1−φ0) . An analogous argument

rules out policies in which q−s̄ > ˜
φ−φ0

˜
φ(1−φ0) .

The case of φ0 ∈ (φ̃, 1) can be treated similarly.
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C The competition, sampling, and front-running effects

The discussion following Lemma 2 asserted that the difference between ĉ2(φ) and ĉ1 can be de-

composed into three effects: a competition effect, a sampling effect, and a front-running effect. To

support that claim, this appendix provides a way of formalizing these three effects. To that end,

define the following quantities:

• Let CIV(φ) be the client’s cost following an RFQ that contacts two dealers and induces belief

φ. CIV(φ) is simply ĉ2(φ).

• Let CIII(φ) be the client’s cost following an RFQ that contacts two dealers and induces belief

φ and if ρ were to equal one. CIII(φ) is simply ĉ2(φ), except evaluated at ρ = 1.

• Let CII(φ) be the client’s cost following an RFQ that contacts two dealers and induces belief

φ, if ρ were to equal one, and if the losing dealer were prohibited from trading in the first

period. We provide an expression for CII(φ) in Lemma C2 below.

• Let CI(φ) be the client’s cost following an RFQ that contacts one dealer and induces belief φ, if

ρ were to equal one, and if the losing dealer were prohibited from trading in the first period.

Because only one dealer is contacted, ρ is irrelevant, as is the prohibition on first-period

trading for a losing dealer. It follows that CI(φ) is simply ĉ1.

Given these definitions, we can interpret CIV(φ)−CIII(φ) as the sampling effect, CIII(φ)−CII(φ)

as the front-running effect, and CII(φ)− CI(φ) as the competition effect. Mathematically,

ĉ2(φ)− ĉ1 = CIV(φ)− CIII(φ)︸ ︷︷ ︸
sampling effect

+CIII(φ)− CII(φ)︸ ︷︷ ︸
front-running effect

+CII(φ)− CI(φ)︸ ︷︷ ︸
competition effect

.

Moreover—and consistent with intuition—the competition and sampling effects benefit the client,

while the front-running effect harms the client, in the sense of the following result:

Proposition C1. For all φ ∈ (0, 1), CIV(φ) ≤ CIII(φ), CIII(φ) > CII(φ), and CII(φ) < CI(φ).

The proof of this proposition uses the expression for CII(φ) provided by the following lemma.

Lemma C2. CII(φ) = 3s̄2

4 [(1− φ)ψ + φ(1− ψ)].

Proof of Lemma C2. In this scenario, equilibrium in the continuation trading game is precisely

as in the case where one dealer is contacted (cf. Lemma A1). Hence, trading costs are the same

as well. It therefore only remains to derive equilibrium bids, which can be done following the

logic described in Section 3.3: A’s bid should reflect the difference in his trading costs between the
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scenario where he wins and the scenario where B wins. Thus, A’s equilibrium bids are

(
bA−s̄, b

A
s̄

)
=



(
3s̄2

4 , 0
)

if (eA, eB) = (1, 1)(
7s̄2

16 ,
s̄2

4

)
if (eA, eB) = (1,−1)(

s̄2

4 ,
7s̄2

16

)
if (eA, eB) = (−1, 1)(

0, 3s̄2

4

)
if (eA, eB) = (−1,−1)

From this, we can derive the client’s procurement cost for the case of ρ = 1 as

CII(φ) =
3s̄2

4
[(1− φ)ψ + φ(1− ψ)] .

Proof of Proposition C1. To show that CIV(φ) ≤ CIII(φ), it suffices to show that the expression

for ĉ2(φ) given in (9) is increasing in ρ. Taking the derivative of that expression with respect to ρ,

we obtain
(304704− 1216654φ+ 1210215φ2 + 12878φ3 − 6439φ4)ψ(1− ψ)s̄2

8(24− φ)2(23 + φ)2
,

which is positive on the domain φ ∈ (0, 1) and ψ ∈ (0, 1). To show that CIII(φ) > CII(φ), we

compute directly:

CIII(φ)− CII(φ) = (1− φ)ψs̄2

[
2304− 767φ+ 50φ2

4(24− φ)2
− 3

4

]
︸ ︷︷ ︸

>0 for φ ∈ (0, 1)

+φ(1− ψ)s̄2

[
1587 + 667φ+ 50φ2

4(23 + φ)2
− 3

4

]
︸ ︷︷ ︸

>0 for φ ∈ (0, 1)

.

To show that CII(φ) < CI(φ), we also compute directly:

CI(φ)− CII(φ) =
3s̄2

4
− 3s̄2

4
[(1− φ)ψ + φ(1− ψ)]

=
3s̄2

4
[φψ + (1− φ)(1− ψ)] ,

which is positive on the domain φ ∈ (0, 1) and ψ ∈ (0, 1).
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D What if dealers cannot front-run?

To develop a benchmark, this appendix analyzes a version of the model in which losing dealers

cannot front-run. Although the risk of front-running is both real and significant, it might be miti-

gated by a variety of considerations—including repeated interaction (as discussed in Section 2.2),

reputational considerations, or legal concerns. The extreme case is that no front-running occurs at

all. To model it, we assume for purposes of this appendix that the losing dealer cannot trade in

the first period.

This changes nothing for the case in which only one dealer is contacted. Letting c̃1 denote the

minimum procurement cost for that case, we have c̃1 = ĉ1 = 3s̄2

4 . Turning to the case in which two

dealers are contacted, we obtain the following analogue of Lemma 2:

Lemma D1. In the class of RFQs that contact M = 2 dealers, induce beliefs φ, and guarantee

execution with probability one, the minimum expected procurement cost is a linear function c̃2(φ)

that satisfies c̃2(φ) < c̃1 and c̃2(φ) ≤ ĉ2(φ). It is achieved by RFQs featuring reserve prices b̄ =

(s̄2, s̄2).

Proof. In this scenario, equilibrium in the continuation trading game is precisely as in the case

where one dealer is contacted (cf. Lemma A1). Hence, trading costs are the same as well. It

therefore only remains to derive equilibrium bids, which can be done following the logic described

in Section 3.3: A’s bid should reflect the difference in his trading costs between the scenario where

he wins and the scenario where B wins. Thus, A’s equilibrium bids are

(
bA−s̄, b

A
s̄

)
=



(
3s̄2

4 , 0
)

if (eA, eB) = (1, 1)(
7s̄2

16 ,
s̄2

4

)
if (eA, eB) = (1,−1)(

s̄2

4 ,
7s̄2

16

)
if (eA, eB) = (−1, 1)(

0, 3s̄2

4

)
if (eA, eB) = (−1,−1)

From this, we can derive the client’s procurement costs. With probability φψ[1− (1− ψ)(1− ρ)],

(s, eA, eB) = (s̄, 1, 1), and the client’s procurement cost will be 0. With probability (1−φ)ψ[1−(1−
ψ)(1− ρ)], (s, eA, eB) = (−s̄, 1, 1), and the client’s procurement cost will be 3s̄2

4 . With probability

φ(1−ψ)[1−ψ(1−ρ)], (s, eA, eB) = (s̄,−1,−1), and the client’s procurement cost will be 3s̄2

4 . With

probability (1−φ)(1−ψ)[1−ψ(1−ρ)], (s, eA, eB) = (−s̄,−1,−1), and the client’s procurement cost

will be 0. With the remaining probability 2ψ(1−ψ)(1− ρ), eA 6= eB, and the client’s procurement

cost will be max{7s̄2

16 ,
s̄2

4 } = 7s̄2

16 . In each case, the client’s procurement cost is weakly less than

c̃1 = 3s̄2

4 . Hence, the client’s expected procurement cost c̃2(φ) is strictly less than c̃1. In fact, we

can compute

c̃2(φ) =
3s̄2

4

(
(1− φ)ψ

[
1− (1− ψ)(1− ρ)

]
+ φ(1− ψ)

[
1− ψ(1− ρ)

])
+

7s̄2

8
ψ(1− ψ)(1− ρ),

which is indeed linear in φ. Comparing this expression against that for ĉ2(φ) provided by equa-
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tion (9), we also see that c̃2(φ) ≤ ĉ2(φ).

With this result in hand, we can immediately characterize the optimal RFQ policy—and see

how it differs from the optimal policy when front-running is a concern.

• Is the client better off if front-running is not a concern? Yes. This follows from c̃2(φ) being

everywhere less than ĉ2(φ), together with c̃1 = ĉ1.

• If front-running is not a concern, should the client always call both dealers? Yes. This follows

from c̃2(φ) being everywhere less than c̃1. In contrast, she might contact only one dealer when

front-running is a concern (cf. Proposition 5).

• If front-running is not a concern, should the client reveal more information? Yes, weakly.

This follows from c̃2(φ) being linear in φ, which implies that the client is indifferent over

all information structures. In contrast, she has a strict preference for revealing as little

information as possible when front-running is a concern (cf. Proposition 3).

The intuition is that information design does not matter for the winning dealer, since he

will anyway observe s before he has to start trading. Remember also that dealers submit

contingent bids (one bid for the s = s̄ case and another bid for the s = −s̄ case), so the

fact that the winning dealer may not know s while he is bidding does not matter: his bid

for each scenario will simply be what he would bid if he knew that scenario was the correct

one. Information design also does not matter for the losing dealer here: not for informing his

first-period trade, since he cannot trade in the first period in this version of the model, nor

for informing his second-period trade, since by that point he will have already inferred s from

the winning dealer’s first-period trade.

One interpretation of this analysis is that it constitutes an argument that front-running is a real

concern in practice. Indeed, the optimal RFQ policy described above is inconsistent with certain

stylized facts: investors seeking to trade sometimes conduct limited searches, and these investors

display a strict preference for revealing as little information as possible. These stylized facts are

much better explained by our analysis of what is optimal when front-running is a concern.
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E Order splitting

In this appendix, we consider what would happen if the client were to contact both dealers and—

rather than auction her entire order as a single indivisible unit—instead permits each dealer to win

only half of the total order. We show that a client would never optimally split an order in this way,

because it leads to a problem akin to double marginalization.

For simplicity, suppose the client continues to treat the order as indivisible in the sense that

she allocates the order only if both dealers’ bids meet her reservation price. In other words, the

game ends if one or both dealers fail to meet the reserve. Given the structure of the model, it is

common knowledge that the client seeks to trade s̄ shares. Thus, if a dealer is awarded an order

for s̄
2 shares, he knows that the other dealer is also being awarded an order of the same size.

The following result characterizes the continuation equilibrium following such an RFQ.

Lemma E1. There is a WPBE in which the following occurs on path. Dealer A bids

(
bA−s̄, b

A
s̄

)
=



(
7s̄2

18 , 0
)

if (eA, eB) = (1, 1)(
7s̄2

50 ,−
7s̄2

100

)
if (eA, eB) = (1,−1)(

− 7s̄2

100 ,
7s̄2

50

)
if (eA, eB) = (−1, 1)(

0, 7s̄2

18

)
if (eA, eB) = (−1,−1)

If both dealers win, dealer A’s on-market trades are

(xA1 , x
A
2 ) =



(0, 0) if (s, eA, eB) = (s̄, 1, 1)

(− s̄
3 ,−

s̄
6) if (s, eA, eB) = (−s̄, 1, 1)

( s̄
10 ,−

3s̄
10) if (s, eA, eB) = (s̄, 1,−1)

(− s̄
10 ,−

2s̄
5 ) if (s, eA, eB) = (−s̄, 1,−1)

( s̄
10 ,

2s̄
5 ) if (s, eA, eB) = (s̄,−1, 1)

(− s̄
10 ,

3s̄
10) if (s, eA, eB) = (−s̄,−1, 1)

( s̄3 ,
s̄
6) if (s, eA, eB) = (s̄,−1,−1)

(0, 0) if (s, eA, eB) = (−s̄,−1,−1)

Dealer B’s bids and on-market trades are specified symmetrically.

Proof sketch of Lemma E1. The proof sketch that we provide here is informal in that we (i) di-

rectly plug in the constraints that will bind on the equilibrium path, and (ii) ignore the constraints

that do not bind on the equilibrium path. These simplifications do not affect the result. Indeed,

the proof could be made more formal in the same way that the proofs of the analogous main results

(Lemmas 1 and 2) are fully formal.

Because both dealers observe the entire vector (eA, eB), the four possible realizations of that

vector can be analyzed separately. Below, we analyze the cases of (1, 1) and (1,−1); the remaining
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cases can be handled symmetrically. We also note that in this case of order splitting, both dealers

observe s directly before trading takes place, and so there is no need to keep track of beliefs. Thus,

the cases of s = −s̄ and s = s̄ can also be analyzed separately.

Case 1: (eA, eB) = (1, 1) and s = s̄. Ignoring the constraints on final inventory (which will not

bind in the equilibrium), dealers A and B respectively minimize

(xA1 + xB1 )xA1 + (xA1 + xB1 + xA2 + xB2 )xA2

(xA1 + xB1 )xB1 + (xA1 + xB1 + xA2 + xB2 )xB2 ,

leading to xA2 = xB2 = −xA1 +xB1
3 . Inducting backward, we obtain (xA1 , x

B
1 ) = (0, 0), so that

(xA2 , x
B
2 ) = (0, 0) on path. Plugging in these trades, dealer A incurs no trading costs if he wins. So

the refinement described in Section 3.1 requires bAs̄ = 0 to be his bid.

Case 2: (eA, eB) = (1, 1) and s = −s̄. Assuming that xA2 = − s̄
2 −x

A
1 (which ensures that dealer A’s

final inventory just meets the constraint eA + xA1 + xA2 − s ≤ 1), assuming also that xB2 = − s̄
2 − x

B
1

(symmetrically), and ignoring all other constraints on final inventory, dealers A and B respectively

minimize

(xA1 + xB1 )xA1 + (−s̄)
(
− s̄

2
− xA1

)
(xA1 + xB1 )xB1 + (−s̄)

(
− s̄

2
− xB1

)
,

leading to (xA1 , x
B
1 ) = (− s̄

3 ,−
s̄
3), which implies (xA2 , x

B
2 ) = (− s̄

6 ,−
s̄
6). Plugging in these trades,

dealer A incurs trading costs of 7s̄2

18 if he wins. So the refinement described in Section 3.1 requires

bA−s̄ = 7s̄2

18 to be his bid.

Case 3: (eA, eB) = (1,−1) and s = s̄. Assuming that xB2 = s̄
2 − x

B
1 (which ensures that dealer B’s

final inventory just meets the constraint eB +xB1 +xB2 −s ≥ −1), and ignoring all other constraints

on final inventory, dealers A and B respectively minimize

(xA1 + xB1 )xA1 +
(
xA1 + xA2 +

s̄

2

)
xA2

(xA1 + xB1 )xB1 +
(
xA1 + xA2 +

s̄

2

)( s̄
2
− xB1

)
,

leading to xA2 = −xA1
2 −

s̄
4 . Inducting backward, we obtain (xA1 , x

B
1 ) =

(
s̄
10 ,

s̄
10

)
, so that (xA2 , x

B
2 ) =(

− 3s̄
10 ,

2s̄
5

)
on path. Plugging in these trades, dealer A incurs trading costs of − 7s̄2

100 if he wins. So

the refinement described in Section 3.1 requires bAs̄ = 7s̄2

100 to be his bid.

Case 4: (eA, eB) = (1,−1) and s = −s̄. Assuming that xA2 = − s̄
2−x

A
1 (which ensures that dealer A’s

final inventory just meets the constraint eA + xA1 + xA2 − s ≤ 1), and ignoring all other constraints
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on final inventory, dealers A and B respectively minimize

(xA1 + xB1 )xA1 +
(
xB1 + xB2 −

s̄

2

)(
− s̄

2
− xA1

)
(xA1 + xB1 )xB1 +

(
xB1 + xB2 −

s̄

2

)
xB2 ,

leading to xB2 = −xB1
2 + s̄

4 . Inducting backward, we obtain (xA1 , x
B
1 ) =

(
− s̄

10 ,−
s̄
10

)
, so that (xA2 , x

B
2 ) =(

−2s̄
5 ,

3s̄
10

)
on path. Plugging in these trades, dealer A incurs trading costs of 7s̄2

50 if he wins. So the

refinement described in Section 3.1 requires bA−s̄ = 7s̄2

50 to be his bid.

To ensure execution with probability one, Lemma E1 implies that an RFQ that splits the order

in this way must entail reserve prices b̄−s̄ ≥ 7s̄2

18 and b̄s̄ ≥ 7s̄2

18 . Hence, the minimum procurement

cost that can be achieved by such an RFQ is twice this lower bound:

ĉsplit ≡
7s̄2

9
.

Finally, observe that ĉsplit > ĉ1. The intuition is that—just as when one dealer is contacted—the

client’s procurement cost is driven by the worst case. As before, there are two symmetric worst

cases. But to fix ideas, focus on the one in which the client wants to buy while both dealers are

initially short (i.e., s = s̄ and eA = eB = −1). In this worst case:

• If one dealer is contacted, then he buys a total of s̄ on the market. In doing so, he trades at

an even rate, buying s̄
2 in each of the two periods, which is the cost-minimizing way to trade

under permanent price impact (e.g., Bertsimas and Lo, 1998).

• On the other hand, if the order is split among the two dealers, then each buys a total of s̄
2

on the market. However, each front-loads their trading, buying s̄
3 in the first period and s̄

6

in the second. Thus, the dealers do not collectively act to minimize their aggregate trading

cost. This increase in cost is ultimately passed on to the client.

Why do the dealers not collectively act to minimize their aggregate trading cost? If an indi-

vidual dealer shifts some volume from the second period into the first period, that raises p1

but has no effect on p2 (because of the permanent price impact). This affects that dealer’s

trading costs in two ways: (i) it reduces the trading cost for those marginal shares (because

of the permanent price impact, p2 > p1), but (ii) it increases the trading cost for the infra-

marginal shares that were already traded in the first period. In addition, there is a negative

externality on the first-period trading costs of the other dealer. But because this externality

is not internalized, each dealer frontloads his trading.

By splitting the order, the client loses the coordination benefits that she would obtain by

allocating the entire order to a single dealer and instead “competes against herself.”

Because ĉsplit > ĉ1, the client optimally never splits her order in this way. Any RFQ policy that

does entail such order splitting could be improved by contacting only one dealer and offering the
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entire order to him whenever the policy would call for order splitting. Thus, it was without loss of

generality that we did not allow for such order splitting in our baseline analysis.

This result contrasts with empirical findings of Kondor and Pintér (2022) and Czech and Pintér

(2022), who investigate how traders split orders (in government bonds and corporate bonds, respec-

tively), particularly when in possession of private information about fundamentals. One difference

between our model and their setting is that our model does not feature asymmetric information

about fundamentals.
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F Uncertainty about trade size

Our baseline analysis assumes away all uncertainty about the size of the client’s desired trade

(featuring uncertainty only about trade side). As mentioned, this assumption is consistent with

the operation of many RFQ platforms, as well as typical practices in much off-platform trading.

Nevertheless, trade size may be uncertain in other settings. The simplest model with uncertainty

about trade size is one without uncertainty about trade side.41 This appendix analyzes a version of

our model along these lines. Most results are qualitatively similar to what we obtain in our baseline

analysis.

Model. Suppose the client desires to sell s shares, where s ∈ {1, 2} and where φ0 is the prior

probability that s = 2.42 For simplicity, suppose dealers’ initial inventories are perfectly correlated:

eA = eB = 0 with probability 1 − ψ and eA = eB = 1 with probability ψ. And suppose that the

dealers’ position limits require them to keep their final inventory in [0, 1]. In all other respects, let

the model be as described in the main text.

At a high level, the analysis follows the steps used to prove our main results. We therefore only

sketch the analysis below and omit supporting details.

Contacting one dealer. Without loss of generality, suppose the client contacts only dealer A.

Suppose the RFQ induces a belief that s = 2 with probability φ. As in the main text, the client’s

procurement cost ĉ1(φ) is set by the worst-case initial inventories for the dealers. This is the case

of eA = eB = 1. In this case, we can derive the on-path trades as

(xA1 , x
A
2 , x

B
2 ) =

(−1
2 ,−

1
2 , 0) if s = 1

(−1,−1, 0) if s = 2

and bids as

(bAs=1, b
A
s=2) =

(
3

4
, 3

)
.

Hence, the client optimally sets reserves (b̄s=1, b̄s=2) =
(

3
4 , 3
)
, and her procurement cost is

ĉ1(φ) =
3

4
(1− φ) + 3φ.

Contacting two dealers. Without loss of generality, suppose dealer A is the winner. Suppose

the RFQ induces a belief that s = 2 with probability φ. In the case where eA = eB = 0, we can

derive the on-path trades as

41Although it might be theoretically interesting to have both trade size and side be simultaneously uncertain, doing
so would require going beyond a two-point support for s and is beyond the scope of this paper.

42Note that this notation differs from the convention that we adopted for the baseline model, where s > 0 means
the client is a buyer. Here, the client is always a seller.
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(xA1 , x
A
2 , x

B
1 , x

B
2 ) =


(

φ
2(6−φ) ,−

φ
2(6−φ) ,−

φ
6−φ ,

φ
6−φ

)
if s = 1(

− 3−φ
2(6−φ) ,−

9−φ
2(6−φ) ,−

φ
6−φ ,

3
6−φ

)
if s = 2

and bids as

(bAs=1, b
A
s=2) = (bBs=1, b

B
s=2) =

(
− 3φ2

4(6− φ)2
,
3(33− 4φ− φ2)

4(6− φ)2

)
.

Alternatively, in the case where eA = eB = 1, we can derive the on-path trades as

(xA1 , x
A
2 , x

B
1 , x

B
2 ) =


(
−2−φ

6 ,−4+φ
6 ,−1+φ

3 , 1+φ
3

)
if s = 1(

−5−φ
6 ,−7+φ

6 ,−1+φ
3 , 1+φ

3

)
if s = 2

and bids as

(bAs=1, b
A
s=2) = (bBs=1, b

B
s=2) =

(
12 + 2φ− φ2

12
,
43 + 6φ− φ2

12

)
.

Hence, the client’s procurement cost is

ĉ2(φ) =
3φ(33− 5φ)

4(6− φ)2
(1− ψ) +

4 + 11φ+ φ2

4
ψ.

The client’s optimal policy. There are both similarities and differences between the client’s

optimal policy here (where uncertainty is about size) and her optimal policy in the baseline model

(where uncertainty is about side).

The primary difference is that the optimal policy here might take the form of always contacting

only a single dealer. For example, this obtains if ψ > 3
4 , because ĉ2(φ) is then everywhere greater

than ĉ1(φ). This differs from the optimal policy when uncertainty is only about the side of the

client’s trade, where according to Proposition 5, the client would never optimally use such a policy:

there is always some realization of s under which she contacts two dealers with positive probability.

In other respects, the optimal policy is qualitatively similar to what we find in our baseline

analysis:

• As in the baseline model, the optimal policy is minimally-disclosing, which follows from the

convexity of ĉ2(φ).

• As in the baseline model, the optimal policy might take the form of always contacting both

dealers. For example, this obtains if ψ < 54
79 , because ĉ2(φ) is then everywhere less than ĉ1(φ).

• As in the baseline model, the optimal policy might involve mixing over the number of con-

tacted dealers. For example, this may obtain if ψ ∈
(

54
79 ,

3
4

)
, because ĉ2(φ) then crosses ĉ1(φ)

(once, from below).

• And if the optimal policy does involve mixing over the number of contacted dealers, then it

takes the form of a policy that contacts only a single dealer only if the realized s is such that

front-running appears especially likely—in this case, only if s = 2 is realized.
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