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Abstract

A liquidity-constrained asset owner designs an asset-backed security to raise funds from

an informed liquidity supplier. Information insensitive securities reduce the liquidity

supplier’s informational rents. The issuer optimally screens the liquidity supplier’s pri-

vate information by offering a menu of debt contracts with face values monotonically

ordered in the liquidity supplier’s valuation. We leverage this characterization to show

that when the liquidity supplier’s private information becomes more accurate (Lehmann

[1988]), the issuer optimally offers debt contracts with smaller face values. Surprisingly,

the concavity of debt on the asset’s future cashflows implies that the issuer may benefit

from trading with a more informed liquidity supplier. Our results challenge the idea

that, when trading securities, the informed party should obtain an information sensi-

tive security and suggest a novel rationale for the emergence of venture debt and the

prevalence of collateralized lending.
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1 Introduction

Financial institutions facing liquidity constraints regularly sell securities to raise funds and

meet their short-term obligations. Investors, who act as liquidity suppliers, have private infor-

mation about their valuations for the securities’ underlying assets. However, which securities

should a liquidity-constrained asset owner sell when faced with informed investors? With

some exceptions, the theoretical literature on security design has largely focused on the case

where the issuer is an agent endowed with private information about the asset’s future returns.

However, in practice, there exist many important environments where the buyside possesses

superior information about its valuation for the underlying assets.

Indeed, the heterogeneity of investors’ valuations for financial assets is prevalent in financial

markets.1 This heterogeneity can originate from multiple sources. It may emerge, e.g., as a

response to discriminating tax rules, as the result of asymmetric information among different

market participants, as the output of heterogeneous technologies to process private and public

information, or as the result of exposures to idiosyncratic, nontradeable risks. In this paper, we

study how an asset owner can screen an investor’s private information by optimally choosing

the security design.

Consider a startup trying to raise funds from a venture capital (VC) fund. VCs specialize

in funding and coaching similar projects, and they usually have superior information about the

potential for growth and the future cashflows that could be generated.2 Startups, on the other

hand, struggle to raise cash to fund their initial operations and are therefore strongly liquidity-

constrained. To raise liquid funds, entrepreneurs usually sell claims on future cashflows (i.e.,

securities) in exchange for cash. If the entrepreneur could design the securities to be sold to

the VC to maximize the amount of funds raised, which security would she choose?

The main insights from the existing theoretical literature suggest that when trading secu-

rities, the informed party (usually the issuer) should keep an information-sensitive security,

e.g., an equity stake or a call option (Nachman and Noe [1994], DeMarzo and Duffie [1999],

Biais and Mariotti [2005]). Intuitively, these securities increase the issuer’s skin in the game

and are therefore a form to costly signal her private information. In this paper, we show that

there exists a fundamental reason why the issuer should sell information-insensitive securities

to informed investors. Specifically, these securities allow the issuer to optimally screen the

1Bagwell [1991] and Bagwell [1992] document investor heterogeneity in the context of stock repurchases;
Bradley et al. [1988] find evidence of heterogeneity in the context of corporate acquisitions. Bernardo and
Cornell [1997], in turn, extend the analysis to the case of complex derivatives.

2Several papers find evidence of VC firms repeatable skills. See, e.g., Kaplan and Schoar [2005] and Ewens
and Rhodes-Kropf [2015]. The performance persistence might originate from access to networks (Hochberg
et al. [2007]), high levels of industry experience (Hellmann and Puri [2002]), or screening skills (Sorensen
[2007]).
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liquidity supplier’s private information and reduce their informational rents. This allows the

issuer to maximize the funds raised from the sale.

To gain some intuition, consider the following simple example. There is an issuer (she) and

a liquidity supplier (he) who can be of two types, namely, either H or L. Assume that H’s

beliefs about the asset’s future cashflows allocate more weight to higher realizations (formally,

H’s beliefs dominate L’s beliefs in the monotone likelihood ratio (MLR) order). This could be

either because the asset is more productive when managed or monitored by type H, or simply

because H is more optimistic about the asset’s prospects. We show that when the issuer is

subject to liquidity constrains (i.e., has a low discount factor), she is better off by selling debt

instruments.

To more clearly understand, suppose that the issuer designs a menu of securities and

respective payments,
{(
sL, tL

)
,
(
sH , tH

)}
, where si represents the security and ti represents

the payment designed for type i ∈ {H,L}. The issuer can replicate the expected cashflows

associated with sL (where the expectation is computed according to L’s beliefs) with a debt

contract, sLd , which promises to pay a fixed amount d > 0 in the future and seniority if this

amount is not met. If the face value of sLd is chosen so that L is indifferent between sL and sLd ,

then H values sLd strictly less than sL. Indeed, H assigns more weight, relative to L, to high

cashflow realizations. For these realizations, however, sLd always offers the same flat payoff,

d. In other words, sLd minimizes the amount to be paid when cash flows are high (i.e., the

upside), which are also the states that H is more likely relative to L. Thus, by changing the

original security sL for the debt contract sLd , the issuer reduces the informational rents that

she needs to leave to type H to prevent him from mimicking type L. The issuer can therefore

increase the price charged to H for security sH , tH , without spoiling his incentives and, at the

same time, increasing the funds raised.

We show that the heuristic described above is general in that it can be extended to the

case with an arbitrary number of liquidity supplier’s types. Using a replication argument, we

show that any mechanism which induces all liquidity supplier types to truthfully reveal their

private information can be dominated by another mechanism where all liquidity supplier types

purchase debt securities. The optimal mechanism consists of a menu of debt contracts, with

face values monotonically ordered in the liquidity supplier’s type. That is, the more optimistic

liquidity supplier types purchase larger amounts of debt. Our main technical insight is that

any menu of securities (with their associated prices) can be dominated by modifying the

securities for debt contracts, which guarantees that the incentive constraints are not spoiled

either locally or globally. Indeed, with more than two types, the intuition provided above may

fail as the incentives of low types to mimic high types are exacerbated when the latter are
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offered debt contracts. We show that the securities in any incentive compatible mechanism

must satisfy a property analogous to the monotonicity condition in the one-dimensional case.

We leverage this property to show that by correctly permuting the securities for debt contracts,

all incentive constraints are in fact relaxed. This last observation allows the issuer to increase

the price of the securities being sold and hence maximizes the amount of funds raised.

We note that the heuristic described above does not contradict the main insights in the

security design literature that postulate that more informed agents should expose themselves

relatively more to the asset’s cashflows to signal their private information (Leland and Pyle

[1977], Ross [1977], Myers and Majluf [1984], etc.). In fact, under the optimal mechanism,

more optimistic liquidity supplier types purchase larger fractions of the underlying asset (i.e.,

debt contracts with higher face values), which obviously expose them to right-tail risk. Perhaps

surprisingly, however, we find that exploiting the information sensitivity of securities to screen

the liquidity suppliers’ private information is completely ineffective and is strictly dominated

by information-insensitive instruments.

Following a direct mechanism design approach, we extend the classical results in the opti-

mal screening literature to environments in which the designer has access to the rich allocation

space of financial securities, i.e., infinite-dimensional objects.3 One of the technical challenges

we face in extending the classical results to our environment is that we lose the structure

usually assumed in those earlier models.4 We show that in our environment, the optimal

mechanism still satisfies many of the qualitative properties usually found in the classical lit-

erature. Indeed, the optimal allocation rule features the properties of (i) no distortion at the

top, (ii) binding downward, local incentive constraints, and (iii) no rents at the bottom.

We provide a full characterization of the mechanism design problem with securities. The

advantage of this approach vis-à-vis the former results is that it allows us to find analytical

expressions for the issuer’s expected revenue and the liquidity supplier’s informational rents.

We leverage these results to perform novel monotone comparative statics results relating the

quality of the liquidity supplier’s private signals to the issuer’s optimal mechanism.

We show that when the liquidity supplier’s private information about the asset’s future

cashflows becomes more accurate (Lehmann [1988]), the face value of the debt contract de-

signed for each liquidity supplier type decreases. Intuitively, when the liquidity supplier’s

3The classical literature focuses on the case where the issuer either decides whether to sell the whole asset
to the liquidity supplier, potentially in a stochastic manner. This is equivalent to asset selloffs or equity stakes.
Instead, we propose enriching the allocation space to encompass all types of securities (e.g., debt, options,
arbitrary tranches, etc.).

4It is standard to assume that the buyer’s payoff has increasing differences in the allocation and the buyer’s
type. This assumption, together with some regularity conditions, jointly imply that local incentive constraints
imply the global constraints. There is no obvious extension of this property to the infinite-dimensional space
of all securities.
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information improves, the issuer is forced to give up more informational rents to the liquidity

supplier. To minimize the incentives of high types to mimic low types, the issuer truncates

the securities designed to the low types at a lower level. Perhaps surprisingly, however, the

geometry of the optimal securities, i.e., the concavity of debt on asset future cashflows, implies

that improving the accuracy of the liquidity supplier’s information increases the his valuation

for these securities. This effect is similar to a reduction in uncertainty for a risk-averse agent,

which increases the utility she derives from the security. We show by means of an example

that under some conditions, the second effect dominates, leading to the striking conclusion

that the issuer may benefit from facing more informed investors. Our result reinforces the

importance of the characterization of the optimal mechanism, which becomes crucial to un-

derstanding efficiency gains from increasing the transparency and the level of asymmetric

information between different market participants.

We argue that accuracy (Lehmann [1988]) is an appealing notion of informativeness in

our environment for three reasons. First, provided that signals have the MLR property, ac-

curacy is less restrictive than the Blackwell order in that it compares more signal structures.5

Furthermore, accuracy implies the standard notion of informativeness usually assumed in the

information design literature.6 Second, the concept of accuracy is tightly related to the idea

of interdependence. When an experiment is more accurate, the comovement between fun-

damentals and signals becomes stronger. Finally, the Lehmann order compares experiments

(i.e., conditional distributions) as opposed to comparing joint distributions. Intuitively, we

want to change the quality of the liquidity supplier’s information without changing the dis-

tribution of the asset’s future cashflows or the distribution of liquidity supplier types, as this

would completely change the environment. We show that starting from a fixed (marginal)

distribution of the assets’ cash flows, one can increase the accuracy of the liquidity supplier’s

private information while preserving the (marginal) distribution of the liquidity supplier’s

private signals. Combined with our first observation, this implies that increasing signals’ ac-

curacy increases the liquidity supplier’s private information about the fundamentals without

changing the quality of underlying asset or the ex-ante distribution of liquidity supplier types,

thus making the comparative statics exercise coherent.

Interestingly, the prediction that liquidity-constrained asset owners use debt instruments

to raise funds from informed investors is consistent with several empirical regularities. In the

5Indeed, provided that signals satisfy the MLRP, any two signals ordered according to Blackwell are also
ordered according to Lehmann [1988]. When the state space is binary, both notions of informativeness coincide
(see, e.g., Jewitt [2007]). More recently, Kim [2022] showed that Lehmann domination is closely related to the
concept of quasigarbling, a generalization of information garbling.

6Fixing the prior example, if two experiments are ordered according to Lehmann, then the distribution of
posterior estimates induced by the experiments’ signals are ranked in convex order. See Proposition 2 below.
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case of VC funding, our predictions are consistent with the emergence of venture debt. Indeed,

according to Tykvová [2017], approximately one-third of the current venture-backed companies

use debt instruments to raise funds. A plausible explanation for this new trend is that as

VC funds become more competitive, they retain lower informational rents.7 In the context

of structured financial products, such as the market for mortgage-backed securities (MBS),

buyers who are generally large investment banks, brokerage firms, and institutional investors

have substantial expertise in valuing the securities issued through their knowledge of secondary

market conditions and their access to proprietary valuation models.8 Our predictions are

broadly consistent with the prevalence of tranching in securitization, wherein investors are

promised a fixed face value according to their preferences and payments contingent on the

underlying assets’ cashflows when the face value is not met. Finally, our predictions are also

consistent with the experience of the Resolution Trust Corporation (RTC) and the FDIC,

which are institutions in charge of disposing the assets of failed financial institutions. Using

pooled assets auctions and securitized vehicles, they have dramatically increased the funds

raised.

The rest of the paper is organized as follows. Below, we wrap up the introduction by

discussing how our paper connects with the rest of the literature. Section 2 describes the

primitives of the model. Section 3 contains the derivation of our first result establishing the

optimality of menus of debt contracts and the characterization of the optimal mechanism.

We further discuss the relation between securities’ information sensitivity and the liquidity

supplier’s informational rents. In section 4, we explore how changes in the accuracy of the

liquidity supplier’s private signal affects the optimal contracts, the amount of funds raised,

and the agents’ payoffs. All omitted proofs are relegated to the Appendix.

Related Literature

This paper relates to several strands of the literature. First, it contributes to the broad

literature on security design under asymmetric information (see, e.g., Nachman and Noe

[1994], DeMarzo and Duffie [1999], Biais and Mariotti [2005], DeMarzo and Fishman [2007],

7Concomitant with the emergence of venture debt is the fact that in the last decade, VCs with a founder-
friendly reputation have gained prominence (Ewens et al. [2018], Lerner and Nanda [2020]). Contrary to the
former governance approach, which entailed the intensive monitoring of startups, VCs are adopting a hands-off
approach, leaving much discretion to the entrepreneurs. Both regularities seem consistent with the idea that
startups have greater bargaining power.

8Bernardo and Cornell [1997] analyze data from an auction of collateralized mortgage obligations (CMO)
and find statistical evidence of a large dispersion in investors’ valuation for the securities.
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etc.).9 We depart from those earlier models by assuming that when trading securities, it is the

liquidity supplier who is endowed with private information. In the context of informed liquidity

suppliers, DeMarzo et al. [2005] study general securities auctions with multiple (N ≥ 2)

bidders.10 Following an indirect mechanism approach, they show that among all general

symmetric mechanisms,11 the first-price auction where buyers are restricted to bid call options

(i.e., the buyer purchases a debt contract) maximizes the issuer’s revenue. Our result that

the optimal mechanism consists of a menu of debt contracts is consistent with their finding.

We provide a full characterization of the unrestricted solution to the liquidity-constrained

issuer’s problem with a single bidder. Following a direct mechanism approach, we show that

the optimality of the menus of debt contracts originates on the fact that debt minimizes the

liquidity suppliers’ informational rents and therefore allow the issuer to raise more funds.

Our characterization is instrumental in performing novel comparative statics on the optimal

contract as a function of the primitives of the problem, especially the extent of asymmetric

information among the agents. Axelson [2007] studies security auctions with multiple bidders

when the issuer is the liquidity-constrained, as in our environment. He finds that when the

issuer restricts attention to a sealed-bid, uniform-price, K-units auction, debt is optimal.

Liu [2016] follows a mechanism design approach similar to the one proposed in this paper

and study optimal auctions when the issuer is constrained to sell equity securities. Liu and

Bernhardt [2021] provide sufficient conditions under which equity plus cash auctions achieve

optimality in the context of target-initiated takeovers. More recently, Yuan [2020] tackles a

similar problem wherein multiple issuers compete by selling securities to informed liquidity

suppliers. Building on the fact that competition among sellers leads to the winner’s curse,

she finds that there exists an equilibrium where all issuers sell debt securities. We show that

the optimality of debt occurs even in the absence of competition. In our environment, the

issuer has all the bargaining power and optimally designs a menu of debt contracts. We

show that the optimality of debt originates from the fact that it allows the issuer to minimize

informational rents.

Our paper is also related to the emerging literature on information and security design.

Yang [2020] studies a security design problem wherein the liquidity supplier can acquire costly

information. He shows that a debt contract is uniquely optimal and minimizes the incentives

9Some recent work within this areas of study include Malenko and Tsoy [2020] and Lee and Rajan [2018].
They explore optimal security design under robust requirements.

10They refer to auctions designed by the issuer as formal auctions. They also study games where the bidders
have the freedom to bid with arbitrary securities, which they dub informal auctions.

11A general symmetric mechanism (GSM) is a symmetric incentive-compatible mechanism in which the
highest type wins and pays a security chosen at random from a given set, S. The randomization can depend
on the realization of types but not on the identity of the bidders.
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to produce private information. In an informed issuer model, Daley et al. [2022] show that

reducing the degree of asymmetric information between the issuer and the liquidity supplier

leads the former to issue information-sensitive securities. Vanasco [2017], Szydlowski [2021]

and Inostroza and Tsoy [2022] study the case where the issuer can design both the security

and the information structure. Vanasco [2017] studies the case where issuer chooses both

the security and the effort to improve the quality of the asset. She demonstrates that the

adverse selection induced by the issuer’s superior information mitigates the issuer’s moral

hazard problem when monitoring the quality of the pool of assets. Szydlowski [2021] shows

that if the issuer’s objective consists of raising a prespecified amount of funds, she is indifferent

between all the securities yielding the same payoff. Inostroza and Tsoy [2022] show that when

the issuer designs both the security and information structure, information-sensitive securities

dominate debt instruments and pure equity maximizes the issuer’s payoff.

The paper is also related to the literature on information orders and monotone comparative

statics under uncertainty. Quah and Strulovici [2009] show that the Lehmann [1988] order is

closely related to a natural order on utility functions, namely, the so-called interval dominance

order. We show that the geometry of the optimal securities implies that informational rents are

ranked according to the interval dominance order and leverage this to show that the optimal

mechanism is monotone in the Lehmann [1988] order. Persico [2000] and Ganuza and Penalva

[2010] study the effect of increasing the accuracy of the agents’ signals in auctions. Kim [1995]

and Jewitt [2007] study the effect of increasing the informativeness of agents’ signals in moral

hazard problems, whereas Dewatripont et al. [1999] do so using career concerns model. More

recently, Mekonnen and Vizcáıno [2022] have studied comparative statics of agents’ optimal

distributions of actions in Bayesian games when the informativeness of their signals increases.

To the best of our knowledge, ours is the first paper to perform comparative statics in the

context of optimal security design.

2 The Model

2.1 Security Design

The economy consists of an issuer (she) and a liquidity supplier (he). The issuer owns a risky

asset that delivers a stochastic cashflow y ∈ R+. There are two periods, t ∈ {1, 2}. In period

1, the issuer may sell a claim s(y) on the asset’s period 2-cashflows to the liquidity supplier

at a price p. In period 2, the asset delivers the stochastic cashflow y ∈ R+, and the liquidity

supplier obtains s (y).

Securities. The issuer is free to design any arbitrary security satisfying limited liability
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and monotonicity in the asset’s cashflows.12 Therefore, the set of available securities is given

by the following:13

S ≡ {s : R+ → R+ s.t: (LL) : 0 ≤ s(y) ≤ y, ∀y ≥ 0

(M) : s is nondecreasing}.

Information. In period 1, the liquidity supplier observes his type, ω ∈ {ωn}Nn=1,

which is private information. We denote by F (ω, y) the joint distribution of ω and y. We

denote by Φ the marginal distribution of ω; for notational ease, we let Φn ≡ P {ω ≤ ωn} and

φn ≡ P {ω = ωn}. The conditional distribution of cashflows is ordered according to MLRP.

That is, F (y|ω = ωi) �MLRP F (y|ω = ωj) for all i, j ∈ {1, ..., N} with i > j. 14 We further

assume that E (y|ω = ωN) <∞.

Preferences. The liquidity supplier is risk-neutral. The valuation, in monetary terms,

of a future cashflow x, for liquidity supplier ωn is given by

u (x, ωn) ≡ ϕ (ωn)x+ ν (ωn) .

where ϕ (ωi) , ν (ωi) are both nonnegative and nondecreasing. The case where ϕ (ω) = 1 and

ν (ω) = 0 for all ω implies that heterogeneity only arises from different degrees of optimism

about future cashflows (i.e., belief heterogeneity). The case where ϕ or ν are not constant

corresponds to the case wherein higher types have a more productive technology that yields

larger returns (i.e., payoff heterogeneity).

Therefore, the expected utility of liquidity supplier ωn from buying security s(·) at price p

is given by the following:

E(u(s, ωn)|ωi)− p =

∫
R+

un(s(y))dF (y|ωn)− p

=

∫
R+

(ϕns (y) + νn)dF (y|ωn)− p

where we write, for brevity, un (s) = u (s, ωn), ϕn = ϕ (ωn), and νn = ν (ωn).

12In the absence of monotonicity, the issuer has the option of requesting (risk free) credit to a third party
to boost cashflows and thus decrease the amount owed to liquidity suppliers

13The literature usually imposes y− s̃ (y) nondecreasing. The issuer would otherwise have incentives to burn
cashflows to increase her payoff. Our results do not require this assumption, but the optimal security does
satisfy the property.

14This is equivalent to the conditional probability density function f (y|ω) satisfying log-supermodularity.
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The issuer, on the other hand, has stringent liquidity needs and therefore has a low discount

factor. For ease of exposition, we assume that she maximizes the amount of funds raised

completely discounting future payoffs from asset’s cashflows.

Mechanisms. Without loss of generality, we restrict attention to incentive-compatible,

direct mechanisms. The issuer asks the liquidity supplier to report his type and offers and

allocation and price given by M = {sn (y) , pn}Nn=1, where sn and pn represent the security

and the price offered to a liquidity supplier reporting ωn, respectively. The issuer has all the

bargaining power and designs M.

Let UM (ωi;ωj) represent the expected utility of a liquidity supplier whose true type is ωj

and reports ωi under mechanism M:

UM (ωi;ωj) ≡
∫
R+

uj (si(y)) dFj(y)− pi

= Ej (uj (si(y)))− pi, ∀i, j ∈ {1, ..., N} .

We say that a mechanism M is feasible if it satisfies (i) individual rationality:

[IRi] : UM (ωn;ωn) ≥ 0, ∀n ∈ {1, ..., N} ,

and (ii) incentive compatibility:

[ICi,j] : UM (ωi;ωi) ≥ UM (ωj;ωi) , ∀i, j ∈ {1, ..., N} .

The issuer, who has pressing liquidity needs, fully discounts period 2-cashflows and there-

fore maximizes revenue
n∑
i=1

φipi among all feasible mechanisms.15

3 The Optimality of Debt Menus

In this section, we show that the optimal feasible mechanism consists of a menu of debt

securities. To prove this result, we first establish some basic properties that mirror standard

results in the screening literature. At the optimal mechanism, (i) the worst type obtains a

nil payoff (no rents at the bottom), (ii) the highest type purchases a pure equity claim (no

distortion at the top), and (iii) all liquidity supplier types ω > ω1 obtain (strictly) positive

informational rents (impossibility of full extraction).

15The results below can be extended for small discount factors δ ∈ (0, 1). For clarity, we tackle the case
where δ = 0.
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Proposition 1. For any feasible mechanism M = {sn (·) , pn}Nn=1, the following properties

are true:

1. For any i, j ∈ {1, ..., N} with i < j, UM (ωj;ωj) > UM (ωi;ωi) ≥ 0.

2. If [IR1] does not bind, then M is strictly dominated.

3. If sN (y) 6= y for all y ∈ R+, then M is strictly dominated.

Because of the issuer’s liquidity constraints, full extraction is impossible in our context.

Indeed, property 1 in Proposition 1 implies that at any incentive-compatible and individually

rational mechanism, all agents ω > ω1 earn positive informational rents. This result contrasts

with the famous results by Crémer et al. [1987] and Crémer and McLean [1988] showing that

when the issuer’s and liquidity supplier’s information signals are correlated, the issuer can

capture all the surplus. In our case, y and ω are correlated; yet the structure of the problem

prevents the issuer from appropriating the whole surplus. The assumption that the issuer faces

stringent liquidity needs imposes two frictions that prevent her from capturing all the liquidity

supplier rents. First, we assume that the issuer is liquidity constrained and therefore needs to

raise cash with urgency in period 1 and cannot wait until period 2. Second, we assume that

the issuer sells an asset and that therefore, there is the gradual resolution of uncertainty as

the asset’s cashflows y materialize later in the game, i.e., at t = 2. These two observations

together imply that the price p paid by the liquidity supplier cannot depend on the future

realizations of the asset’s cashflows. Remarkably, either belief or payoff heterogeneity on their

own are enough to imply the results above. That is, even if the type ω is noninformative

about cashflows or irrelevant for the liquidity supplier’s preferences over cashflows, there will

be informational rents for all but the lowest type.

Properties 2 and 3 are standard. Property 2 follows from the fact that the lowest type, ω1,

obtains the lowest informational rents (property 1). If this type obtains positive rents under

a given mechanism, the issuer can increase all prices {pn}n by the same amount until [IR1]

binds. Finally, property 3 obtains from the fact that the highest type, ωN , is the agent who

values the asset the most. It is therefore optimal not to distort the allocation designed for

him.

3.1 Relaxing Incentive Constraints with Debt

The next property is instrumental in proving the subsequent results.

Definition 1. [Single crossing from below/above] We say that a function h : R+ → R
satisfies the single crossing from below (SCFB) property if there exists y0 ∈ R++ so that
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h (y) ≤ 0 for any y < y0 and h (y) ≥ 0 for any y ≥ y0. We say that h satisfies strict single cross-

ing from below (SSCFB) if, in addition, the sets {y ∈ R+ : h (y) < 0} and {y ∈ R+ : h (y) > 0}
have a positive (Lebesgue) measure. Similarly, we say that h satisfies single crossing from

above (SCFA) or strict single crossing from above (SSCFA) if −h satisfies SCFB or SSCFB,

respectively.

Lemma 1. Suppose that (y,ω) satisfy the MLRP and that h satisfies the SCFB. If, for some

ω′ ∈ Ω,
∫∞

0
h (y) dF (y|ω′) ≥ 0, then necessarily,∫ ∞

0

h (y) dF (y|ω′′) ≥ 0, ∀ω′′ > ω′.

If h satisfies SSCFB, then the second inequality is strict.

We now show that downward incentive constraints are maximally relaxed by assigning

a debt contract to the lowest type. Intuitively, among all securities that provide the same

expected payoff (according to the beliefs of an arbitrary type), debt is the least preferred by

higher types as it minimizes payments for high realizations of y (i.e., the upside). Therefore,

debt contracts minimize the informational rents captured by high types.

Lemma 2. Consider an arbitrary mechanism M = {sn, pn}Nn=1. Suppose that there exists

i ∈ {1, ..., N} such that [ICj,i] holds for all j > i. Then, the mechanism M̂ = {ŝn, p̂n}Nn=1 with

(ŝn, p̂n) = (sn, pn) for all n 6= i, and (ŝi(y), p̂i) = (min {y,Di} , pi), with Di defined such that

Ei (min {y, Di} − si) = 0, satisfies [ICj,i] for all j > i. Moreover, whenever si 6= ŝi, [ICj,i] is

slack for all j > i.

Proof. Consider the mechanism M̂ = {ŝn, p̂n}Nn=1 described above. We show that the new

mechanism relaxes incentive compatibility constraints. In fact, for any j > i, type ωj’s payoff

from mimicking type ωi decreases under M̂. To see this more clearly, observe that si − ŝi

satisfies SCFB in y. This fact, coupled with the log-supermodularity of f(y|ω) implies that

the conditions in lemma 1 apply. Hence,

Ei (si − ŝi) = 0⇒ Ej (si − ŝi) ≥ 0,

with strict inequality whenever si is not a debt contract (i.e., si 6= ŝi over a set with F -positive

measure). This, in turn, implies that, for any j > i, type ωj weakly prefers contract si over ŝi

as Ej (uj (si)) > Ej (uj (ŝi)). Thus, the incentive compatibility constraints [ICj,i] are relaxed

for all j > i under M̂.
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Lemma 2 establishes that downward incentive constraints can be relaxed by allocating

debt contracts to low types. This does not necessarily imply that debt contracts must be

part of the optimal mechanism, as upward incentive constraints might be compromised by

changing the securities for debt. In fact, as the steps leading to the proof of lemma 2 suggest,

among all the securities si that provide type ωi the same expected payoff Ei (si), the debt

contract ŝi(y) = min {y,Di} is the one that provides maximal incentives to mimic for types

h < i. The next section shows that despite this potential conflict, the issuer optimally sells

debt securities to all types. We note that for the lowest type, ω1, for which there is no upward

incentive constraints, lemma 2 implies that the optimal security must be debt.

Corollary 1. Any feasible mechanismM = {sn, pn}Nn=1 for which there does not exist D > 0

such that s1 = min {y,D} for (F -almost all) y (i.e., s1 is not a debt contract), is strictly

dominated by another feasible mechanism M̂ = {ŝn, p̂n}Nn=1 with ŝ1(y) = min {y,D1} for

some D1 > 0.

3.2 Oriented Mechanisms

Definition 2. We say that a feasible mechanism M = {si, pi}Ni=1 is oriented if, for any

j, k ∈ {1, ..., N}, with k > j, Ek (sk − sj) ≥ 0.

The concept of orientation is closely related to the monotonicity condition in the screening

literature. In the current environment, with a richer allocation space (i.e., the set of all

monotone functions satisfying limited liability), the notion that higher types should obtain a

larger allocation is captured by the requirement that higher types should prefer their securities

according to their own beliefs, rather than the ones designed for lower types. That is, for any

k > j, Ek (sk − sj) ≥ 0.

We argue that it is without loss of optimality to restrict attention to oriented mechanisms.

To see this more clearly, consider an arbitrary feasible mechanism, M = {sn, pn}Nn=1, for

which there exist j, k with k > j, Ek (sk − sj) < 0. Then, pj > pk since otherwise, the

incentive constraint [ICk,j] would be violated. This, in turn, means that there exists an

alternative mechanism, M̂, which is identical to M except for the fact that it offers contract

(ŝk, p̂k) = (sj, pj) to type ωk. In other words, M̂ deletes the contract offered to type ωk under

mechanismM and replaces it with the contract offered to type ωj. Note that Ek (sk − sj) < 0,

together with the assumption that F (y|ωk) �MLRP F (y|ωj) and the monotonicity of u (x, ·)
in ω, jointly imply that

UM̂ (ωk;ωk) = Ek (uk (sj))− pj > Ej (uj (sj))− pj ≥ 0.

13



Therefore, the new mechanism satisfies [IRk]. Furthermore, all other incentive constraints

remain uncompromised under the new mechanism as the contract (sj, pj) was already available

under M. The new mechanism M̂ thus strictly raises more funds than M. We note that in

contrast to the standard argument wherein incentive compatibility alone implies monotonicity,

in the current environment, orientation is a consequence of both incentive compatibility and

optimality.

Lemma 3. [Oriented Mechanisms] Any feasible mechanism M = {sn, pn}Nn=1 that is not

oriented is strictly dominated by another feasible, oriented mechanism.

Equipped with the last result, we are now ready to present the main result of this section.

Theorem 1. There exists an optimal mechanism, M? = {s?n, p?n}
N
n=1, with the following

properties. For any n ≤ N − 1, there exists Dn > 0 so that s?n (y) = min {y,Dn} and

s?N (y) = y, for all y.

We provide a sketch of the proof below, which is divided into 3 steps.

In Step 1, we show that for any oriented mechanism, when security si is a debt contract,

then for any pair of types above i, k > j > i, the downward incentive constraints [ICk,j] and

[ICj,i] imply the global downward constraint [ICk,i]. The global downward incentive constraints

are therefore redundant.

The intuition behind Step 1 is as follows. When si is a debt contract, then for any j, k with

k > j > i, if type ωj prefers his security sj over si, then type ωk must also prefer sj over si.

The standard argument used in the screening literature follows from the monotonicity of the

allocation rule (which is implied by incentive compatibility) and the supermodularity of the

liquidity supplier’s payoff in both his type and the allocation. In the current setting, it is not

clear what the correct notion should be of the supermodularity of the liquidity supplier’s payoff

in his type and the security, i.e., an infinite-dimensional object. Instead, we leverage the fact

that when si is a debt contract, si crosses other securities from above. Lemma 1 then implies

that for any sj with Ej (sj − si) ≥ (>) 0 (which is always true for oriented mechanisms), it

must be the case that Ek (sj − si) ≥ (>) 0. This in turn means that if type ωj, according to

his beliefs, does not mimic type ωi, then neither does type ωk.

In Step 2, we use the result obtained in Step 1 to show that when si is a debt contract,

then the local downward incentive constraint [ICi+1,i] must bind. The argument is obtained

by contradiction. Suppose that for some i ∈ {1, ..., N − 1}, [ICi+1,i] is satisfied with slackness;

then the argument in Step 1 implies that for any k ≥ i+1, the incentive constraints [ICk,i] are

slack. The issuer can therefore increase the transfers pk for all types k ≥ i+1 without spoiling

14



incentive compatibility. We conclude that at any undominated mechanism, constraint [ICi+1,i]

must bind.

Finally, in Step 3, we show that for any oriented mechanism, M, if we let i + 1 ≤ N be

the smallest type for whom his security si+1 is not a debt contract, we can improve upon the

issuer’s payoff by swapping security si+1 for the payoff-equivalent debt contract sDi+1 (according

to ωi+1’s beliefs), without spoiling the upward incentive constraints, [ICh,i+1], for h ≤ i. That

is, if we let sDi+1 be a debt contract with Ei+1

(
sDi+1 − si+1

)
= 0, the issuer can relax the

downward incentive constraints without spoiling the upward incentive constraints. Indeed, we

observe that

pi+1 − pi = Ei+1 (ui+1 (si+1)− ui+1 (si))

= Ei+1

(
ui+1

(
sDi+1

)
− ui+1 (si)

)
> Ei

(
ui+1

(
sDi+1

)
− ui+1 (si)

)
, (1)

where the first equality follows from the result in Step 2, and the second equality is obtained

by the construction of sDi+1. The inequality, in turn, follows from noting that the mechanism

M is oriented. Therefore,

Ei+1

(
sDi+1

)
= Ei+1 (si+1) > Ei+1 (si = min {y, Di}) .

This means that sDi+1 − si is nondecreasing, which, coupled with the MLRP assumption and

the monotonicity of u (s, ω) in ω, implies the result.

Inequality (1) implies that type ωi does not mimic type ωi+1 when the latter’s security is

replaced by its payoff-equivalent debt contract; hence, the upward incentive constraint [ICi,i+1]

is satisfied. We show in the Appendix that a similar argument can be made to show that for

any h < i, [ICh,i+1] is also satisfied in the new mechanism.

Theorem 1 shows that to maximize the funds raised from an informed investor, restricting

attention to menus of debt contracts does not result in loss of optimality. However, restricting

attention to debt securities substantially simplifies the problem. Indeed, similar to the classical

screening problem (e.g., Mussa and Rosen [1978]), the allocation space is now captured by

a single-dimensional variable, namely, the face value of the debt contract designed for each

type.

Interestingly, theorem 1 further implies that exploiting the possibility of introducing secu-

rities with different degrees of information sensitivity in the menu is ineffective at screening the

liquidity supplier’s private information. In subsection 3.5, we formalize the intuition that the
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liquidity supplier’s informational rents are monotone in the securities’ information sensitivity.

3.3 Characterization of the Optimal Contract

Equipped with the result in theorem 1, we proceed to characterize the optimal mechanism

with securities. The previous results imply that we can restrict attention to menus of debt

securities, that is, mechanisms satisfying that, for any n, sn = min {y,Dn} for all y, where

Dn > 0 and is increasing in n, and DN = +∞. Moreover, Step 2 in the proof theorem 1

implies that, without loss, we can restrict attention to mechanisms satisfying that, for any

j > 1, [ICj,j−1] binds and, because of proposition 1, further satisfying p1 = E (min {y,D1}).
Together, these properties imply the following characterization.

Lemma 4. The issuer’s problem can be reformulated as

max
{Dn}Nn=1

N∑
n=1

φn

∫ ∞
0

un (min {y,Dn})
(

1−
(

1− Φn

φn

)(
f (y|ωn+1)− f (y|ωn)

f (y|ωn)

))
dF (y|ωn)(2)

s.t. Dn nondecreasing in n.

3.3.1 (Ruling out) Bunching

As in the classical problem, there exist regularity conditions under which the optimal mecha-

nism does not involve bunching. In this case, these conditions guarantee that face values Dn

are strictly increasing in n. Whenever this is the case, the optimal face value Dn corresponds

to the one obtained under the the pointwise solution to (2) disregarding the monotonicity

constraint.

Assumption 1. The inverse hazard rate 1−Φ(ω)
φ(ω)

is nonincreasing in ω.

Assumption 2. The conditional distribution function F (y|ω) is convex in ω.

Assumption 1 is standard in the literature of mechanism design (see, e.g., Myerson [1981]).

Intuitively, it captures the idea that the relative mass of liquidity suppliers above a given type

decreases and therefore the informational rents that need to be forgone decrease. Assumption

2, on the other hand, requires the differential

∆n (y) ≡ 1− F (y|ωn+1)− (1− F (y|ωn))

to increase at a decreasing pace as n increases. Intuitively, this captures the idea that the

informational rents associated with larger cashflow realizations y do not increase too fast as
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the liquidity supplier’s valuation increases. This effect is reminiscent to the requirement that

the marginal value of increasing the buyer’s allocation to be concave in his type (see, for

example, Fudenberg and Tirole [1991]). In our case, where the liquidity supplier’s allocation

is completely determined by the face value of his debt contract, Dn, the marginal value of

increasing type ωn’s allocation is given by

∂

∂Dn

∫
R+

un (min {y,Dn}) dF (y|ωn) = ϕn
∂

∂Dn

(∫ Dn

0

ydF (y|ωn) +Dn (1− F (Dn|ωn))

)
= ϕn · (1− F (Dn|ωn)) .

Thus, assumption 2 implies that the marginal value of increasing the liquidity supplier’s

allocation is concave in ωn. Our next result shows that these two assumptions guarantee that

the monotonicity constraint is nonbinding.

Lemma 5. Suppose that assumptions 1 and 2 hold. Then, for every n ∈ {1, ..., N}, D∗n is

monotone in n and is implicitly characterized by the solution to∫ ∞
Dn

(
1−

(
1− Φn

φn

)(
f (y|ωn+1)− f (y|ωn)

f (y|ωn)

))
dF (y|ωn) = 0.

3.4 Continuum of types

In this section, we extend the analysis to case of a continuum of liquidity supplier types.

We assume that Ω = [ω, ω̄] ⊆ R+. For simplicity, we focus on the case where u (x, ω) = x,

i.e., where the liquidity supplier types are heterogeneous only in beliefs. The issuer designs

a mechanism {s(·|ω), p (ω)}ω∈Ω where, for each ω, s [ω] ∈ S and p (ω) ∈ R. The payoff of a

liquidity supplier of type ω who reports to be ω̂ is then given by

UM (ω̂;ω) =

∫ ∞
0

s(y|ω̂)dF (y|ω)− p (ω̂)

A mechanism is said to be feasible if it satisfies the Incentive Compatibility and Individually

Rational constraints:

[IC]:ω ∈ arg max
ω̂∈Ω

UM (ω̂;ω) , ∀ω ∈ Ω

[IR]:UM (ω;ω) ≥ 0, ∀ω ∈ Ω.

The next theorem shows that the main qualitative properties found in the case of finitely
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many types extend to the current environment. The characterization below is instrumental

for the comparative statics exercise we perform in the next section.

Theorem 2. Suppose that Assumptions (1) and (2) hold. Further, asssume that,for all ω ∈ Ω,

E
{
y

∂f(y|ω)
∂ω

f(y|ω)
|ω
}
< ∞. Then, the revenue maximizing mechanism is characterized by a menu

of debt securities given by

s∗(y|ω) = min{y,D∗(ω)}

where D∗(ω) is defined as the unique solution of

∫ ∞
D∗(ω)

{
1− 1− Φ(ω)

φ(ω)

∂
∂ω
f (y|ω)

f (y|ω)

}
dF (y|ω) = 0. (3)

3.5 Information Sensitivity and Informational Rents

Definition 3. We sat that security s′′ ∈ S is more information sensitive than s′ ∈ S, if s′′−s′

has the SSCFB property.

Intuitively, more information sensitive securities increase the exposure of the security owner

to the asset’s cash flow realizations. That s′′ − s′ has the SSCFB property implies that for

low cash flow realizations s′′ (y) < s′ (y) the security owner has a smaller payoff under s′′ than

under s′, whereas the opposite holds true, for high cash flow realizations.

We argue that the liquidity supplier’s informational rents are closely related to the securi-

ties’ information sensitivity. Indeed, the steps leading to the result in Theorem 2, imply that,

for any feasible menu of securities {s [ω]}ω∈Ω, the issuer’s objective can be expressed as

∫
Ω

E {s (y|ω) |ω}︸ ︷︷ ︸
Gains from trade

−
(

1− Φ (ω)

φ (ω)

)
E

{
s (y|ω)

(
∂
∂ω
f(y|ω)

f(y|ω)

)
|ω

}
︸ ︷︷ ︸

Informational Rents

 dΦ (ω) .

For any ω ∈ Ω, and any feasible mechanism M = {s [ω] , p (ω)}ω∈Ω, let

IM (ω) ≡
(

1− Φ (ω)

φ (ω)

)
E

{
s (y|ω)

(
∂
∂ω
f(y|ω)

f(y|ω)

)
|ω = ω

}

represent type ω’s informational rents under mechanism M. This expression represents the

rents that need to be paid to every type above ω to not pretend to be type ω. When the

liquidity supplier’s type is commonly known, the issuer maximizes the expected value of the
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security sold to the liquidity supplier. In that case, the issuer optimally sells the whole asset

to the liquidity supplier, who is the efficient holder of the asset, and extracts all rents from

him. Instead, when the liquidity supplier has private information, the issuer needs to leave

informational rents to the liquidity supplier, which entails distorting allocative efficiency. As

theorem 1 dictates, the issuer is better off by holding on to the high realizations of the asset’s

cashflows despite the fact that she does not assign any value to them (recall that she fully

discounts future realizations). Doing so allows her to minimize the informational rents she

leaves to the highest types.

To ellaborate further, consider the standard screening problem, wherein a buyer purchases

an asset from an issuer constrained to sell pure equity (i.e., the whole asset). In that en-

vironment, it is without loss to restrict attention to direct mechanisms specifying, for each

type ω, the probability of trading, α (ω) ∈ [0, 1], and the transfers p (ω) ≥ 0. That en-

vironment is equivalent to an issuer restricted to selling equity stakes (e.g., stocks), i.e.,{
sE (y|ω) = α (ω) · y

}
ω∈Ω

, at prices {p (ω)}ω∈Ω.16

Selling information sensitive securities (such as these equity stakes), however, leaves large

informational rents to the liquidity supplier. The issuer can minimize these rents by reduc-

ing the information sensitivity of the securities in her menu. Indeed, consider any feasible

mechanism ME =
{
sE [ω] , pE (ω)

}
ω∈Ω

, with sE (y|ω) = α (ω) · y, for all ω. Construct an

alternative mechanism with information insensitive securities, MII =
{
sII [ω] , pII (ω)

}
ω∈Ω

,

where for each ω, E
{
sII (y|ω) |ω

}
= E

{
sE (y|ω) |ω

}
, and sII [ω] is less information sensitive

than sE [ω]; that is, sII [ω]− sE [ω] is SSCFA. Then,

IM
II

(ω)− IME

(ω) =

(
1− Φ (ω)

φ (ω)

)∫ ∞
0

(
sII (y|ω)− sE (y|ω)

) ∂

∂ω
f(y|ω)dy

=

(
1− Φ (ω)

φ (ω)

)∫ ∞
0

(
sII (y|ω)− sE (y|ω)

)
lim
δ↓0

(
f(y|ω + δ)− f(y|ω)

δ

)
dy

< 0, ∀ω ∈ Ω

where the inequality follows from the construction of
{
sII [ω]

}
ω∈Ω

and the inequality is a

direct implication of Lemma 1 which jointly imply that, for any δ > 0,∫ ∞
0

(
sII (y|ω)− sE (y|ω)

)(f(y|ω + δ)− f(y|ω)

δ

)
dy =

∫ ∞
0

(
sII (y|ω)− sE (y|ω)

) f(y|ω + δ)

δ
dy

< 0.

We conclude that, regardless of the liquidity supplier’s private signal, informational rents are

16The proof of Example 1 contains the derivation of the optimal mechanism restricted to this class of
securities.
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strictly smaller when the issuer offers more informational insensitive secutiries. The fact that

these latter securities are constructed keeping the liquidity supplier’s valuation unchanged,

then implies that the issuerstrictly benefits form her ability to design securities which are

less sensitive to the liquidity supplier’s information. This prediction stands in sharp contrast

with the typical finding in the security design literature according to which, when trading,

the informed agent obtains information sensitive securities.17

4 Information and Monotone Comparative Statics

Motivated by the important role of the liquidity supplier’s private information in determining

the optimal mechanism, we explore how changes in the quality of the liquidity supplier’s

private signal affects the issuer’s optimal securities. To simplify the derivations, we focus

henceforth on the case with a continuum of types discussed above.

We show below that as the liquidity supplier’s private signal becomes more accurate

(Lehmann [1988]), the issuer optimally offers debt instruments with smaller face values. Per-

haps surprisingly, however, the geometry of the optimal securities, i.e., the concavity of debt

on the asset’s future cashflows, implies that improving the accuracy of the liquidity supplier’s

information increases the his valuation for these securities. This effect is similar to a reduction

in uncertainty for a risk-averse agent, which increases his utility. The overall effect on both

surplus and the agents’ payoffs is thus ambiguous.

Below, we provide an example that showcases the novel effect described above and chal-

lenges some economic intuitions from the classical screening problem.

Example 1. Suppose that ω ∼ U [0, 1] and that for θ ∈ [1/3, 1], yθ is constructed as follows.

With probability θ, yθ = ω, whereas with probability 1− θ, yθ ∼ U [0, 1], independent of ω.

That is,

F θ (y|ω) = Pr
{
yθ ≤ y|ω = ω

}
= θ · 1 {ω ≤ y}+ (1− θ) y.

The following properties are true:

(a) For any θ′′, θ′ ∈ (0, 1), θ′′ > θ′, F θ′′ is more accurate (Lehmann [1988]) than F θ′ .18

(b) Suppose the issuer is restricted to use linear securities, i.e., for all ω ∈ [0, 1],

s [ω] ∈ SE ≡ {s ∈ S : ∃α > 0, s (y) = αy, ∀y ∈ [0, 1]} .
17See, e.g., Gorton and Pennacchi [1990], Nachman and Noe [1994], DeMarzo and Duffie [1999], Biais and

Mariotti [2005].
18The formal definition is provided in the next subsection.
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Then, the (restricted) optimal mechanism is characterized by

αEθ (ω) = 1

{
ω ≥ ωEθ ≡ max

{
3θ − 1

4θ
, 0

}}
.

Furthermore, under this mechanism E
{
pEθ (ω)

}
= (1+θ)2

16θ
.

(c) The issuer’s optimal mechanism is a menu of debt contracts {min {y,D∗θ (ω)}}ω∈[0,1]

with face values characterized by

D∗θ (ω) = ω, ∀ω ∈ [0, 1] ,∀θ ∈ (0, 1) .

Under this mechanism, informational rents are 0 for all ω ∈ [0, 1]; Furthermore, E {p∗θ (ω)} =

E {E {min (y,ω) |ω}} = 2+θ
6

.

Example 1 underscores some fundamental differences with the case wherein the issuer

is constrained to use linear instruments, a typical assumption in the screening literature.

Under the restriction, the optimal mechanism consists of a posted price. The issuer sells

the whole asset to all liquidity supplier types above the critical type ωEθ at price E
{
y|ωEθ

}
,

leaving strictly positive informational rents to all types strictly above ωEθ . Furthermore, as

the accuracy of the liquidity supplier’s private information increases, the issuer increases her

posted price destroying both surplus and the expected revenue.

In contrast, when the issuer can flexibly design the security, she optimally sells debt in-

struments to all liquidity supplier types. Interestingly, as we prove in the Appendix, under

the optimal mechanism, the issuer leaves no informational rents. Using debt contracts allows

the issuer to alleviate incentive compatibility issues and extract all the surplus generated by

these securities. Strikingly, we show that as the liquidity supplier’s private information be-

comes more accurate, the issuer increases her revenue. As we argue above and formally prove

below, this counterintuitive result is a direct consequence of the geometry of the optimal secu-

rities. The concavity of debt implies that the liquidity supplier’s valuation for these securities

increases when she is faced with a reduction in uncertainty.

The example above is special in some dimensions. First, the optimal mechanism is invariant

in θ. As we prove below in Theorem 3, the set of optimal face values is nondecreasing in the

accuracy of the liquidity supplier’s private signal. This provides a countervailing effect that

reduces the issuer’s expected revenue. Second, in the example, the issuer is able to extract

all the rents associated with debt securities. This property need not extend to more general

environments. We show that the informational rents have the single crossing property in the

accuracy of the liquidity supplier’s signal. This provides another countervailing effect that
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reduces the issuer’s revenue. In Example 1, neither of the two effects are present, which leads

to the surprising result that the issuer benefits and raises more funds when she faces a more

informed liquidity supplier.

4.1 [Lehmann [1988]] Information Accuracy

Suppose that conditional on the liquidity supplier drawing a private type ω = ω, the distri-

bution of the asset’s future cashflows y is drawn according to the kernel function F (y|ω) =

Pr {y ≤ y|ω = ω}. Following the tradition in the information literature, we refer to F (y|ω)

as an experiment. The experiment F and the prior distribution of ω, Φ, uniquely determine

the joint distribution

FΦ (y, ω) ≡
∫

Ω×R+

F (y|ω̃) 1 {ω̃ ≤ ω}Φ (dω̃) .

Throughout the analysis, we maintain the assumption that the distribution of FΦ (y, ω)

admits a density fΦ (y, ω), which satisfies MLRP. We refer to the induced marginal distribution

of the asset’s cashflows as Ψ (F,Φ) = margyFΦ ∈ ∆R+.

Below, we formally introduce a natural ordering to rank the amount of information em-

bedded in the liquidity supplier’s private type, ω, about the asset cashflows, y.

Definition 4. [Lehmann [1988]] Consider two random variables y′′ and y′ representing the

asset’s future cashflows, and let F ′′ (y|ω) and F ′ (y|ω) be the experiments associated with

them, respectively. We say that F ′′ is more accurate about ω than F ′, which we write as

F ′′ �Lehmann F
′ if for any y,19

F ′′−1 (F ′ (y|ω) |ω) is nondecreasing in ω.

Accuracy has been used to perform monotone comparative statics in the context of auctions

(Persico [2000] and Ganuza and Penalva [2010]), moral hazard (Kim [1995], Jewitt [2007]),

and career concerns (Dewatripont et al. [1999]).

19An alternative and perhaps more fundamental definition states that any decision-maker with a (Bernoulli)
utility function supermodular in the action and the underlying variable ω would prefer the information obtained
by learning y′ over the information obtained from y. See Jewitt [2007] and Quah and Strulovici [2009] for a
detailed discussion.
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4.2 Accuracy, Supermodularity, and Informativeness

We argue that accuracy (Lehmann [1988]) is an appealing notion of informativeness in our

environment for three reasons. First, provided that signals satisfy MLRP, accuracy is less re-

strictive than the Blackwell order in that it compares more signal structures.20 Furthermore,

as the next proposition shows, accuracy implies the standard notion of informativeness usually

assumed in the information design literature. Second, the concept of accuracy is tightly re-

lated to the idea of interdependence. When an experiment is more accurate, the comovement

between fundamentals and signals becomes stronger. Finally, the Lehmann order compares

experiments (i.e., conditional distributions) as opposed to comparing joint distributions. Intu-

itively, we want to change the quality of the liquidity supplier’s information without changing

the distribution of liquidity supplier types Φ or the distribution of the asset’s future cash-

flows Ψ. This is natural since changing the marginal Φ changes the relative likelihood of

facing different liquidity supplier types, which directly changes the amount of informational

rents that must be provided to the different liquidity supplier types. In turn, changing the

marginal Ψ changes the quality of the underlying asset and hence the liquidity supplier’s val-

uation for the securities offered. In what follows, then, we fix a given marginal distribution,

Φ, and we study the effect of increasing the accuracy of experiment F , while keeping the

marginal distribution of cashflows Ψ (F,Φ) = margyFΦ unchanged. The results described in

our next proposition guarantee that as we increase the accuracy of the experiment F , we do

not change the primitives of the issuer’s problem beyond the effect induced via the accuracy

of the liquidity supplier’s information making the comparative statics exercise coherent.

Our next result summarizes the appeal of using accuracy as the appropriate ordering to

compare the informativeness of different signals structures.

Proposition 2. Consider an arbitrary marginal distribution Φ ∈ ∆Ω, and suppose that

F ′′ �Lehmann F ′. Let F′′Φ and F′Φ be the induced joint distributions and assume that Ψ =

margyF′′Φ = margyF′Φ. Then,

(i) For any supermodular function v (ω, y),∫
R+×Ω

v (y, ω) dF′′Φ (y, ω) ≥
∫
R+×Ω

v (y, ω) dF′Φ (y, ω) .

In other words, F′′Φ dominates F′Φ in the supermodular order, F′′Φ �spm F′Φ.

20Indeed, provided that signals satisfy the MLRP, any two signals ordered according to Blackwell are also
ordered according to Lehmann [1988]. When the state space is binary, both notions of informativeness coincide
(see, e.g., Jewitt [2007]). More recently, Kim [2022] showed that Lehmann domination is closely related to the
concept of quasigarbling, a generalization of information garbling.
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(ii) CovF′′Φ (ω,y) ≥ CovF′Φ (ω,y).

(iii) Let z′′ ≡ EF′′Φ
(y|ω) and z′ ≡ EF′Φ

(y|ω), and denote by H ′′ and H ′ the respective

cumulative distribution functions of z′′ and z′, respectively. Then, for any convex function

γ : R+ → R, ∫
γ (z) dH ′′ (z) ≥

∫
γ (z) dH ′ (z) .

In other words, z′′ dominates z′ in the convex order, EF′′Φ
(y|ω) �cvx EF′Φ

(y|ω).

Proposition 2 shows the appeal of using accuracy to rank the informativeness of different

experiments. First, as an intermediate step, we recall that the Lehmann order, which com-

pares experiments, is tightly related to the supermodular order, which in turn compares joint

distributions. As explained by Meyer and Strulovici [2012], the fact that F′′Φ �spm F′Φ implies

that the degree of interdependence of (y,ω) is larger under F′′Φ than under F′Φ. This means

that we can interpret increments in accuracy as changes in the joint distribution of (y,ω),

which increase their degree of correlation while keeping their marginal distributions constant.

Furthermore, as we show below, this property allows us to compare how the liquidity supplier’s

valuation for debt securities changes as we increase the accuracy his private signal.

Finally, Proposition 2 also shows that the concept of accuracy is closely related to the clas-

sical notion of informativeness in the information economics literature. Claim (iii) shows that

when F ′′ is more accurate than F ′, then the random variable capturing the posterior estimates

induced by learning the realization of ω under F ′′, EF′′Φ
(y|ω) is a mean-preserving spread of

the analogous random variable capturing the posterior estimates under F ′, EF′Φ
(y|ω). In

other words, when the accuracy of the experiment improves, the liquidity supplier’s private

information becomes more informative in the classical sense about the asset’s future cashflows.

4.3 Information and Monotone Comparative Statics

In this section, we leverage the geometry of the optimal mechanism, i.e., the remarkable feature

that it consists of a menu of debt contracts, to show that as the liquidity supplier’s private

information becomes more accurate, (i) the liquidity supplier’s valuation for any debt security

increases, and (ii) the issuer sells smaller securities, i.e., debt contracts with smaller face

values. To the best of our knowledge, this is the first paper to perform monotone comparative

statics using information orders in the context of security design.

Our first result formalizes the novel effect described above, according to which increasing

the accuracy of the experiment, F , implies that from the point of view of the liquidity supplier,

the distribution of cashflows becomes less risky. The concavity of debt on the asset’s future

cashflows then implies that, fixing a given security, s (y) = min {y,D}, more accurate infor-
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mation improves the liquidity supplier’s valuation for that security and hence the gains from

trade. In other words, despite the risk neutrality of the liquidity supplier’s utility function,

the geometry of debt implies that increasing the accuracy of his private signal has an effect

similar to a reduction in uncertainty for a risk-averse agent.

Formally, we prove below that, fixing an arbitrary menu of debt contracts (with face values

monotonically ordered as implied by incentive compatibility), the gains from trade increase

as the liquidity supplier’s private signal becomes more accurate.

Proposition 3. Consider an arbitrary menu of debt contracts characterized by the set of

(monotone) face values {D (ω)}ω∈Ω. Suppose that F ′′ �Lehmann F
′; then, EF′′Φ

{min {y, D (ω)}} ≥
EF′Φ
{min {y, D (ω)}}.

The result is a direct consequence of property (i) in Proposition 2, above. Note that, for

any nonnegative, nondecreasing function D (·), the function

ψ (y, ω) ≡ min {y,D (ω)}

is supermodular in (y, ω). For any ω′′ > ω′, the monotonicity of D (·) implies that

ψ (y, ω′′)− ψ (y, ω′) = min {y,D (ω′′)} −min {y,D (ω′)}

is nondecreasing in y. The fact that accuracy implies the supermodular order (part (i) in

proposition (2)) implies that if F ′′ �Lehmann F
′, then∫

R+×Ω

min {y,D (ω)} dF′′Φ (y, ω) ≥
∫
R+×Ω

min {y,D (ω)} dF′Φ (y, ω) .

Therefore, for any arbitrary menu of debt contracts with face values characterized by D (·),
the liquidity supplier’s ex ante valuation for the menu of securities increases as his information

becomes more accurate.

Proposition 3 assumes a fixed menu of debt securities. However, as the accuracy of the

liquidity supplier’s private signal becomes more accurate, the issuer optimally responds by

changing the face values of the debt securities. Our next result shows that the issuer’s optimal

menu monotonically decreases as we increase the accuracy of the liquidity supplier’s signal.

Theorem 3. Suppose Assumptions (1) and (2) hold. If F ′′ �Lehmann F
′, then the respective op-

timal mechanisms under each experiment, characterized by the sets of face values {D′∗ (ω)}ω∈Ω

and {D′′∗ (ω)}ω∈Ω, satisfy D′∗ (ω) ≥ D′′∗ (ω), for all ω ∈ Ω.
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The formal proof is in the Appendix. We provide the intuition for the result here. Fix a

marginal distribution Φ and an experiment F . Consider increasing the face value character-

izing the contract designed for type ω, D (ω), by ε > 0 small. The effect of such a variation

on the issuer’s revenue is approximately given by

ε
∂

∂D (ω)
E (p (ω) ;F ) = εφ (ω) (1− F (D (ω) |ω))− ε (1− Φ (ω))

∂

∂ω
(1− F (D (ω) |ω)) . (4)

Indeed, with probability φ (ω), the issuer faces liquidity supplier ω and obtains the additional

revenue from increasing the contract D (ω) to D (ω) + ε and selling at the fair valuation

of type ω. The additional revenue is thus captured by ε · (1− F (D (ω) |ω)). In turn, to

prevent higher types ω̃ > ω from mimicking type ω, they need to be compensated with

additional informational rents. The type right next to type ω (type "ω + dω") observes a

differential increment of his utility from mimicking in ε · ∂
∂ω

(1− F (D (ω) |ω)). The issuer

needs to give up informational rent to all types above ω. Thus, the loss in revenue equates to

ε · (1− Φ (ω)) ∂
∂ω

(1−G (D (ω) |ω)).

The main theoretical insight of the proof is that because of the geometry of debt, the

marginal incentive to increase the face value of a debt security, captured by ∂
∂D(ω)

E (p (ω) ;F ),

has the single crossing property in the Lehmann order. That is, if for some experiment F ′, the

issuer does not have an incentive to increase D (ω) (i.e., ∂
∂D(ω)

E (p (ω) ;F ′) ≤ 0), then for any

F ′′ �Lehmann F
′, the issuer does not have incentives to raise D (ω) (i.e., ∂

∂D(ω)
E (p (ω) ;F ′′) ≤

0).

Put differently, when the experiment linking cashflows y and the liquidity supplier’s in-

formation ω becomes more accurate, informational rents become too expensive. To prevent

higher types from mimicking lower types, the optimal contracts designed for the latter must

be distorted to a larger extent. This means that for each liquidity supplier type ω, the face

value of the contract designed for him, D(ω), is weakly smaller when the accuracy of his signal

is higher.

4.4 Information, Efficiency, and Revenue

A natural conjecture about the consequences of Theorem 3 is that more information asym-

metry, as captured by a more accurate private signal, is detrimental to efficiency. Indeed,

as the liquidity supplier becomes more informed, the issuer sells smaller securities to reduce

informational rents. The liquidity supplier is the efficient holder of the asset’s future cashflows

(as she is more patient than the issuer); therefore, efficiency might be compromised. However,

as argued above in Proposition 3, there exists a novel effect associated with the geometry of
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the optimal securities. The overall effect is thus ambiguous and depends on the underlying

distributions Φ and experiment F .

To formally see this, consider the liquidity supplier’s ex ante expected payoff at the optimal

mechanism when the accuracy of the liquidity supplier’s signal is captured by experiment F .

That is,

E (min {y, D∗ (ω;F )}) =

∫
Ω

∫ ∞
0

min {y,D∗ (ω;F )} dF (y|ω) dΦ (ω)

=

∫
Ω

{∫ D∗(ω;F )

0

ydF (y|ω) +D∗ (ω;F ) (1− F (D∗ (ω;F ) |ω))

}
dΦ (ω)

=

∫
Ω

{∫ D∗(ω;F )

0

(1− F (y|ω)) dy

}
dΦ (ω) . (5)

Increasing the accuracy of experiment F has two effects. On the one hand, as implied by

Theorem 3, when F becomes more accurate, D∗ (ω;F ) decreases for all ω. This is the direct

effect of selling smaller securities, which reduces the gains from trade. However, increasing

the accuracy of F increases the liquidity supplier’s valuation for concave securities.

In general, the overall effect of increasing asymmetric information among the issuer and

the liquidity supplier has an ambiguous effect on the gains from trade.

Similarly, the effect of increasing the accuracy of the liquidity supplier’s private signal is

ambiguous in the expected revenue. Again, increasing accuracy leads the issuer to optimally

(a) sell smaller securities (Theorem 3) and (b), for a fixed security, to give up higher informa-

tional rents. However, the concavity of debt implies that (c) the liquidity supplier’s valuation

of the security increases.

Lemma 6. Let E (p∗ (ω;F )) be the issuer’s expected funds raised when the liquidity supplier’s

private information is parametrized by experiment F (with pdf f). Then,

E (p∗ (ω;F )) =

∫
Ω

∫ D∗(ω;F )

0

(1− F (y|ω))

{
1−

(
1− Φ (ω)

φ (ω)

) ∂
∂ω

(1− F (y|ω))

1− F (y|ω)

}
dydΦ (ω) .

(6)

Equation (6) summarizes all the effects described above. Effect (a) is captured by the

integration limit of the inner integral. For any ω, D∗ (ω;F ) decreases with a more informative
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experiment, together with the fact that21

(1− F (y|ω))

{
1−

(
1− Φ (ω)

φ (ω)

) ∂
∂ω

(1− F (y|ω))

1− F (y|ω)

}
≥ 0,∀y ∈ [0, D∗ (ω;F )] ,

jointly imply that the amount of funds raised decreases with informativeness. Effect (b), in

turn, is obtained from the fact that

1−
(

1− Φ (ω)

φ (ω)

) ∂
∂ω

(1− F (y|ω))

1− F (y|ω)

is strictly decreasing in the informativeness of F (see the arguments establishing Theorem 3).

Finally, the countervailing effect (c) is a consequence of the concavity of debt, which implies

that for any given menu of debt contracts with face values captured by D(·), the gains from

trade, i.e.,

E (min {y, D (ω)}) =

∫
Ω

{∫ D(ω)

0

(1− F (y|ω)) dy

}
dΦ (ω) ,

are monotone in the informativeness of F . As a result, the overall effect of the amount of

information on the funds raised is also ambiguous.

As suggested by Example 1, this ambiguous effect on both gains from trade and revenue

does not manifest in the classical screening problem wherein the issuer is constrained to

sell pure equity, a linear instrument on the asset’s cashflows. The new countervailing effect

materializes in our environment with flexible security design because of the geometry of the

optimal security.

We further note that this effect is quite different from previous results. First, it is distinct

from the celebrated linkage principle. (Milgrom and Weber [1982]), which arises in common

value auctions, and according to which the seller of the asset prefers to reduce the extent of

asymmetric information to minimize the winner’s curse. In our case, with a single liquidity

21To see this more clearly, let

ζ (y, ω) ≡ (1− F (y|ω))−
(

1− Φ (ω)

φ (ω)

)
∂

∂ω
(1− F (y|ω)) .

The definition of D∗ (ω;F ) implies that ζ (D∗ (ω;F ) , ω) = 0, for all ω ∈ Ω. Moreover,

∂

∂y
ζ (y, ω) = −f(y|ω) +

(
1− Φ (ω)

φ (ω)

)
∂

∂ω
f(y|ω).

< −f(y|ω)

(
1− 1− Φ (ω)

φ (ω)

∂
∂ωf(y|ω)

f(y|ω)

)
< 0, ∀y < D∗ (ω;F ) .
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supplier, the linkage principle does not apply. Further, Ottaviani and Prat [2001] discuss two

reasons why a seller screening a buyer has incentives to reduce the degree of asymmetric infor-

mation between them. First, contrary to our comparative statics exercise wherein we change

the quality of the liquidity supplier’s private signal, they assume that any information publicly

revealed to the buyer is also observed by the seller. This means that public announcements

dilute the informational advantage of the buyer, which helps the seller increase the revenue.

Second, in contrast to our assumption that prices are paid in period 1 and cannot be made

contingent on the cashflow realizations, their seller can contract on the information publicly

revealed. This last effect is reminiscent of the well-known result in Crémer and McLean [1988]

who show that a seller benefits from having access to a signal that correlates with the buyer’s

private information. Our result, in contrast, is a consequence of the geometry of the optimal

securities. We argue that accounting for this effect is crucial for welfare analysis and should

not be ignored when designing regulations.

Our next result provides a sufficient condition relating the marginal distribution Φ and

the accuracy of experiment F under which more accurate experiments lead to a lower amount

of funds raised.

Lemma 7. Suppose that for all y, the function

ζ (y, ω;F ) ≡ (1− Φ (ω)) (1− F (y|ω))

has increasing differences in ω and accuracy. Then, for any F ′′ �Lehmann F
′, E (p∗ (ω;F ′′)) ≤

E (p∗ (ω;F ′)).

From the derivation above, we know that

E (p∗ (ω;F )) =

∫
Ω

∫ D∗(ω;F )

0

{
1− F (y|ω)−

(
1− Φ (ω)

φ (ω)

)
∂

∂ω
(1− F (y|ω))

}
dydΦ (ω) .

=

∫
Ω

∫ D∗(ω;F )

0

− ∂

∂ω
ζ (y, ω;F ) dydω

Assuming that ζ (y, ω;F ) has increasing differences in ω and accuracy is equivalent to

stating that effect (b) dominates effect (c). When ζ (y, ω;F ) has this property, the amount of

funds raised E (p∗ (ω;F )) decreases with the accuracy of F .

Intuitively, for each type ω, − ∂
∂ω
∂ζ (y|ω, F ) represents the issuer’s marginal incentive to

increase the face value of type ω’s debt contract accounting for the informational rents that
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have to be given up to all types above ω. Indeed, from equation (4), we have

∂

∂D (ω)
E (p (ω) ;F ) = −∂ζ (y, ω;F )

∂ω
.

The increasing difference assumption then guarantees that as the liquidity supplier’s private

signal becomes more informative, the issuer’s virtual valuation (that is, gains from trade minus

informational rents) grows smaller, thereby reducing the issuer’s expected revenue. When this

is the case, facing a more informed liquidity supplier hurts the issuer’s ability to raise liquid

funds.

5 Conclusions

We study how the strategic choice of securities can help liquidity-constrained asset owners raise

liquid funds from informed investors. We show, perhaps counterintuitively, that exploiting the

information sensitivity of the securities within the menu is generally ineffective at screening the

liquidity suppliers’ private information and is dominated by simple menus of debt contracts.

We show that information-insensitive securities allow the issuer to minimize the liquidity

suppliers’ informational rents and therefore allow the former to raise larger amounts of funds.

Furthermore, our contribution is methodological. We show how, using the logic of a well-

designed replication argument and a suitable generalization of monotonicity, the standard tools

in the screening literature can be extended to the rich environment of all possible securities,

i.e., infinite-dimensional objects. Finally, we show that one of the advantages of our direct

mechanism approach vis-a-vis former results is to provide a characterization of the liquidity

supplier’s informational rents within the optimal mechanism, which allows us to perform

novel comparative statics exercises with respect to the primitives of the environment (e.g., the

extent of agents’ asymmetric information). We show that as the liquidity supplier becomes

more informed, the issuer optimally designs a menu of smaller contracts. Interestingly, the

overall effect on surplus and the agents’ payoff is ambiguous. Our results underscore the

fact that the geometry of the optimal securities is crucial for welfare analysis and should be

accounted for when designing financial regulation.

The results in this paper are worth extending in several directions. The analysis assumes a

single liquidity supplier. It would be interesting to generalize our direct mechanism approach

to the case with multiple bidders and provide a general characterization of the liquidity sup-

pliers’ informational rents in such a case.22

22DeMarzo et al. [2005] follow an indirect approach and find the optimal solution within a fairly large
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In our paper, we show how the optimal mechanism with securities change as we change

the liquidity supplier’s exogenous private information. It is reasonable to conjecture that in

practice, asset owners can manipulate the information asymmetry with respect to the liquidity

supplier. What is the optimal mechanism by which to sell securities when the issuer can design

both the security and the information structure? Inostroza and Tsoy [2022] make progress in

this direction and show that an issuer who can also design signal realizations prefers to sell

information sensitive securities.

Appendix A: Proofs Section 3 (Optimality of Debt Menus)

Proof of Proposition 1. To see (1), note that, for i, j ∈ {1, ..., N} with i < j,

UM (ωj;ωj) = Ej (uj (sj))− pj ≥ UM (ωi;ωj)

= Ej (uj (si))− pi
> Ei (ui (si))− pi.
≥ 0

where the first inequality follows from [ICj,i], the second inequality is implied by FOSD (in

turn implied by MLRP) and the monotonicity of un (x) in n, and the last inequality follows

from [IRi].

Next, let

ξM ≡ min
n∈{1,...,N}

UM (ωn;ωn) = UM (ω1;ω1) .

where the equality is a consequence of property (1). Next, define M̃ = {s̃n (·) , p̃n}Nn=1 as

follows. Let s̃n ≡ sn, and p̃n ≡ pn+ξM for all n ∈ {1, ..., N}. Increasing the prices by the same

amount for all types does not spoil incentive compatibility. Moreover, increasing the transfers

by ξM = UM (ω1;ω1) > 0 implies that individual rationality constraints are satisfied as well.

The new mechanism raises more funds than the original and therefore strictly dominates it.

Finally, to see (3), consider the mechanism M̂ = {ŝn (·) , p̂n}Nn=1 where ŝj ≡ sj and p̂j ≡ pj

for all j ∈ {1, ..., N − 1}, ŝN(y) ≡ sN(y) + ε (y − sN(y)) and p̂N ≡ pN + εϕNEN (y − sN (y)),

for an arbitrary ε ∈ (0, 1). Under the new mechanism M̂, the utility of type ωN remains

unchanged, whereas the utility of any other type ωj who chooses to report ωN is strictly

smaller than under M. In fact,

set of mechanisms. However, their solution, i.e., first-price auction in call-options, can be dominated with
nonstandard mechanisms.
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UM̂ (ωN ;ωj) = Ej (uj (ŝN))− p̂N
= Ej (uj (sN))− pN + ε(ϕjEj (y − sN (y))− ϕNEN (y − sN (y)))︸ ︷︷ ︸

<0

< UM (ωN ;ωj) ,

where the inequality obtains from (i) that y − sN(y) is monotone and (ii) [y|ω = ωN ] �MLRP

[y|ω = ωj]. Therefore, the new mechanism M̂ is feasible and is strictly preferred by the issuer

since
∑

i p̂iφi >
∑

i piφi. �

Proof of Theorem 1

We divide the proof of the theorem into 3 steps. Step 1 shows that when, for a given type

ωi, the security si is debt, then for any k > j > i, the local downward incentive constraints

[ICk,j] and [ICj,i] imply the global downward constraint [ICk,i]. Step 2 builds on this result to

show that, in this case, the incentive constraint [ICi+1,i] must necessarily bind at the optimal

mechanism. Step 3 finally proves that, starting from a mechanism where some of the securities

are not debt, one can construct an alternative mechanism where the nondebt securities are

changed by their payoff equivalent debt contract and that this does not compromise upward

incentive constraints while relaxing the binding downward incentive constraints.

Step 1. We show that any oriented mechanism, when for some i ∈ {1, ..., N − 2}, the

security si is debt, then for any k > j > i, the local downward incentive constraints [ICk,j]

and [ICj,i] imply the downward global constraint [ICk,i]. This means that global downward

constraints are redundant and can be ignored.

Proposition 4. [local constraints imply global constraints]Let M = {si, pi}Ni=1

be an oriented mechanism. Assume that, for some i < N , si = min {y,Di} for (λ−almost all)

y, with Di > 0. Suppose that, for any i, j, k ∈ {1, ..., N} with k > j > i, (i) [ICj,i], (ii) [ICk,j],

and (iii) [IRi] jointly hold; then, [ICk,i] must also hold.

Proof. That incentive constraint [ICj,i] holds implies that

Ej (uj (sj))− pj ≥ Ej (uj (si))− pi. (7)

Next, we show that

Ek (sj − si) ≥ Ej (sj − si) . (8)
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To see this, note first thatM is oriented only if Ej (si − sj) ≤ 0. Next, let γ ≥ 1 be implicitly

defined by

Ej (γsi − sj) = 0. (9)

That si is a debt contract, together with the fact that γ ≥ 1, imply that γsi − sj satisfies

SCFA. This last observation, together with the fact that [y|ω = ωk] �MLRP [y|ω = ωj], jointly

imply that

Ek (γsi − sj) ≤ 0. (10)

As a result, we conclude that

Ej (si − sj)− Ek (si − sj) = Ej (γsi − sj)︸ ︷︷ ︸
=0 from (9)

− Ek (γsi − sj)︸ ︷︷ ︸
≤0 from (10)

+ (γ − 1)× (Ek (si)− Ej (si))︸ ︷︷ ︸
≥0 from MLRP

≥ 0,

which proves the inequality in (8).

Combining inequalities (7) and (8), and using the fact that Ej (sj − si) ≥ 0 (by orienta-

tion), we then obtain that type ωk weakly prefers the contract designed for type ωj over the

one designed for type ωi. That is,

Ek (uk (sj))− pj ≥ Ek (uk (si))− pi. (11)

Finally, the fact that the local incentive constraint [ICk,j] is also satisfied implies that

Ek (uk (sk))− pk ≥ Ek (uk (sj))− pj. (12)

Combining (11) and (12), we thus conclude that type ωk weakly prefers his contract over the

one designed for type ωi. That is,

Ek (uk (sk))− pk ≥ Ek (uk (si))− pi,

and hence [ICk,i] is satisfied.

This completes the proof of Step 1. �

Step 2. We leverage on the result in Step 1 to show that, when si is a debt contract, then

it is without loss to restrict attention to mechanisms for which the local downward incentive
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constraints [ICi+1,i] bind.

Corollary 2. Consider any oriented mechanism M = {sn, pn}Nn=1 for which there exists

some j ∈ {1, ..., N − 2} such that (i) sj = min {y,Dj} for (λ−almost all) y, with Dj > 0, and

(ii) [ICj+1,j] does not bind. Then, M is strictly dominated by another feasible and oriented

mechanism for which [ICj+1,j] does bind.

Proof. Suppose by contradiction that there exists some j ∈ {1, ..., N − 2} such that sj =

min {y,Dj} for (λ−almost all) y, with Dj > 0, for which [ICj+1,j] is satisfied with slackness.

The steps establishing proposition 4 then imply that, for any k, i with k ≥ j + 1 > i, [ICk,i] is

also slack. That is,

∀k, i with k ≥ j + 1 > i, UM (ωk;ωk)− UM (ωi;ωk) > 0. (13)

The issuer can then construct an alternative mechanism M+ =
{
s+
i , p

+
i

}N
i=1

that strictly

dominates M. In fact, for any l ∈ {1, ..., N}, let s+
l ≡ sl. For any h ≤ j, let p+

h ≡ ph, and for

any h > j, let p+
h ≡ ph + ε, where ε > 0 is small and chosen so that incentive constraints are

not spoiled. Note that, for any k′′, k′ ∈ {j + 1, ..., N}, with k′′ ≥ k′,

Ek′′
(
uk′′
(
s+
k′′

))
− p+

k′′ = Ek′′ (uk′′ (sk′′))− pk′′ ≥ Ek′ (uk′ (sk′))− pk′ = Ek′
(
uk′
(
s+
k′

))
− p+

k′ ,

and therefore [ICk′′,k′ ] trivially holds. That, for any i′′, i′ ∈ {1, ..., j}, [ICi′′,i′ ] holds, follows

from the facts that M is feasible and that, for any i < j,
(
s+
i , p

+
i

)
= (si, pi). Finally, that

under M+, for any k, i with k ≥ j + 1 > i, [ICk,i] holds for any

ε ∈
(

0, min
k,i:k≥j+1>i

(UM (ωk;ωk)− UM (ωi;ωk))

)
follows from the observation in (13).

This completes the proof of Step 2. �

Step 3. We finally show that for any oriented mechanismM, if we let i+ 1 ≤ N be the

smallest type for whom his security si+1 is not debt, we can improve upon the issuer’s payoff

by swapping security si+1 for the payoff-equivalent (according to ωi+1’s beliefs) debt contract

sDi+1 without spoiling upward incentive constraints [ICh,i+1], for h ≤ i.

First, we prove an intermediate result.

Proposition 5. [Pooling]Let M = {si, pi}Ni=1 be a feasible mechanism. Assume that, for

some i < N , si = min {y,Di} with Di > 0, for (λ−almost all) y. Suppose that, for some
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j > i, [ICi,j] and [ICj,i] are both binding. If si (y) 6= sj (y) over a set with positive λ-measure,

then there exists another mechanism M̂ = {ŝi, p̂i}Ni=1 with ŝi = ŝj that strictly dominates M.

Proof. That [ICi,j] and [ICj,i] are both binding implies that

ϕiEi (si − sj) = pi − pj = ϕjEj (si − sj) . (14)

Assume next that si 6= sj over a set with positive λ-measure. We show that, necessarily,

Ei (si − sj) > 0. Suppose by contradiction that Ei (si − sj) ≤ 0. This implies that there must

exist γ ≥ 1 so that

Ei (γsi − sj) = 0. (15)

The fact that si is a debt contract, together with the assumption that si 6= sj, then jointly

imply that γsi − sj satisfies SSCFA, and therefore, lemma 1 implies that

Ej (γsi − sj) < 0. (16)

Thus,

Ei (si − sj)− Ej (si − sj) = Ei (γsi − sj)︸ ︷︷ ︸
=0 from (15)

− Ej (γsi − sj)︸ ︷︷ ︸
<0 from (16)

+ (γ − 1)× (Ej (si)− Ei (si))︸ ︷︷ ︸
>0 from MLRP

> 0,

which contradicts equation (14). Thus, Ei (si − sj) > 0.

Assume then that si 6= sj over a set with positive λ-measure and that Ei (si − sj) > 0.

Equation (14) then implies that (a) Ej (uj (si − sj)) > 0 and (b) pi > pj. This, in turn, means

that there exists an alternative mechanism, M̂, identical to M except for the fact that it

offers contract (ŝj, p̂j) = (si, pi) to type ωj. In other words, M̂ deletes the contract offered

to type ωj under the mechanism M and replaces it by the debt contract offered to type ωi.

Clearly, the new mechanism M̂ is still feasible as the contract (si, pi) was already available

under M. Moreover, M̂ strictly dominates M as p̂j = pi > pj and p̂l = pl for any l 6= j.

Next, consider a candidate oriented mechanismM = {sn, pn}Nn=1. Proposition 1 and Lem-

mas 2 - 4 jointly imply that it is without loss of optimality to restrict attention to mechanisms

satisfying (A) s1 = min {y,D1} for (λ−almost all) y; (B) sN = y for (λ−almost all) y ; (C)

p1 = E1 (s1) ; (D) for any j, k with j < k, Ek (sk − sj) ≥ 0 (lemma 3). Assume further

35



that there exists i ≥ 1, so that (E) for any h ≤ i, sh = min {y,Dh} for (λ−almost all)

y, and, by means of corollary (2, that (F) for any h ≤ i, [ICh+1,h] binds. Finally suppose

that si+1 is not a debt contract. We show that we can construct a new oriented mechanism

M̃ ≡ {s̃h, p̃h} that strictly dominates M̃. In fact, for any h 6= i + 1, let (s̃h, p̃h) ≡ (sh, ph),

and let s̃i+1 ≡ min {y,Di+1} where Di+1 is such that Ei+1 (s̃i+1 − si+1) = 0 and p̃i+1 ≡ pi+1.

Note that the fact that, under M, [ICi+1,i] binds implies that

p̃i+1 = pi+1 = Ei+1 (ui+1 (si+1)− ui+1 (si)) + pi = Ei+1 (ui+1 (s̃i+1)− ui+1 (s̃i)) + p̃i. (17)

Claim 1. Under the new mechanism M̃, [IRi+1] and [ICi+1,h] hold for any h 6= i+ 1.

Proof. The proof follows from noting that, by construction, for any h 6= i + 1, (s̃h, p̃h) =

(sh, ph) and the fact that the new contract of type ωi+1 makes him indifferent between the

new and the former contract. That is, UM̃ (ωi+1;ωi+1) = UM (ωi+1;ωi+1). q.e.d.

Claim 2. Under the new mechanism M̃, for any h ≤ i, [ICh,i+1] holds.

Proof. Property (D) above, together with the construction of M̃ and the fact that M is

oriented, jointly imply that, for any h ≤ i,

Ei+1 (s̃i+1 − s̃h) = Ei+1 (si+1 − sh) ≥ 0,

and therefore thatDi+1 ≥ Dh. This observation, in turn, implies that s̃i+1−s̃h is nondecreasing

and, as a result, for any h ≤ i,

Eh (uh (s̃i+1)− uh (s̃h)) = Eh (uh (s̃i+1)− uh (s̃i)) + Eh (uh (s̃i)− uh (s̃h))

≤ Ei+1 (ui+1 (s̃i+1)− ui+1 (s̃i)) + Eh (uh (s̃i)− uh (s̃h))

= p̃i+1 − p̃i + Eh (uh (s̃i)− uh (s̃h))

≤ p̃i+1 − p̃i + p̃i − p̃h
= p̃i+1 − p̃h

where the first inequality follows from MLRP, the second equality follows from using the result

in equation (17), the second inequality obtains from the fact that, for any h ≤ i, [ICh,i] holds,

which is inherited from the feasibility of M. As a result, under the mechanism M̃, for any

h ≤ i, [ICh,i+1] holds. q.e.d.

Claim 3. Under the new mechanism M̃, for any k > i+ 1, [ICk,i+1] holds with slackness.

The construction of M̃, together with the fact that si+1− s̃i+1 satisfies SSCFB (recall that
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s̃i+1 is a debt contract), jointly imply that by virtue of lemma 1, for any k > i+ 1,

Ek (si+1 − s̃i+1) > 0. (18)

The fact that, under M, [ICk,i+1] holds thus implies that

Ek (uk (s̃k))− p̃k = Ek (uk (sk))− pk,

≥ Ek (uk (si+1))− pi+1

> Ek (uk (s̃i+1))− p̃i+1,

which proves the claim. q.e.d.

Claims (1)-(3) then jointly imply that M̃ is feasible. Furthermore, Claim (3) together

with the steps establishing Lemma 4 jointly imply that, for any k, h with k > i+1 ≥ h, [ICk,h]

does not bind. That is,

∀k, h with k > i+ 1 ≥ h, UM̃ (ωk;ωk)− UM̃ (ωh;ωk) > 0. (19)

This observation implies that, for any k > i + 1, we can increase the transfers p̃k and still

respect feasibility.

Rigorously, we can construct yet another feasible mechanism M+ = {s+
n , p

+
n }

N
i=1 that

strictly dominates M̃. In fact, for any n ∈ {1, ..., N}, let s+
n ≡ sn, for any h ≤ i + 1, let

p+
h ≡ p̃h, and for any h > i+ 1, let p+

h ≡ p̃h + ε, where ε > 0 is small and chosen so that

ε ∈
(

0, min
k,h:k>i+1≥h

(UM (ωk;ωk)− UM (ωi;ωk))

)
Note that, for any k′′, k′ ∈ {i+ 2, ..., N},

Ek′′
(
uk′′
(
s+
k′′

))
− p+

k′′ = Ek′′ (uk′′ (sk′′))− pk′′ ≥ Ek′ (uk′ (sk′))− pk′ = Ek′
(
uk′
(
s+
k′

))
− p+

k′ ,

and therefore [ICk′′,k′ ] trivially holds. That, for any h′′, h′ ∈ {1, ..., i+ 1}, [ICh′′,h′ ] holds,

follows from the fact that M̃ is feasible and the fact that, for any h ≤ i+1,
(
s+
h , p

+
h

)
= (sh, ph).

Finally, that underM+, for any k, h with k > i+ 1 > h, [ICk,h] holds, follows from the choice

of ε and the observation in (13). This completes Step 3 and formally proves the Theorem. �

Proof of Lemma 4.

37



The result in theorem 1 implies that we can restrict attention to mechanisms with only debt

securities, that is, mechanisms satisfying that, for any n, sn = min {y,Dn} for all y, where

Dn > 0 and is increasing in n, and DN = +∞. Moreover, Step 2 in the proof theorem 1

implies that we can restrict attention, without loss, to mechanisms satisfying that, for any

j > 1, [ICj,j−1] binds. Finally, because of proposition 1, we assume that p1 = E (min {y,D1}).
Together, these properties imply that

Ej (uj (min {y,Dj}))− pj = Ej (uj (min {y,Dj−1}))− pj−1,

and therefore, for any j > 1,

pj = Ej (uj (min {y,Dj}))− Ej (uj (min {y,Dj−1})) + pj−1

=

(
j∑

n>1

En (un (min {y,Dn}))− En (un (min {y,Dn−1}))

)
+ E1 (u1 (min {y,D1})) .

This further implies that the amount of funds raised is given by23

N∑
j=1

pnφn = E1 (u1 (min {y,D1})) +
∑
j>1

φj

j∑
n>1

En (un (min {y,Dn}))− En (un (min {y,Dn−1}))

= E1 (u1 (min {y,D1})) +

N∑
n>1

 N∑
j=n

φj

En (un (min {y,Dn}))− En (un (min {y,Dn−1})) .

=

N∑
n=1

φn

∫ ∞
0

un (min {y,Dn})
(

1−
(

1− Φn

φn

)(
f (y|ωn+1)− f (y|ωn)

f (y|ωn)

))
dF (y|ωn) .

As a result, the issuer’s problem reduces to find an increasing sequence (Dn)Nn=1 to maximize

N∑
n=1

pnφn =
N∑
n=1

φn

∫ ∞
0

un (min {y,Dn})
(

1−
(

1− Φn

φn

)(
f (y|ωn+1)− f (y|ωn)

f (y|ωn)

))
dF (y|ωn) ,

as claimed.�

Proof of Lemma 5.

Assumptions 1 and 2 jointly imply that, for each n, the pointwise-optimal solution of the

problem (that is, disregarding the monotonicity condition in (2)), given by

23In the formula, with abuse notation and let DN = +∞ (claim 3 in Proposition 1).
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D∗n ≡ arg max
D

∫
R+

un (min {y,D}) (1−R (y, ωn)) dF (y|ωn) , (20)

is monotone in n. This follows from noting that under assumptions 1 and 2, the objective is

supermodular (y, ωn). Indeed, note that the fact that un (x) = ϕnx+ νn, implies that

∂

∂D

∫ ∞
0

un (min {y,D}) (1−R (y, ωn)) dF (y|ωn) = ϕn

∫ ∞
D

(1−R (y, ωn)) dF (y|ωn) ,

= ϕn

(
1− F (y|ωn)−

∫ ∞
D

R (y, ωn) dF (y|ωn)

)
When assumptions (1) and (2) hold, the last expression becomes monotone in ωn. Hence, the

pointwise-optimal solution D∗n is necessarily nondecreasing (Milgrom and Shannon [1994]).

This rules out the possibility of bunching.�

Appendix B: Proof of Theorem 2 (Continuum of types)

First note that, because E
{
y

∂f(y|ω)
∂ω

f(y|ω)

}
<∞, for any feasible mechanismM = {s [ω] , p (ω)}ω∈Ω,

there exists an integrable function b : Ω→ R, satisfying∣∣∣∣ ∂∂ωUM (ω̃, ω)

∣∣∣∣ =

∣∣∣∣∣E
{
s (y|ω̃)

∂f(y|ω)
∂ω

f (y|ω)

}∣∣∣∣∣ ≤ b (ω) , ∀ω̃, ω.

The arguments in Milgrom and Segal [2002] then imply that, because UM (ω̂;ω) is absolutely

continuous in ω, UM (ω, ω) is absolutely continuous. Furthermore,

UM (ω, ω) =

∫ ω

ω

(∫ ∞
0

s(y|ω̃)
∂

∂ω
f(y|ω̃)dy

)
dω̃, for Φ− almost all ω.

This means that we can rewrite the issuer’s payoff as

E (p (ω)) =

∫
Ω

{∫ ∞
0

s(y|ω)dF (y|ω)−
(∫ ω

ω

∫ ∞
0

s(y|ω̃)
∂

∂ω
f(y|ω̃)dy

)
dω̃

}
dΦ (ω)− UM (ω, ω)

=

∫
Ω

∫ ∞
0

(
s(y|ω)

(
1−

(
1− Φ (ω)

φ (ω)

) ∂
∂ω
f(y|ω)

f(y|ω)

))
dF (y|ω)dΦ (ω)− UM (ω, ω) ,

where the second equality obtains from integration by parts.
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Proposition 6. Consider an arbitrary mechanism M = {s(·|ω), p (ω)}ω∈Ω satisfying(∫ ∞
0

(s(y|ω)− s(y|ω̂))
∂

∂ω
f(y|ω)dy

)
· (ω − ω̂) ≥ 0, ∀ω, ω̂ ∈ Ω. (21)

Then, M is incentive compatible.

Proof. Consider an arbitrary mechanism M = {s(·|ω), p (ω)}ω∈Ω satisfying (21). For any

ω, ω̂ ∈ Ω, let

Q (ω̂, ω) ≡ UM (ω, ω)− UM (ω̂, ω) .

Note that, for any ω̂, Q (ω̂, ·) is absolutely continuous. Moreover, Q (ω̂, ω̂) = 0 for all ω̂ ∈ Ω.

This implies that, for any ω, ω̂ ∈ Ω,

Q (ω̂, ω) = Q (ω̂, ω)−Q (ω̂, ω̂)

=

∫ ω

ω̂

∂Q (ω̂, z)

∂ω
dz

=

∫ ω

ω̂

{
d

dω
UM (ω, ω)

∣∣∣∣
ω=z

− ∂

∂ω
UM (ω̂, ω)

∣∣∣∣
ω=z

}
dz

=

∫ ω

ω̂

{∫
R+

(s(y|z)− s(y|ω̂))
∂

∂ω
f(y|z)dy

}
dz

≥ 0,

where the inequality follows from (21). We thus conclude that UM (ω, ω) ≥ UM (ω̂, ω), for

any ω, ω̂ ∈ Ω.

The strategy of the proof consists in ignoring constraint (21) and finding, for each ω, the

security s∗(·|ω) which pointwises maximize E (p (ω)). We then show that, when (1) and (2)

hold, the securities {s∗(·|ω)}ω∈Ω satisfy constraint (21).

Lemma 8. Any security s(·|ω) ∈ S is weakly dominated by a debt contract.

Proof. For any ω, let

k(y, ω) ≡ 1−
(

1− Φ(ω)

φ(ω)

) ∂
∂ω
f (y|ω)

f (y|ω)
.

We want to maximize

E (p (ω)) =

∫
Ω

∫ ∞
0

s(y|ω)k(y, ω)dF (y|ω)dΦ (ω) .
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The fact that f (y|ω) satisfies MLRP implies that k(·, ω) satisfies the SSCFA property. Let

y0(ω) be the unique solution to k(y0(ω), ω) = 0. From the definition of D∗(ω) in 3, we must

necessarily have that y0(ω) > D∗(ω), for all ω ∈ Ω. The constraint that all securities in S are

nondecreasing, together with the fact that k(y, ω) < 0 for all y < y0 (ω), jointly imply that,

any security s̃(·|ω) in S which fails to be constant to the right of y0(ω) is dominated by the

security

s#(y|ω) ≡ s̃(y|ω)1{y ≤ y0(ω)}+ s̃(y0(ω)|ω)1{y > y0(ω)}.

Finally, the fact that k(y|ω) > 0 for all y < y0 (ω) implies that any security s̄(y|ω) ∈ S is

weakly dominated by the security

s##(y|ω) = min {y, s̄(y0(ω)} · 1{y ≤ s̄(y0(ω)|ω)}+ s̄(y|ω)1{y > s̄(y0(ω)|ω)}.

This proves the lemma.�

Lemma 8 implies that, for any ω, debt securities pointwise maximize E (p (ω)). The

designer then chooses {D (ω)}ω∈Ω to maximize

E (p (ω)) =

∫
Ω

{∫ D(ω)

0

yk(y, ω)dF (y|ω) +D (ω)

∫ ∞
D(ω)

k(y, ω)dF (y|ω)

}
dΦ (ω) .

Note that when (1) and (2) hold, the function

χ (ω,D (ω)) ≡
∫ D(ω)

0

yk(y, ω)dF (y|ω) +D (ω)

∫ ∞
D(ω)

k(y, ω)dF (y|ω)

is supermodular. Indeed,

∂2

∂ω∂D (ω)
χ (ω,D (ω)) =

∂

∂ω

∫ ∞
D(ω)

k(y, ω)dF (y|ω)

=
∂

∂ω

{
1− F (D (ω) |ω)−

(
1− Φ(ω)

φ(ω)

)
∂

∂ω
(1− F (D (ω) |ω))

}
=

∂

∂ω
(1− F (D (ω) |ω))︸ ︷︷ ︸

>0 (FOSD)

− ∂

∂ω

(
1− Φ(ω)

φ(ω)

)
︸ ︷︷ ︸
<0 (Assumption1)

· ∂
∂ω

(1− F (D (ω) |ω))︸ ︷︷ ︸
>0 (FOSD)

−
(

1− Φ(ω)

φ(ω)

)
· ∂

2

∂ω2
(1− F (D (ω) |ω))︸ ︷︷ ︸
<0 (Assumption2)

> 0.
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Topkis Theorem then implies that the value of D (ω) that maximizes (pointwise) χ (ω,D (ω)),

D∗ (ω), must be increasing in ω. This further implies that the constraint (21) is satisfied, and

therefore the set of pointwise optimal secuirities is feasible.

This completes the proof of the Theorem. �

Appendix C: Additional Proofs

Proof of Example 1. We start by showing that θ orders the experiments in the Lehmann

sense.

Claim 1. For any θ′′ > θ′, F θ′′ �Lehmann F
θ′ .

Proof. For any θ ∈ [0, 1], let F θ
ω

(
ω|yθ > z

)
≡ P

{
ω ≤ ω||yθ > z

}
. Following Theorem 1

in Athey and Levin [2018], it is enough to prove that, for any u : [0, 1]→ R satisfying SCFB,∫ 1

0

u (ω) dF θ′

ω

(
ω|yθ′ > z

)
≥ 0⇒

∫ 1

0

u (ω) dF θ′′

ω

(
ω|yθ′′ > z

)
≥ 0. (22)

First, note that, for any θ ∈ [0, 1], and any z ∈ [0, 1],

F θ
ω

(
ω|yθ > z

)
=

P
{
yθ > z|ω ≤ ω

}
ω∫ 1

0
(1− F θ (z|ω̃)) dω̃

=
ω
∫ ω

0

(
1− F θ (z|ω̃)

)
dω̃∫ 1

0
(1− F θ (z|ω̃)) dω̃

=
ω
(
ω −

∫ ω
0

(θ · 1 {ω̃ ≤ z}+ (1− θ) z) dω̃
)

1−
∫ 1

0
(θ · 1 {ω̃ ≤ z}+ (1− θ) z) dω̃

=
ω
(
ω − (1− θ) zω −

∫ ω
0

(θ · 1 {ω̃ ≤ z}) dω̃
)

1− z

=
ω (ω − θmin {ω, z} − (1− θ) zω)

1− z

=

ω2 (1− θ) if ω < z

ω(ω−(1−θ)zω−θz)
1−z if ω ≥ z

This then implies that, for any ω 6= z,

f θω
(
ω|yθ > z

)
=

2ω (1− θ) if ω < z

2ω(1−(1−θ)z)−θz
1−z if ω > z.
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We further note that F θ
ω

(
ω|yθ > z

)
is continuous at ω = z and hence absolutely continuous

over [0, 1].

Finally, we note that

d
dω
f θω
(
ω|yθ > z

)
f θω (ω|yθ > z)

=

 1
ω

if ω < z

2(1−(1−θ)z)
2ω(1−(1−θ)z)−θz if ω > z

is nondecreasing in θ for any ω ∈ [0, 1). This implies that the density f θω
(
ω|yθ > z

)
is log-

supermodular in (θ, ω). Lemma 1 then implies that for any u : [0, 1] → R satisfying SCFB,

(22) is satisfied. This proves the claim. q.e.d.

Claim 2. Suppose the issuer is restricted to use linear securities,

s ∈ SE ≡ {s ∈ S : ∃α > 0, s (y) = αy, ∀y ∈ [0, 1]} .

Then, the (restricted) optimal mechanism is characterized by

α∗θ (ω) = 1

{
ω ≥ ω∗θ ≡ max

{
3θ − 1

4θ
, 0

}}
.

Proof. We consider mechanisms of the form Mθ
E =

{
sθE [ω] , pθE (ω)

}
ω∈[0,1]

, where for all

ω ∈ [0, 1], sθE (y|ω) = αθ (ω) y and pθE (ω) ∈ R. Note that for any ω ∈ [0, 1],

E
{
yθ|ω = ω

}
= θω +

1− θ
2︸ ︷︷ ︸

≡hθ(ω)

.

Furthermore, hθ (ω) = E
{
yθ|ω

}
∼ U

[
1−θ

2
, 1+θ

2

]
.

Next, for any ω, ω̃ ∈ [0, 1] let

UMθ
E

(ω̃;ω) = αθ (ω̃)hθ (ω)− pθE (ω̃)

be the liquidity supplier’s payoff when his true type is ω and he chooses to report ω̃. The

liquidity supplier’s IC constraint is then given by

UMθ
E

(ω;ω) = max
ω̃

UMθ
E

(ω̃;ω) .
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Using the envelope theorem, we obtain that

d

dω
UMθ

E
(ω;ω) = αθ (ω)

dhθ (ω)

dω
, ∀ω ∈ [0, 1] .

This further implies that

UMθ
E

(ω;ω) =

∫ ω

0

αθ (ω̃)
dhθ (ω̃)

dω
dω̃.

We conclude that

pθE (ω) = αθ (ω)hθ (ω)−
∫ ω

0

αθ (ω̃)
dhθ (ω̃)

dω
dω̃,

and therefore

E
{
pθE (ω)

}
=

∫ 1

0

{
αθ (ω)hθ (ω)−

∫ ω

0

αθ (ω̃)
dhθ (ω̃)

dω
dω̃

}
dω

=

∫ 1

0

{
αθ (ω)

(
hθ (ω)− (1− ω)

dhθ (ω)

dω

)}
dω

=

∫ 1

0

{
αθ (ω)

(
θω +

1− θ
2
− (1− ω) θ

)}
dω

=

∫ 1

0

{
αθ (ω)

(
θ

(
4ω − 3

2

)
+

1

2

)}
dω.

The issuer’s can then be written as

max
{αθ(ω)}

ω∈[0,1]

E
{
pθE (ω)

}
=

∫ 1

0

{
αθ (ω)

(
θ

(
4ω − 3

2

)
+

1

2

)}
dω

s.t. αθ (·) nondecreasing.

The issuer therefore optimally sets

αθ∗ (ω) = 1

{
ω ≥ ω∗θ ≡ max

{
3θ − 1

4θ
, 0

}}
,

as claimed. q.e.d.

Claim 3. The optimal mechanism is characterized as follows. For any θ ∈
(

1
7
, 1
)
, D∗θ (ω) = ω

for all ω ∈ [0, 1]. In turn, for any θ ∈
(
0, 1

7

)
, D∗θ (ω) = 1 for all ω ∈ [0, 1].

Proof. Fix any θ ∈ (0, 1) and let Mθ
∗ =

{
sθ ≡ min

{
y,Dθ

∗ (ω)
}
, pθ∗ (ω)

}
ω∈∈[0,1]

represent

the optimal menu of debt contracts (existence follows from the derivation below). Next, for
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any ω, ω̃ ∈ [0, 1] let

U θ
Mθ
∗

(ω̃;ω) ≡ E
{

min
{
y, Dθ

∗ (ω̃)
}
|ω
}
− pθ∗ (ω̃) .

= (1− θ)

(
Dθ
∗ (ω̃)− Dθ

∗ (ω̃)2

2

)
+ θmin

{
ω,Dθ

∗ (ω̃)
}
− pθ∗ (ω̃)

The fact that, downward incentive compatibility constraints bind implies that

d

dω
U θ
Mθ
∗

(ω;ω) = θ · 1 {D (ω) > ω} ,

and, therefore,

U θ
Mθ
∗

(ω;ω) = U θ
Mθ
∗

(0; 0) + θ

∫ ω

0

1 {D (ω̃) > ω̃} dω̃.

As a result, we obtain that the issuer’s revenue is given by

E
{
pθ (ω)

}
=

∫ 1

0

{
(1− θ)

(
Dθ
∗ (ω)− Dθ

∗ (ω)2

2

)
+ θ

(
min{ω,Dθ

∗ (ω)} −
∫ ω

0
1{Dθ

∗ (ω̃) > ω̃}dω̃
)}

dω

=

∫ 1

0

{
(1− θ)

(
Dθ
∗ (ω)− Dθ

∗ (ω)2

2

)
+ θmin{ω,Dθ

∗ (ω)} − θ (1− ω) 1{Dθ
∗ (ω) > ω}

}
dω.

Observe first that Dθ
∗ (ω)≥ω for all ω. Indeed, for any ω, the first term is strictly in-

creasing in Dθ
∗ (ω), whereas the second term is also strictly increasing for any Dθ

∗ (ω) < ω.

The last term, in contrast, is constant in Dθ
∗ (ω) everywhere except at ω where it suffers

a discontinuous jump. Any menu for which Dθ
∗ (ω) < ω over a set with positive measure

Ω− ≡
{
ω ∈ [0, 1] : Dθ

∗ (ω) < ω
}

can then be strictly dominated by slightly increasing the

value of Dθ
∗ (·) for ω ∈ (sup Ω− − ε, sup Ω−), for ε > 0 small.

Next, note that for any ω for which Dθ
∗ (ω) > ω, it is (pointwise) optimal to set Dθ

∗ (ω) = 1,

as both the second and third terms are invariants to increments in Dθ
∗ (ω), whereas the first

term is strictly increasing in Dθ
∗ (ω).

We conclude that the optimal mechanism must take the form

Dθ
∗ (ω)=

ω , for ω< x

1 , for ω≥ x

for some x ∈ [0, 1]. We thus optimize E
{
pθ∗ (ω)

}
by changing the value of x. For any such a
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menu, we have

E
{
pθ∗ (ω)

}
= (1− θ)

(∫ x

0

(
ω − ω2

2

)
dω +

1− x
2

)
+ θ

∫ 1

0

(ω − (1− ω) 1 {ω > x}) dω.

This further implies that

d

dx
E
{
pθ∗ (ω)

}
=

(1− x) ((1− θ)x− (1− 3θ))

1− θ
.

We finally note that, for any θ ∈
[

1
3
, 1
)
, d

dx
E
{
pθ∗ (ω)

}
≥ 0 for all x ∈ [0, 1]. We conclude that

in that case, it is optimal to choose x = 1, and therefore Dθ
∗ (ω) = ω for all ω ∈ [0, 1]. In

contrast, when θ < 1/3, E
{
pθ∗ (ω)

}
is quasi-convex in x and the optimal choice is found at

the corners. We thus need to compare the value of E
{
pθ∗ (ω)

}
at x = 0 and x = 1. We find

that

E
{
pθ∗ (ω)

}∣∣
x=1

= (1− θ)
(∫ 1

0

(
ω − ω2

2

)
dω

)
+ θ

∫ 1

0

ωdω

=
2 + θ

6
,

whereas

E
{
pθ (ω)

}∣∣
x=0

=
1− θ

2
+ θ

∫ 1

0

(2ω − 1) dω,

=
1− θ

2
.

We conclude that for any θ ∈
(

1
7
, 1

3

)
, it is optimal to set x = 1, and then Dθ

∗ (ω) = ω for all

ω ∈ [0, 1], whereas, for any θ ∈
(
0, 1

7

)
, it is optimal to set x = 0, and then Dθ

∗ (ω) = 1 for all

ω ∈ [0, 1]. q.e.d.

Proof of Proposition 2. Claim (i) follows from Proposition 2 in Jewitt [2007] which

states that, an experiment F ′′ Lehmann-dominates another experiment F ′, if and only if, for

any arbitrary prior distribution Φ, the induced joint distributions F′′Φ and F′Φ are ranked in

the positive quadrant dependence (PQD) order.24 For random vectors of dimension N = 2,

the PQD order, in turn, is equivalent to the supermodular order (Tchen [1980]). Claim (ii)

is standard (see, e.g., Müller and Stoyan [2002]) and follows from the fact that the dom-

ination in the supermodular order implies a higher degree of interdependence. Claim (iii)

24A distribution P ∈ ∆RN dominates Q ∈ ∆RN in the PQD order, if P (z1, ..., zN ) ≤ Q (z1, ..., zN ),
∀ (z1, ..., zN ) ∈ RN . See, e.g., Shaked and Shanthikumar [2007].
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follows from noting that, for any nondecreasing function u (·), and any z ∈ [0, 1], the function

I {Φ (ω) ≥ z}u (y) is supermodular in (y, ω) and, therefore,∫
R+

∫
Ω

I {Φ (ω) ≥ z}u (y) dF′′Φ (y, ω) ≥
∫
R+

∫
Ω

I {Φ (ω) ≥ z}u (y) dF′Φ (y, ω) .

This means that, for any nondecreasing function u (·),

EF′′Φ
(u (y) |Φ (ω) ≥ z) ≥ EF′Φ

(u (y) |Φ (ω) ≥ z) ,

and, therefore ,

F′′Φ (y|Φ (ω) ≥ z) �FOSD F′Φ (y|Φ (ω) ≥ z) , ∀z ∈ [0, 1].

In other words, F′′Φ dominates F′Φ in the Monotone Information Order for Nondecreasing

objective functions (MIO-ND) sense (see Athey and Levin [2018]). Theorem 1 in Ganuza and

Penalva [2010] then implies that EF′′Φ
(y|ω) �cvx EF′Φ

(y|ω). �

Proof of Lemma 6. Note that

E (p∗ (ω;F )) =

∫
Ω

{∫
R+

min {y,D∗ (ω;F )}

(
1−

(
1− Φ (ω)

φ (ω)

)( ∂f(y|ω)
∂ω

f (y|ω)

))
dF (y|ω)

}
dΦ (ω)

=

∫
Ω

{∫ D∗(ω;F )

0

y

(
1−

(
1− Φ (ω)

φ (ω)

)( ∂f(y|ω)
∂ω

f (y|ω)

))
dF (y|ω)

}
dΦ (ω)

=

∫
Ω

{∫ D∗(ω;F )

0

(F (D∗ (ω;F ) |ω)− F (y|ω)) dy

−
(

1− Φ (ω)

φ (ω)

)∫ D∗(ω;F )

0

∂

∂ω
(F (D∗ (ω;F ) |ω)− F (y|ω)) dy

}
dΦ (ω)

=

∫
Ω

∫ D∗(ω;F )

0

(1− F (y|ω))

{
1−

(
1− Φ (ω)

φ (ω)

) ∂
∂ω

(1− F (y|ω))

1− F (y|ω)

}
dydΦ (ω) ,

where the second equality obtains from the definition of D∗ (ω;F ), the third equality follows

from applying integration by parts, and the fourth equality obtains from rearranging terms

and using the definition of D∗ (ω;F ), which implies that

1− F (D∗ (ω;F ) |ω)−
(

1− Φ (ω)

φ (ω)

)
∂

∂ω
(1− F (D∗ (ω;F ) |ω)) = 0.

This completes the proof of the lemma. �
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Appendix D: Proof of Theorem 3

Proof. Let F̃ be an arbitrary experiment. Define ψF̃ [D] as the issuer’s revenue when she

proposes a menu of incentive compatible debt contracts characterized by {D (ω)}ω∈Ω. By

virtue of lemma 4, this means that

ψF̃ [D] =

∫
Ω

(∫
R+

u (min {y,D (ω)} , ω)

(
1−

(
1− Φ (ω)

φ (ω)

)( ∂
∂ω
f (y|ω)

f (y|ω)

))
dF (y|ω)

)
dΦ (ω) .

We show that the function ψF̃ [D] has the single crossing differences property in
(
D, F̃

)
.

That is, we show that, for any D′′ > D′, and any F ′′ �Lehmann F
′,

ψF ′ [D
′′]− ψF ′ [D′] ≤ 0⇒ ψF ′′ [D

′′]− ψF ′′ [D′] ≤ 0.

To see this, first note that

∂

∂D (ω)
ψF [D] = φ (ω) (1− F (D (ω) |ω))− (1− Φ (ω))

∂

∂ω
(1− F (D (ω) |ω))

= − ∂

∂ω
((1− Φ (ω)) (1− F (D (ω) |ω))) . (23)

Next, let y′′ (resp. y′) be the cashflows obtained from drawing ω from Φ and then applying

the experiment F ′′ (resp. F ′). Claim (1) in proposition 2 implies that the induced marginal

distributions of y′′ and y′ coincide and equals ΨΦ. The fact that F ′′ �Lehmann F
′ implies that,

for all z ∈ [0, 1], 25

∂
∂ω
f ′′ (ω|ΨΦ (y′′) ≥ z)

f ′′ (ω|ΨΦ (y′′) ≥ z)
≥

∂
∂ω
f ′ (ω|ΨΦ (y′) ≥ z)

f ′ (ω|ΨΦ (y′) ≥ z)
,

or, equivalently,

∂
∂ω
{Pr {ΨΦ (y′′) ≥ z|ω = ω}φ (ω)}
Pr {ΨΦ (y′′) ≥ z|ω = ω}φ (ω)

≥
∂
∂ω
{Pr {ΨΦ (y′) ≥ z|ω = ω}φ (ω)}
Pr {ΨΦ (y′) ≥ z|ω = ω}φ (ω)

.

Next, note that

∂
∂ω
{Pr {ΨΦ (y′′) ≥ z|ω = ω}φ (ω)}
Pr {ΨΦ (y′′) ≥ z|ω = ω}φ (ω)

=
∂
∂ω

(
1− F ′′

(
Ψ−1

Φ (z) |ω
))

1− F ′′
(
Ψ−1

Φ (z) |ω
) +

d
dω
φ (ω)

φ (ω)
,

25See corollary 1 in Athey and Levin [2018].
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and similarly,

∂
∂ω
{Pr {ΨΦ (y′) ≥ z|ω = ω}φ (ω)}
Pr {ΨΦ (y′) ≥ z|ω = ω}φ (ω)

=
∂
∂ω

(
1− F ′

(
Ψ−1

Φ (z) |ω
))

1− F ′
(
Ψ−1

Φ (z) |ω
) +

d
dω
φ (ω)

φ (ω)
,

Thus, we must have that, for all z ∈ [0, 1],

∂
∂ω

(
1− F ′′

(
Ψ−1

Φ (z) |ω
))

1− F ′′
(
Ψ−1

Φ (z) |ω
) ≥

∂
∂ω

(
1− F ′

(
Ψ−1

Φ (z) |ω
))

1− F ′
(
Ψ−1

Φ (z) |ω
) . (24)

Finally, suppose that for some mechanism characterized by D (·), ∂
∂D(ω)

ψF ′ [D] ≤ 0. From

(23), this is equivalent to having

φ (ω)

1− Φ (ω)
≤

∂
∂ω

(1− F ′ (D (ω) |ω))

1− F ′ (D (ω) |ω)
.

Inequality (24) then implies that necessarily ∂
∂D(ω)

ψF ′′ [D] ≤ 0. Further, note that, under

assumptions 1 and 2, for any experiment F̃ , the optimal mechanism D∗

(
·; F̃
)

is determined

by pointwise maximization. The result then follows from Milgrom and Shannon [1994].
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Teddy Mekonnen and René Leal Vizcáıno. Bayesian comparative statics. Theoretical Eco-

nomics, 17(1):219–251, 2022.

51



Margaret Meyer and Bruno Strulovici. Increasing interdependence of multivariate distribu-

tions. Journal of Economic Theory, 147(4):1460–1489, 2012.

Paul Milgrom and Ilya Segal. Envelope theorems for arbitrary choice sets. Econometrica, 70

(2):583–601, 2002.

Paul Milgrom and Chris Shannon. Monotone comparative statics. Econometrica: Journal of

the Econometric Society, pages 157–180, 1994.

Paul R Milgrom and Robert J Weber. A theory of auctions and competitive bidding. Econo-

metrica: Journal of the Econometric Society, pages 1089–1122, 1982.

Alfred Müller and Dietrich Stoyan. Comparison methods for stochastic models and risks,

volume 389. Wiley, 2002.

Michael Mussa and Sherwin Rosen. Monopoly and product quality. Journal of Economic

theory, 18(2):301–317, 1978.

Stewart C Myers and Nicholas S Majluf. Corporate financing and investment decisions when

firms have information that investors do not have. Journal of Financial Economics, 13(2):

187–221, 1984.

Roger B Myerson. Optimal auction design. Mathematics of operations research, 6(1):58–73,

1981.

David C Nachman and Thomas H Noe. Optimal design of securities under asymmetric infor-

mation. The Review of Financial Studies, 7(1):1–44, 1994.

Marco Ottaviani and Andrea Prat. The value of public information in monopoly. Economet-

rica, 69(6):1673–1683, 2001.

Nicola Persico. Information acquisition in auctions. Econometrica, 68(1):135–148, 2000.

John K-H Quah and Bruno Strulovici. Comparative statics, informativeness, and the interval

dominance order. Econometrica, 77(6):1949–1992, 2009.

Stephen A Ross. The determination of financial structure: the incentive-signalling approach.

The bell journal of economics, pages 23–40, 1977.

Moshe Shaked and J George Shanthikumar. Stochastic orders. Springer, 2007.

52



Morten Sorensen. How smart is smart money. a twosided matching model of venture capital.

The Journal of Finance, 62(6):2725–2762, 2007.

Martin Szydlowski. Optimal financing and disclosure. Management Science, 67(1):436–454,

2021.
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