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Abstract
What is the effect of Central Bank Digital Currency (CBDC) on finan-

cial stability? We answer this question by studying a model of finan-

cial intermediation with an endogenously determined probability of a

bank run and a remunerated CBDC that provides consumers with an

alternative to bank deposits. Consistent with concerns among policy-

makers, higher CBDC remuneration raises bank fragility by increasing

consumers’ withdrawal incentives. However, it also induces the bank

to offer more attractive deposit contracts in an effort to retain funding,

which reduces fragility. Accordingly, the overall relationship between

bank fragility and CBDC remuneration is U-shaped. We evaluate the

effects of different policy proposal aimed at reducing the financial sta-

bility implications of CBDC, and study extensions that allow for im-

perfect competition in deposit markets and bank risk-taking.
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1 Introduction

Central banks around the globe (Kosse and Mattei, 2022) are researching the

costs and benefits of central bank digital currency (CBDC). These efforts are

a response to the declining importance of cash as means of payment and the

challenges associated with the proliferation of new forms of private digital money

such as stablecoins. While CBDC aims to preserve the role of public money and

fend off threats to monetary sovereignty, some policy makers are concerned about

its potentially adverse effects on the financial system (Ahnert et al., 2022).

One issue that has received particular attention is the effect of CBDC on

financial stability (Bank for International Settlements, 2020). Its status as safe

asset with potentially positive remuneration—a key difference to physical cash—

could render it an attractive store of value and thus increase the risk of bank runs

during crisis times. The recent episode involving U.S. regional banks highlights

that bank runs continue to be an important real-world phenomenon.

This paper aims to inform this debate by incorporating remunerated CBDC

in an otherwise standard global-games bank-run model (Goldstein and Pauzner,

2005; Carletti et al., 2023). At the initial date, a profit-maximizing bank with

access to profitable but risky long-term investment opportunities raises uninsured

deposits. At the interim date, consumers receive a noisy private signal about

the investment’s profitability (“economic fundamentals”) and decide whether to

withdraw their balances or roll them over. Funds that are not kept in the bank

can be held either in cash or (possibly remunerated) CBDC.1

When making their withdrawal decision, consumers trade off the value of

keeping their funds in the bank and the outside option of converting them into

CBDC. Accordingly, our model allows us to study how the terms of the deposit

contract and CBDC remuneration affect the probability of a bank run (our measure

of bank fragility).
1In our model, CBDC only differs from cash because of its potential remuneration. Our focus

on cash, deposits, and CBDC held by consumers is motivated by these assets’ dual role as a
means of payment and store of value.
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In this economy, an increase in the CBDC remuneration has two effects.

First, it makes withdrawals at the interim date more attractive by offering a higher

payoff from storing funds with the central bank for consumption at the final date.

This “direct effect” makes the bank more fragile, consistent with the line of argu-

ment underlying the ongoing policy debate. Second, a higher CBDC remuneration

improves consumers’ outside option at the funding stage, and therefore induces

the bank to offer more attractive deposit contracts. As a consequence, consumers

have lower incentives to withdraw their funds at the interim date. This “indirect

effect” renders the bank more stable.

In equilibrium, the total effect of CBDC remuneration on bank fragility

depends on the relative strengths of these two countervailing forces. The indirect

effect dominates if and only if the elasticity of the failure threshold with respect to

the bank deposit rate exceeds one. A sufficient condition for this to obtain is that

the profitability of the bank’s investment opportunity is high relative to the level of

remuneration on CBDC. In this case, bank fragility is minimized (corresponding to

maximized utilitarian welfare) for a strictly positive level of CBDC remuneration.

Importantly, CBDC remuneration has redistributive effects. A higher CBDC

rate moves rents from banks (whose profits shrink) towards depositors (which earn

higher deposit rates). As long as the CBDC rate is not too high, this redistribution

is socially desirable because it helps to make banks more stable.

Next, we examine the potential effects of two CBDC design features that have

received some attention in the policy debate. Various central banks (including the

European Central Bank and the Bank of England) have proposed the introduction

of individual holding limits with the aim of reducing the financial stability concerns

associated with CBDC (Bindseil et al., 2021; Bank of England, 2023). In our

model, holding limits reduce the effective remuneration that consumers earn on

withdrawn funds because only a fraction of them can be held in CBDC, with

the remainder being held as cash. Accordingly, they are only a relevant tool

if CBDC remuneration is exogenous from a financial stability perspective, for

example because it mainly aims at monetary policy objectives outside of the model.
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Building on our previous insights, holding limits can then improve social welfare

for high levels of CBDC remuneration. However, it is optimal to not impose any

holding limits if the rate paid on CBDC holdings is low.

Alternatively, we study the possibility that CBDC remuneration is contin-

gent on the state of the financial system, i.e. that CBDC holdings earn a lower rate

in crisis times. We distinguish between two dimensions of such a policy, namely

the threshold (in terms of interim withdrawals) at which it enters into effect as

well as the reduction in remuneration relative to tranquil times. We show that a

more restrictive design along the first dimension always reduces fragility (and is

related to a partial suspension of convertibility), and provide conditions for this

effect to obtain along the second dimension.

Finally, we extend the model in two directions. First, we consider a model

where the bank is no longer a monopolist by assuming that the deposit contract

is determined by Nash bargaining with depositors. In line with the intuition from

the baseline model, a decline in bank market power weakens the “indirect effect”

by reducing the bank’s incentives to adjust the deposit rate in response to changes

in CBDC remuneration. We show analytically that a higher CBDC rate always

increases bank fragility with perfect competition, and provide numerical examples

showing that our baseline result still holds provided that the bank has sufficient

market power in the deposit market.

Second, we extend our model to allow for bank risk-taking on the asset side,

which helps us to broaden the analysis to a more complete notion of financial

stability. More specifically, we assume that the bank can exert costly monitoring

effort to increase to probability that the investment opportunity is profitable. In

this context, we define financial stability as the probability that the bank survives,

i.e. there is no run and the investment project is successful. We show analytically

that a higher CBDC remuneration affects these two separate components in differ-

ent ways: It induces the bank to increase its monitoring intensity, but at the same

time increases fragility because the exogenous deposit contract removes the “indi-

rect effect” from the baseline model. Accordingly, the overall effect on financial
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stability is ambiguous. However, we provide a numerical example showing that

an increase in CBDC remuneration can lead to an increase in financial stability,

consistent with our main analysis.

Literature. Our paper is part of a fast-growing literature on CBDC. An

overview of recent work is found in Ahnert et al. (2022). A key feature of our

model is that the bank is not passive, but instead adjusts its behaviour (here

its deposit rates) in response to the introduction to CBDC. This channel is also

present in recent papers that study the effects of CBDC on credit supply (Keister

and Sanches, 2022; Andolfatto, 2021; Chiu et al., 2022; Whited et al., 2023). In

contrast, our focus is on financial stability.

Several other papers connect CBDC to financial stability. Using a Dia-

mond and Dybvig (1983) model, Fernández-Villaverde et al. (2021) and Fernández-

Villaverde et al. (2023) study the implications for bank runs. They show that, by

fostering a flow of deposits out of the banking system into the central bank, the

introduction of CBDC completely removes the risk of bank runs, as also shown

in Skeie (2020), while creating a trade-off for the central bank between efficiency

and price stability. Keister and Monnet (2022) also consider the implications of

CBDC for bank runs, but focus on the efficacy of government interventions. In

their framework, CBDC allows the central bank to have more accurate informa-

tion about the health of the banking sector and thus to intervene promptly to

mitigate the risk of a run. In Williamson (2022), the fragility of banks induced by

the introduction of CBDC is efficient.

A key difference relative to these papers is our use of global-games methods

to uniquely pin down the probability of a bank run. This approach allows us

to study how CBDC design affects bank fragility, both directly via withdrawal

incentives and indirectly via the bank’s response in deposit rates. Global games

were introduced by Carlsson and van Damme (1993), and have been widely applied

to study run-like behaviour (e.g. Rochet and Vives, 2004; Goldstein and Pauzner,

2005; Vives, 2014; Liu, 2016; Ahnert, 2016; Eisenbach, 2017; Ahnert et al., 2019;

Liu, 2023; Carletti et al., 2023; Schilling, 2023). Morris and Shin (2003) and Vives
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(2005) survey the theory and applications of global games.

2 Model

The economy extends over three dates t = 0, 1, 2 and is populated by a bank and a

unit continuum of consumers indexed by i ∈ [0, 1]. There is a single divisible good

for consumption and investment. All agents are risk neutral and do not discount

the future. Consumers are endowed with one unit of funds at t = 0 only.

At t = 0, the bank has access to a profitable but risky investment technol-

ogy. Investment returns L ∈ (0, 1) if liquidated at t = 1 (the liquidation value)

and Rθ upon maturity at t = 2, where θ ∼ U [0, 1] represents the economic funda-

mental and R > 2 is a constant that reflects the return from lending. To finance

investment, the bank raises funds from consumers in exchange for demandable de-

posit contracts.2 The bank chooses the deposit contract that maximizes expected

profits. The contract specifies a repayment r1 ≥ 1 at t = 1 and r2 at t = 2.

Debt is demandable, so depositors can withdraw their funds before the bank’s

investment mature. At t = 1, each depositor receives a noisy private signal about

the fundamental

si = θ + εi, (1)

with εi ∼ U [−ε,+ε]. In addition to being informative about the profitability of

the bank’s investment project, it also provides information about the signals (and

withdrawal actions) of other depositors. As is standard in much of the global-

games literature, we assume vanishing noise, ε→ 0, to simplify the analysis.

The bank satisfies interim withdrawals by liquidating investment. Let n ∈

[0, 1] be the fraction of consumers who withdraw at t = 1. When the liquidation
2Bank debt is assumed to be demandable, which arises endogenously with liquidity needs

(Diamond and Dybvig, 1983) or as a commitment device to overcome agency conflicts (Calomiris
and Kahn, 1991; Diamond and Rajan, 2001). Accordingly, uninsured deposits refer to any
short-term or demandable debt instrument, which includes uninsured retail deposits and insured
deposits when deposit insurance is not credible (Bonfim and Santos, 2020). Three quarters of
U.S. commercial bank funding are deposits, half of which are uninsured (Egan et al., 2017).

5



proceeds at t = 1 are insufficient to meet withdrawals, n > n ≡ L
r1
, the bank is

bankrupt due to illiquidity. Otherwise, it continues to operate until t = 2. If the

bank cannot meet the remaining withdrawals, n > n̂ ≡ Rθ−r2
Rθ

r1
L
−r2

, it is bankrupt

due to insolvency, where n̂ solves the insolvency condition

Rθ

(
1− n̂r1

L

)
= (1− n̂) r2. (2)

The left-hand side is the return on the part of the project that was not liquidated

at t = 1, and the right-hand side represents the remaining withdrawals at t = 2.

Bankruptcy is costly and we assume zero recovery for simplicity.3

As alternatives to bank deposits, consumers can store their wealth in CBDC

or cash. A deep-pocketed central bank offers consumers deposits with a per-period

gross return ω ≥ 1, while cash is unremunerated.4 Accordingly, consumers strictly

prefer CBDC over cash as long as ω > 1. They are indifferent for ω = 1, so that

this case is equivalent to a model without CBDC. Our main interpretation of ω

is the remuneration of CBDC, but it could also capture other benefits relative

to cash, including a reduced risk of theft or the additional utility derived from

payment services in the digital economy (e.g. e-commerce).

Relative to an economy with only deposits and cash, the introduction of

CBDC has two effects. First, it improves the outside option of consumers deciding

at t = 0 whether to deposit funds with the bank from 1 to ω2 (the compound return

on CBDC over two periods). Second, it pays interest ω on funds withdrawn from

the bank at t = 1. Table 1 summarizes the timeline of the economy.

3Bankruptcy costs are large. For example, James (1991) measures the losses associated with
bank failure as the difference between the book value of assets and the recovery value net of direct
expenses associated with failure. These losses amount to about 30% of failed banks’ assets.

4We abstract from both raising funds (e.g. via taxation) and an investment choice of the
central bank at t = 0. This is without loss of generality in our model because the central
bank disburses no funds on the equilibrium path. At t = 0, the bank sets deposit rates high
enough such that consumers prefer bank deposits over CBDC. A run leads to costly liquidation
of assets, so no funds are re-deposited with the central bank at t = 1. Nonetheless, the option
of remunerated CBDC affects both withdrawal incentives at t = 1 and the deposit rate at t = 0.

6



t = 0 t = 1 t = 2
1. CBDC design 1. Fundamental shock 1. Investment matures
2. Bank sets rates 2. Private signals 2. Consumption
3. Consumers deposit 3. Withdrawal choice

Table 1: Timeline

3 Equilibrium

To solve for the equilibrium, we work backwards. First, for a given deposit contract

and CBDC remuneration, we characterize a bank failure threshold θ∗(r1, r2;ω).

Next, we solve for the bank’s choice of deposit contract (r∗1(ω), r∗2(ω)) for a given

remuneration. Finally, we study how remuneration affects overall bank fragility.

3.1 Bank fragility

We use global-games methods to solve for the unique equilibrium at the with-

drawal stage, building on Goldstein and Pauzner (2005) and Carletti et al. (2023).

To characterize individual withdrawal decisions, we start by establishing the dom-

inance bounds that yield ranges of the fundamental θ for which consumers have

a dominant strategy. We assume that there exists an upper dominance bound θ

such that the liquidation value is high (L = R) for θ > θ. In this case, a depositor

will never withdraw irrespective of the withdrawal decision of all other depositors.

We assume θ → 1 when analysing the bank’s choice of deposit contract at t = 0.

Second, withdrawing is a dominant strategy when θ < θ. This (lower domi-

nance) bound solves

Rθ − r2 = 0, (3)

so that θ = r2
R
∈ (0, 1).5 The intuition is as follows. When no other depositor

withdraws (n = 0), the bank is always liquid at t = 1 and insolvent at t = 2 for

Rθ < r2. Therefore, withdrawing yields a payoff of r1, while not withdrawing re-

turns zero. So running on the bank is a dominant strategy for θ < θ (bankruptcy).
5The bank always chooses r∗2 < R. Otherwise, deposit-taking would be unprofitable.
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In the intermediate range (θ, θ), a consumer’s decision to withdraw depends

on what she expects the other consumers to do. Using global-games techniques,

we can solve for the bank failure threshold, characterized in the next proposition.

Proposition 1. Failure threshold. There exists a unique fundamental threshold

θ∗ ∈
(
θ, θ
)
. Each consumer withdraws their deposits from the bank if and only if

θ < θ∗, where

θ∗ ≡ θ
r2 − ωL
r2 − ωr1

> θ. (4)

The threshold θ∗ decreases in L and R, increases in ω and r1, and is non-monotonic

in r2: ∂θ∗

∂L
< 0, ∂θ∗

∂R
< 0, ∂θ∗

∂ω
> 0, ∂θ∗

∂r1
> 0, ∂θ∗

∂r2
< 0 if and only if r2 < rmax2 .

Proof. See Appendix A, which also defines the threshold rmax2 .

Under vanishing noise, the bank failure threshold θ∗ corresponds to the prob-

ability of a bank run, which we thus use as our measure of bank fragility. A higher

liquidation value L or higher profitability R reduce depositors’ incentives to run.

The terms of the deposit contract (r1, r2) also affect the failure threshold. As

in Diamond and Dybvig (1983) and Goldstein and Pauzner (2005), a higher short-

term deposit rate increases fragility. Liquidity provision by the bank (r1 > L)

gives rise to strategic complementarity in consumer withdrawal decisions, so that

both panic runs and fundamental runs exist, θ∗ > θ.

Moreover, the relationship between the long-term deposit rate r2 and bank

fragility is non-monotonic: when the deposit rate is low, higher rates reduces

fragility while the opposite holds for high deposit rates. Two opposing factors are

at play. On the one hand, a higher long-term deposit rate implies that depositors

receive a higher payoff when they wait and the bank is solvent. On the other hand,

a higher long-term rate makes it more likely for the bank to be insolvent.

Finally, all else equal, the probability of a bank run increases with CBDC

remuneration, since it increases the payoff from storing wealth outside the bank

between t = 1 and t = 2, and thus makes withdrawing more attractive. However,

this direct effect, ∂θ∗

∂ω
, fails to capture the overall impact because r1 and r2 are
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held fixed. As we show below, changes in CBDC remuneration induce the bank

to adjust the terms of the deposit contract, which in turn affects θ∗. To see this

formally, we can use total differentiation:

dθ∗

dω
=
∂θ∗

∂ω
+
∂θ∗

∂r1

dr∗1
dω

+
∂θ∗

∂r2

dr∗2
dω

. (5)

We next study these indirect effects of CBDC remuneration on bank fragility via

the equilibrium deposit rates r∗1 and r∗2.

3.2 The deposit contract

Since bank runs lead to zero profits, the bank internalizes the effects of the deposit

contract on fragility, θ∗ = θ∗(r1, r2). With vanishing noise, ε → 0, consumer

behaviour is fully symmetric. For θ > θ∗, there are no interim withdrawals and

the investment matures at t = 2 with a return Rθ. The banker pays the promised

return r2 to consumers and pockets the difference, Rθ − r2. For θ < θ∗, all

consumers withdraw at t = 1 and the bank makes zero profits. Using θ → 1, the

banker’s problem at t = 0 is therefore6

max
r1≥1,r2

Π ≡
∫ 1

θ∗
(Rθ − r2) dθ (6)

s.t. V ≡
∫ 1

θ∗
r2 dθ − ω2 ≥ 0. (7)

Equation (7) is the consumers’ participation constraint. The first term is the

expected payoff from keeping funds in the bank until t = 2, which is the long-term

deposit rate in case there is no bank run. The second term reflects the outside

option, which is to store wealth in remunerated CBDC for a per-period return ω.

The following proposition characterizes the bank deposit rates in equilibrium.

Proposition 2. Deposit rates. Let ω < ω̃ and R > R˜ . Then, the equilibrium

deposit rates are given by r∗1 = 1 and r∗2 < rmax2 . The long-term deposit rate solves
6Expected bank profits can be written as Π = (1 − θ∗)

(
R
2 (1 + θ∗)− r2

)
, which is naturally

interpreted as the probability of no run times the expected bank profits conditional on no run.
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V (r∗2) ≡ 0 (the participation constraint binds), increases in CBDC remuneration,

and decreases in the liquidation value and investment profitability: dr∗2
dω

> 0, dr∗2
dL

<

0, and dr∗2
dR

< 0.

Proof. See Appendix B, which also defines the bounds ω̃ and R˜ .
A higher short-term deposit rate r1 reduces expected bank profits because

the bank is more fragile (see Proposition 1). This also tightens consumers’ partic-

ipation constraint, since they are repaid less often. Accordingly, the bank chooses

the lowest possible value for r1, which is independent of CBDC remuneration.

In general, the long-term deposit rate r∗2 is pinned down by either the bank’s

first-order condition or the consumer participation constraint. The bounds on R

and ω are sufficient conditions for the participation constraint to bind. Intuitively,

they ensure that the bank has a large enough margin to adjust the deposit contract.

We henceforth assume that these conditions are met.

An increase in CBDC remuneration improves consumers’ outside option,

both at the initial and interim dates. Accordingly, to remain attractive and guar-

antee consumer participation, the bank needs to offer a more attractive long-term

deposit rate r∗2. A higher liquidation value or investment profitability has the op-

posite effect. Because they reduce bank fragility, consumer participation can be

satisfied with a lower long-term deposit rate.

Combining Propositions 1 and 2, a change in CBDC remuneration ω has

two opposing effects on bank fragility θ∗. On the one hand, a higher remuneration

leads to a higher incentive to withdraw at t = 1 and thus a larger threshold θ∗. On

the other hand, the bank responds to the increase in remuneration by increasing

deposit rates r∗2 at t = 0, which reduces bank fragility ceteris paribus. The overall

effect of a change in ω on θ∗ depends on which of these two effects dominates. The

next result offers some insight into their relative strength.

Lemma 1. Elasticity of the failure threshold. Let η ≡ − r2
θ∗
∂θ∗

∂r2
be the elasticity

of the failure threshold with respect to the deposit rate. Higher CBDC remuneration
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reduces bank fragility, dθ∗

dω
< 0, if and only if η > 1.

Proof. See Appendix C.

Lemma 1 states that the indirect effect of higher CBDC remuneration dom-

inates the direct effect whenever the failure threshold θ∗ is very elastic to changes

in the bank deposit rate r2. That is, higher CBDC remuneration needs to induce

a sufficiently strong increase in deposit rates for overall fragility to fall. The elas-

ticity η depends on equilibrium deposit rates and, thus, ultimately on parameters.

We now state our main positive result on CBDC remuneration and bank

fragility. It is also shown in Figure 1.

Proposition 3. CBDC remuneration and bank fragility. Bank fragility is

U-shaped in CBDC remuneration with a unique minimum ωmin > 1.

Proof. See Appendix C.

ωmin = 1.049

1.02 1.04 1.06 1.08 1.10
ω

0.1260

0.1265

0.1270

0.1275

0.1280

0.1285
θ*

Figure 1: Bank failure threshold θ∗ and CBDC remuneration ω. Parameters:
L = 0.9, R = 15, so ω̃ ≈ 1.32.

4 CBDC design

Financial stability concerns feature quite prominently in the policy debate sur-

rounding CBDC (Bank for International Settlements, 2020). Accordingly, several
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central banks have advanced concrete proposals on specific CBDC design features

that aim to mitigate potentially adverse effects. While our results in the previous

section have shown that such concerns may already be mitigated by an appropri-

ate level of CBDC remuneration, this section aims to link our model explicitly to

this debate.

In order to do so, we consider throughout a central bank who operates as

a constrained planner and takes the informational friction and the privately opti-

mal behaviour of consumers and the bank as given and maximizes social welfare.

Specifically, the central bank aims to maximize utilitarian welfare W , which is

given by the sum of expected bank profits and consumer surplus

W ≡
∫ 1

θ∗
(Rθ − r2)dθ +

∫ 1

θ∗
r2dθ =

R

2

[
1− (θ∗)2

]
. (8)

Throughout we assume that the central bank can commit to a CBDC design.

Accordingly, maximizing welfare is equivalent to minimizing fragility in our

economy. Following Proposition 3, a central bank that can freely set CBDC re-

muneration will choose ω∗ = ωmin.

While the case where the central bank can freely set CBDC remuneration

represents a useful benchmark, it is rather unrealistic because most central banks

do not consider CBDC to be a policy tool (European Central Bank, 2020; Bank of

England, 2023). Even if they did, monetary policy considerations would likely be

the overriding determinant of the level of CBDC remuneration (see, e.g., Lilley and

Rogoff, 2020; Jiang and Zhu, 2021). Therefore, in what follows we assume that the

CBDC rate is fixed and study two design features that have emerged in the current

policy debate as remedies to tackle the financial stability concerns associated with

the introduction of CBDC: holding limits and contingent remuneration.
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4.1 Holding limits

The introduction of individual holding limits has been proposed by various policy

makers (e.g. Bindseil et al., 2021; Bank of England, 2023) as potential tool to limit

the attractiveness of CBDC as store of value and thus for reducing run incentives.7

In order to provide a formal analysis of this tool in the context of our model, we

modify the baseline model and assume that consumers can only hold a proportion

γ of their wealth in a CBDC.8 This changes the effective per-period remuneration

on wealth held outside the bank from ω to

ωHL ≡ 1 + γ(ω − 1), (9)

because the remaining 1 − γ must be held in cash. Proposition 4 provides the

results of both a positive and normative analysis of CBDC.

Proposition 4. Holding limits. Holding limits, γ < 1, increase (reduce) bank

fragility for low (high) levels of CBDC remuneration ω. Hence, the central banks

optimally sets holding limits as

γ∗ =


ωmin−1
ω−1

if ω > ωmin

1 if ω ≤ ωmin

Proof. See Appendix D.

From a positive perspective, the introduction of holding limits reduces the

pass-through of CBDC remuneration to consumers’ outside option at both t = 0

7The European Central Bank has stated that it is exploring individual-specific holding limits
in the context of its digital euro project. An amount of 3,000 EUR has been forwarded (see
“Digital euro will protect consumer privacy, ECB executive pledges”, Financial Times, 20 June
2021). Similarly, the Bank of England has recently proposed a holding limit of 10,000-20,000
GBP in a public consultation. Other proposals include tiered remuneration, as suggested in
Bindseil (2020). If the second tier is remunerated at zero or below, this is equivalent to holding
limits in our model because consumers would prefer to hold amounts exceeding the first tier in
cash.

8In practice, policy makers are considering nominal limits (Bindseil et al., 2021). In our
model, all consumers are identical at both t = 0 and t = 1 in equilibrium, so a proportional
limit is equivalent to nominal limit. However, nominal and proportional holding limits may have
different implications when consumers are heterogeneous.
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and t = 1. In line with our previous analysis, this leads to two opposing effects on

bank fragility. At the interim date, holding limits reduce the return that consumers

earn on withdrawn funds. Since only part of their wealth held outside the bank

can be stored in remunerated CBDC, the remainder must be held as cash and

earns a return of 1. This corresponds to the “direct effect” and makes the bank

less fragile. However, holding limits soften the competition that the bank faces

at the funding stage, and thus imply a lower equilibrium deposit rate r∗2. This

increases consumers’ withdrawal incentives at t = 1 and thus makes the bank more

fragile (the “indirect” effect).

The overall effect on bank fragility depends on which of these two effects

dominates, which is determined by the (exogenous) level of CBDC remuneration.

As shown in Figure 2, holding limits only have a beneficial effect on bank fragility

when the level of CBDC remuneration is sufficiently high. Since holding limits

reduce the responsiveness of the deposit rate to changes in CBDC remuneration,

they also limit the beneficial effects of higher CBDC remuneration that are at-

tained when ω is sufficiently low.

γ=1

γ=0.7

1.02 1.04 1.06 1.08 1.10
ω

0.1260

0.1265

0.1270

0.1275

0.1280

0.1285
θ*

Figure 2: Bank failure threshold θ∗, CBDC remuneration ω, and holding limits γ.
The solid line captures an economy without holding limits, while the dotted line
captures an economy in which consumers can hold 70% of their funds in CBDC.
Parameters: L = 0.9, R = 15.

Building on this insight, the socially optimal holding limit depends on the

level of CBDC remuneration. Whenever ω exceeds the social optimum ωmin, the

central bank uses holding limits to implement this optimum by setting γ = ωmin−1
ω−1

.

Otherwise, it is optimal to not impose any holding limit. Overall, Proposition 4
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contains a note of caution for policymakers: the calibration of CBDC remunera-

tion and holding limits should avoid inefficient outcomes via higher bank fragility.

Whenever CBDC remuneration is high, holding limits can be used as a tool to

achieve the constrained-efficient outcome. However, this is not true for low levels

of CBDC remuneration.

Finally, holding limits also have a distributional impact. Since they decrease

the effective remuneration of consumers’ outside option, they reduce the compet-

itive pressure of CBDC remuneration on bank deposit rates, and thus lead to

higher bank profits.

4.2 Contingent remuneration

Next, we consider the possibility that CBDC remuneration can be contingent on

the state of the financial system. The underlying idea is that a reduction of CBDC

remuneration in crisis times can serve as a tool to reduce depositors’ withdrawal

incentives whenever they become acute (see Bindseil, 2020; Bindseil et al., 2021).

To study the effectiveness of this policy, we modify the baseline model to specify

CBDC remuneration as follows. In the first period, CBDC balances earn ω1 = ω,

as before. By contrast, the second period remuneration depends on consumers’

withdrawals,

ω2(n) =

 ω if n ≤ ñ

ω if n > ñ,
(10)

where ω ∈ [1, ω] is the reduced CBDC remuneration in crisis times, which is

characterized by withdrawals of at least ñ depositors. The lower bound on ω

arises because we continue to assume that cash is available as alternative storage

at each date.9 Moreover, we focus on ñ < n because a reduced remuneration
9This is consistent with most central banks already having committed to continue supply-

ing cash after a potential CBDC introduction. We abstract from the inconvenience associated
with the handling and storage of physical cash, which may in practice enable central banks to
set a slightly negative CBDC rate (the “effective lower bound”) without triggering a complete
substitution by consumers into cash.
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cannot have a beneficial effect when the bank is illiquid at the interim date.

A stricter intervention is captured by lower values of the policy parameters

ñ or ω.10 While their impact on depositors’ withdrawal incentives for a given

deposit rate r2 is similar, they affect depositors’ participation constraint (and

thus the bank’s choice r∗2) in different ways.

To see this difference formally, it is useful to first consider the marginal

depositor’s payoff upon withdrawal at t = 1, which can be written as

π1,CR = ω

∫ ñ

0

r1dn+ ω

∫ n

ñ

r1dn ≤ ω

∫ n

0

r1dn = π1, (11)

where the subscript CR refers to contingent remuneration. As before, n denotes

the bank’s illiquidity threshold, so that π1 is the equivalent in the baseline model

without contingent remuneration. For a given deposit rate r2, a decrease in both

ñ and ω yields a lower expected payoff from withdrawing, and thus ultimately a

lower run threshold relative to the baseline model, θ∗CR < θ∗.

Recall that the deposit rate is pinned down by depositors participation con-

straint. With contingent remuneration, it reads11

VCR =

∫ θ∗CR

0

r2dθ − ω

(∫ θ∗CR

0

ωdθ +

∫ 1

θ∗CR

ωdθ

)
≥ 0. (12)

Unlike ñ, the reduced remuneration rate ω does not only affects depositors’ partic-

ipation constraint indirectly via a change in the run threshold, but also directly.

Hence, its impact on the deposit rate r2 is more complex, as we detail in the

following proposition.

Proposition 5. Contingent remuneration. A more restrictive design of con-

tingent remuneration affects bank fragility as follows.
10As the policy is implemented based on observed withdrawals at the final date (i.e. after

consumers’ decisions at the interim date), contingent remuneration does not require the central
bank to have any superior information at the interim date. Moreover, this specification rules
out any potential technical complications associated with an endogenous public signal.

11We use the fact that with vanishing noise, either all or no depositors runs, so that the reduced
(full) CBDC rate is earned in the second period in case of failure (survival) for any ñ ∈ [0, 1].
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(1) dθ∗CR
dñ

> 0;

(2) dθ∗CR
dω

> 0 if

(1− θ∗CR)
r2

2(1− L)

RL(r2 − π1,CR
L

)
(n− ñ) + ωθ∗CR

∂θ∗CR
∂r2

> 0.

Moreover, dθ∗CR
dω

< 0 for ñ→ n.

Proof. See Appendix E.

Similar to the effect of CBDC remuneration in the main model, there is

both a direct and an indirect effect of the policy parameters ñ and ω on bank

fragility. An earlier reduction of CBDC remuneration upon withdrawals (a lower

ñ) directly benefits financial stability. Moreover, the cutoff ñ does not directly

enter the participation constraint of investors (as it only enters via the failure

threshold), resulting in a weak indirect effect. Thus, the direct effect always

dominates and fragility is unambiguously reduced. This result is reminiscent to

a partial suspension of convertibility in run models, but also considers the effects

on ex-ante deposit rates.

The effect of a reduced remuneration (a lower ω) is generally more complex.

As intended, the lower return on withdrawn funds reduces withdrawal incentives.

However, ω enters the participation constraint directly (see equation (12)), which

strengthens the indirect effect that operates via equilibrium deposit rates.

Unfortunately, the total effect of CBDC remuneration is difficult to sign in

general. For the special case where ñ → n, however, the beneficial direct effect

of contingent remuneration on withdrawal incentives vanishes because the bank

is always illiquid and fails. We are thus left with an indirect effect of contingent

remuneration, which lowers equilibrium deposit rates and therefore raises bank

fragility. Figure 3 offers a numerical example that shows that a lower reduced

remuneration during financial turmoil can lower bank fragility.

Interestingly, introducing contingent remuneration does not affect the impact

of CBDC remuneration ω on financial fragility. This is shown in Figure 4. In line
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Figure 3: Bank failure threshold θ∗, CBDC remuneration ω, and reduced remu-
neration ω. The solid line and dashed lines are drawn for different values of CBDC
remuneration, respectively ω = 1.04 and ω = 1.08. Parameters: L = 0.9, R = 15.

with the above results, a decrease in ω simply leads to a downward shift in the

curve illustrating the impact of CBDC remuneration on fragility, thus stressing

the beneficial effect of this design feature.

ω=1.01

ω=1

1.02 1.04 1.06 1.08 1.10
ω

0.125

0.126

0.127

0.128

θ*

Figure 4: Bank failure threshold θ∗, CBDC remuneration ω, and reduced remu-
neration ω. The solid line captures an economy in which consumers receive a zero
remuneration on CBDC in the event of a run, while the dotted line captures an
economy in which they still receive a positive remuneration but below that they
receive when there is no run. Parameters: L = 0.9, R = 15.

5 Extensions

In this section, we consider two extensions of the baseline model. We first limit

the bank’s market power in the deposit market, and then examine the bank’s
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risk-taking incentives on the asset side.

5.1 Limited market power in the deposit market

So far, we have considered a bank that acts as a monopolist in the deposit market.

In this subsection, we relax this assumption by studying a model with imperfect

competition.12 This approach is partly motivated by theoretical work on the effects

of CBDC on bank credit supply, which reaches different conclusions depending on

the level of competition in deposit markets (Keister and Sanches, 2022; Andolfatto,

2021; Chiu et al., 2022).

More specifically, we assume that the deposit contract is determined by Nash

bargaining between the bank and depositors. This is attractive because it allows

us to model the degree of deposit market competition by varying the bank’s bar-

gaining power β ∈ (0, 1). Formally, the deposit contract is the solution to

max
r1,r2

(∫ 1

θ∗
Rθ − r2dθ

)β (∫ 1

θ∗
r2dθ − ω2

)1−β

. (13)

where the first (second) bracket represents the bank’s (depositors’) surplus in

excess of their outside option. As in the main text, r∗1 = 1 follows immediately.

For β → 1, this collapses to the baseline model where the bank maximizes

expected profits subject to depositors’ participation constraint. By contrast, β →

0 corresponds to a model with perfect competition, where the deposit rate r2

maximizes the expected value of the deposit claim subject to non-negative bank

profits. The following proposition summarizes the resulting implications of this

polar case for the effect of CBDC remuneration on bank fragility.

Proposition 6. Perfect competition in the deposit market. For β → 0, an

increase in CBDC remuneration increases bank fragility, dθ∗

dω
> 0.

Proof. See Appendix F.
12A large literature documents imperfect competition in retail deposit markets, including

Neumark and Sharpe (1992), Hannan and Berger (1997), and Drechsler et al. (2017).
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Depositors’ gross surplus (without the outside option ω2) can be written as

(1− θ∗)r2, that is the deposit rate earned multiplied by the risk of bank survival.

This implies that the equilibrium deposit rate r∗2 exceeds the level rmax2 beyond

which an increase in the deposit rate raises the risk of bank failure. At the opti-

mum, this effect exactly offsets the direct positive contribution of higher interest

rates to the value of the deposit claim.13

As in the baseline model, higher CBDC remuneration affects bank fragility

both directly (via the failure threshold) and indirectly (via the deposit contract).

As before, the direct effect is positive. However, the indirect effect is no longer

unambiguously negative, but its sign varies with parameters. In any case, deposit

rates are so high that the indirect effect is of second order, so that the overall

effect of higher CBDC remuneration is to unambiguously increase bank fragility.

We now turn to the intermediate case of limited market power, 0 < β < 1.

The following result states how the equilibrium deposit rates are pinned down.

Proposition 7. Deposit rates with limited market power of banks. The

deposit rate r∗2 solves

β∫ 1

θ∗
(Rθ − r∗2) dθ

(
1− θ∗ + (Rθ∗ − r∗2)

∂θ∗

∂r2

)
=

1− β∫ 1

θ∗
r2dθ − ω2

(
1− θ∗ − r∗2

∂θ∗

∂r2

)
,

(14)

where θ∗ = θ∗(r∗2). For high enough market power of banks, β > β, the deposit

rate increases in CBDC remuneration, dr∗2
dω

> 0.

Proof. See Appendix F.

Intuitively, a decline in the bank’s bargaining power dampens the impact of

CBDC remuneration on deposit rates, since the bank is no longer a monopolist.

Unfortunately, a full analytical characterization of the general case is analytically

intractable. To provide some additional insights, Figure 5 provides numerical ex-

amples which show that the U-shaped relationship between bank fragility and
13Bank profits evaluated at the competitive deposit rate are positive. That is, the value of the

deposit claim is maximized for a deposit rate below the rate at which bank profits are zero.
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CBDC remuneration is preserved when the bank’s bargaining power in the de-

posit market is sufficiently high, whereas a monotonically increasing relationship

is obtained for more competitive deposit markets.

Figure 5: Bank failure threshold θ∗, CBDC remuneration ω, and bargaining power
in the deposit market β. The solid line is for monopoly, the dotted line for high
market power of the bank, and the dashed line are for low market power of the
bank in the deposit market. Parameters: L = 0.9, R = 15, β ∈ {1, 0.998, 0.9}.

5.2 Bank risk-taking on the asset side

So far we have considered a fragile liability side of banks (uninsured deposits)

as a source of financial instability. However, financial instability can also be the

result of banks’ risk-taking decisions on their asset side (e.g., risk choices and

asset substitution). In this extension, we allow for such risk-taking on the asset

side. Accordingly, building on Carletti et al. (2023) to account for the interactions

between asset and liability side of bank balance sheet, we extend the baseline

model assuming that at t = 0, the bank chooses its monitoring effort. Consistently

with an influential literature (e.g., Holmstrom and Tirole (1997), Hellmann et al.

(2000), Morrison and White (2005), Dell’Ariccia and Marquez (2006), Allen et al.

(2011), DellAriccia et al. (2014).), the effort q fully determines the probability of

21



success of bank investment, whose return changes to

P =

 Rθ w.p. q

0 w.p. 1− q
.

Higher monitoring leads to a higher success probability, but it entails a non-

pecuniary cost c
2
q2. To keep the analysis tractable, we consider an exogenous

deposit contract (r1, r2).14 This assumption shuts down the channel along which

higher CBDC remuneration improves financial stability in the main text and allows

us to focus on how CBDC remuneration ω affects bank risk choices q∗ instead.15

To solve the model, we proceed as in the main text.16 We begin by deriving

the endogenous run threshold θ∗q , so that all depositors run on the bank at t = 1

if and only if θ < θ∗q . Following the same steps as in Section 3.1, we deduce that

θ∗q =
r2

R

qr2 − ωL
qr2 − ωr1

. (15)

Better monitoring increases the probability that the bank is able to repay

depositors at t = 2, and therefore reduces incentives to run (∂θ
∗
q

∂q
< 0). This means

that lower risk on the asset side of the bank leads to lower risk on its liability side.

Taking the run threshold θ∗q into account, we then solve for the bank’s optimal

choice of monitoring effort q at t = 0. The bank solves

max
q

Πq ≡ q

∫ 1

θ∗q

(Rθ − r2) dθ − cq2

2
. (16)

Provided that c is sufficiently high, there exists a unique and interior solution q∗,

which is given by the solution to the following first-order condition

FOCq ≡
∫ 1

θ∗q

(Rθ − r2) dθ − q
∂θ∗q
∂q

(
Rθ∗q − r2

)
− cq = 0. (17)

14The deposit contract is such that the participation constraint of investors holds.
15Given that we assume an exogenous deposit contract (partly for tractability), we cannot

really distinguish between monitoring and screening.
16We continue to assume that θ → 1 and ε→ 0. Moreover, we require that qr2 > ωr1 to rule

out a certain bank run. See also the discussion about dominance bounds in Section 3.1.
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The bank’s risk choice at t = 0 reflects a trade-off. The last term in equation

(17) reflects the marginal cost of monitoring effort. The other two terms represent

the marginal benefit of higher monitoring. First, more monitoring increases the

probability that the project is successful, so that the bank reaps the residual

claim Rθ − r2 more often (provided there is no bank run, θ > θ∗q). Second, the

bank benefits from the interaction between the bank’s asset and liability sides.

An increase in monitoring reduces depositors’ incentives to run, so that costly

bankruptcy can be avoided.

Since we allow for risk-taking on the asset side of the balance sheet, it is

important to note that there are now two potential sources of bank failure: bank

runs and an unsuccessful investment project. We can therefore measure financial

stability by the overall probability that the bank survives, which we define as

Φ∗ ≡ q∗
(
1− θ∗q

)
.

The following proposition shows that an increase in CBDC remuneration affects

its two separate components in opposite ways.

Proposition 8. Risk taking on the asset side. Higher CBDC remuneration

improves monitoring, dq∗

dω
> 0, but also increases fragility, dθ∗q

dω
> 0.

Proof. See Appendix G.

Changes in CBDC remuneration affect the marginal benefit of bank mon-

itoring, which follows directly from the first-order condition 17. The direction

of this effect depends both on the direct effect of CBDC remuneration on the

run threshold (∂θ∗
∂ω

) as well as the threshold’s sensitivity to changes in monitoring

( ∂2θ∗
∂q∂ω

). Proposition 8 states that the overall effect is always positive, that is an

increase in CBDC remuneration always leads to higher bank monitoring (dq
∗

dω
> 0)

and thus renders the bank’s asset side more stable.

The effect of CBDC remuneration of the probability of a bank run can be
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written as
dθ∗q
dω

=
∂θ∗q
∂ω

[
1− ω

q

dq∗

dω

]
. (18)

Just like in the main text, an increase in CBDC remuneration affects the run

threshold θ∗q both directly and indirectly. However, in this case, the indirect oper-

ates through bank monitoring, dq∗

dω
, and not through the deposit contract (which

is assumed to be exogenous). While these two effects go in opposite directions,

Proposition 8 states that the direct effect always dominates, so that a higher

CBDC remuneration always increases the risk of bank runs.

Since CBDC affects both aspects of financial stability in opposite ways, its

overall effect on financial stability is ambiguous. While it is difficult to derive

sufficient conditions analytically, Figure 6 provides a numerical example for which

the beneficial effect of higher bank monitoring dominates. Accordingly, higher

CBDC remuneration can increase financial stability, consistent with the main text.

Figure 6: Financial stability Φ∗ and CBDC remuneration ω. Parameters: L = 0.9,
R = 20, c = 0.1, r1 = 1, and r2 = 6.

6 Conclusion

The aim of this paper is to examine the impact of CBDC on financial stability. We

study a global-games model of financial intermediation and bank runs in which

a remunerated CBDC provides consumers with an alternative to bank deposits

(and cash). Consistent with concerns among policymakers, a higher CBDC re-
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muneration raises bank fragility by increasing consumers’ withdrawal incentives.

However, it also induces the bank to offer more attractive deposit contracts in an

effort to retain funding, which reduces fragility. Accordingly, the overall relation-

ship between bank fragility and CBDC remuneration is U-shaped.

Within this framework, we evaluate several policy proposal aimed at re-

ducing the financial stability concerns related to a CBDC introduction. We find

that a positive remuneration of can be socially desirable because it lowers bank

fragility. When CBDC remuneration is exogenous from a financial stability per-

spective (e.g. when it is determined by monetary objectives or bound by previous

commitments), holding limits can be socially beneficial in case of a high CBDC

rate. However, they are ineffective for low levels of CBDC remuneration. Contin-

gent remuneration with lower rates in times of financial distress can be effective

in reducing withdrawal incentives without having a large effect on bank deposit

rates.

We extend the model to allow for imperfect competition in the deposit market

and bank risk-taking on its asset side. These analyses support the robustness of

our baseline results. Further extension may generate additional insights. For

example, one could consider the role of bank equity and liquid reserves on the

interaction between CBDC remuneration and financial stability. Moreover, the

interaction of CBDC design features (remuneration, holding limits, and contingent

remuneration) with traditional tools for the mitigation of run risk, such as lender

of last resort policies, may also be an interesting avenue for further research.
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A Proof of Proposition 1

The proof builds on the arguments developed on Carletti et al. (2023). The only

difference is that our model exhibits global strategic complementarity in that a

depositor’s incentive to withdraw at t = 1 monotonically increases in the number

of depositors withdrawing. The arguments in their proofs establish that, in the

limit of ε → 0, there is a unique threshold value of the fundamental, denoted as

θ∗, below which all consumers choose to withdraw from the bank. We first prove

the existence of a unique equilibrium and then study its comparative statics.

Existence and uniqueness. For θ ∈ (θ, θ), a depositor’s decision to withdraw

depends on the withdrawal choices of others. Suppose that all depositors use a

threshold strategy s∗. Then, the fraction of depositors withdrawing at t = 1,

n(θ, s∗), equals the probability of receiving a signal below s∗:

n(θ, s∗) =


1 if θ ≤ s∗ − ε,

s∗−θ+ε
2ε

if s∗ − ε < θ ≤ s∗ + ε,

0 if θ > s∗ + ε.

(19)

Thus, a depositor’s withdrawal decision is characterized by the pair of thresholds

{s∗, θ∗}, which solves the following system of equations:

Rθ∗
(

1− n(θ∗, s∗)r1

L

)
− (1− n(θ∗, s∗))r2 = 0, (20)

r2Pr(θ > θ∗|s∗) = ωr1Pr(θ > θn|s∗), (21)

where θn = s∗ + ε− 2ε L
r1

is the solution to n(θ, s∗) r1 = L.

Condition (20) identifies the level of fundamentals θ at which the bank is just

able to repay the promised repayment to non-withdrawing depositors. Hence, it

pins down the cutoff θ∗. Condition (21), instead, states that at the signal threshold

s∗ a depositor is indifferent between withdrawing at t = 1 and waiting until t = 2,

since the expected payoff at t = 2, as captured by the LHS in (21), is equal to the
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expected t = 1 payoff, which is captured by the RHS in (21). Hence, given θ∗ from

(20), it pins down the threshold signal s∗. Note that the payoff at t = 1 is received

whenever the bank is liquid, while the payoff at t = 2 is received whenever the

bank is solvent. Differentiating the LHS of (20) with respect to θ, we obtain

R

(
1− n(θ, s∗)r1

L

)
− ∂n(θ, s∗)

∂θ

[
Rθ

r1

L
− r2

]
> 0, (22)

for any θ > θ since r1 > L and ∂n(θ,s∗)
∂θ

≤ 0. Taking the derivative of (20)

with respect to n(.), we obtain −Rθ r1
L

+ r2 < 0 for any θ > θ because r1 > L.

Overall, this implies that the LHS in (20) monotonically increases with θ and

the signal si and so it does the LHS in (21). Furthermore, rearranging (20) as

Rθ∗− r2− n(θ∗, s∗)
[
Rθ∗ r1

L
− r2

]
= 0, it follows that (20) is negative at θ = θ and

positive at θ = θ. Using (21), this means that at θ = θ, a depositor expects to

receive 0 when waiting and thus strictly prefers to withdraw. At θ = θ such that

the LHS in (20) is strictly positive, a depositor expects to receive r2 > ω r1 when

waiting. Since ωr1 exceeds the RHS in (21), it follows that, at θ = θ, a depositor

strictly prefer not to withdraw.

Overall, the analysis above implies that θ < θ∗ < θ and analogously that

the threshold signal s∗ falls within the range
(
θ + ε, θ − ε

)
. Given that θ > 0 and

θ → 1, it follows that the equilibrium pair {θ∗, s∗} falls in the range (0, 1).

To obtain a closed-form expression, we perform a change of variable using

(19) from which we obtain θ(n) = s∗ + ε(1 − 2n). At the limit, when ε → 0,

θ(n) = s∗, which identifies the run threshold and it is equal to the solution to

∫ n̂(θ∗)

0

r2dn =

∫ n

0

ωr1 dn⇒ n̂ (θ∗) r2 = ωL. (23)

Solving for θ∗ yields the closed-form expression as stated in the proposition. And

θ∗ > θ directly follows from L < 1 ≤ r1.

Comparative statics. To complete the proof, we study how bank fragility θ∗

changes with deposit rates r1 and r2, as well as CBDC remuneration ω, liquidation
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value L, and the investment profitability R. We have the following:

∂θ∗

∂r1

=
ωθ∗

(r2 − ωr1)
> 0, (24)

∂θ∗

∂r2

=
1

R

r2 − ωL
r2 − ωr1

− θω(r1 − L)

(r2 − ωr1)2
=
r2

2 − 2ωr1r2 + ω2Lr1

R(r2 − ωr1)2
, (25)

∂θ∗

∂ω
= θ

r2(r1 − L)

(r2 − ωr1)2
> 0,

∂θ∗

∂L
= − ωθ

r2 − ωr1

< 0,
∂θ∗

∂R
= −θ

∗

R
< 0, (26)

(27)

where we used r1 > L and r2 > ωr1.

To establish the sign of ∂θ∗

∂r2
, we need to determine the sign of the numerator

since the denominator is positive. The numerator is negative whenever rA2 <

r2 < rB2 , where rA2 and rB2 denote the roots of the associated quadratic equation

r2
2− 2ωr1r2 +ω2Lr1 = 0 since ∆ = 4ω2r2

1− 4ω2L > 0. The two roots are equal to:

r
A/B
2 = ωr1

(
1±

√
1− L

r1

)
. (28)

The smaller root rA2 is inadmissible as it implies r2 < ωr1, a contradiction. Thus,

only the bigger root rB2 > ωr1 is admissible. Since this value is the maximum

of the relevant deposit rates considered by the bank, as we will show shortly, we

label it rmax2 ≡ rB2 . To summarize, ∂θ∗
∂r2

< 0 if r2 < rmax2 and ∂θ∗

∂r2
> 0 if r2 > rmax2 .

B Proof of Proposition 2

A higher short-term deposit rate r1 increases fragility (Proposition 1), so it reduces

expected bank profits because the bank is solvent less often, ∂Π
∂r1

= (Rθ∗−r2)∂θ
∗

∂r1
<

0. A higher short-term deposit rate also tightens the participation constraint of

consumers because they are repaid less often, ∂V
∂r1

= −r2
∂θ∗

∂r1
< 0. Thus, r∗1 = 1.

The proof of the remaining claims is in several steps. We first derive sufficient

conditions for the participation constraint of consumers to bind in equilibrium.

Then, we derive comparative statics of the equilibrium deposit rate. As they
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would be useful later, we state some partial derivatives (evaluated at r∗1):

∂θ∗

∂r2

=
(r2 − ω)2 − ω2(1− L)

R(r2 − ω)2
=

1

R
− ω2(1− L)

R(r2 − ω)2
, (29)

∂2θ∗

∂ω∂r2

= −2(1− L)ωr2

R(r2 − ω)3
< 0, (30)

∂2θ∗

∂r2
2

=
2(1− L)ω2

R(r2 − ω)3
> 0. (31)

B.1 Binding participation constraint of consumers

Step 1: We derive bounds on the deposit rate chosen by the bank. A profit-

maximizing bank never chooses a rate that entails θ∗ = 1. If a run is certain, the

bank is certain to make zero (expected) profits. As a result, the bank chooses

r2 > rmin2 where rmin2 solves θ∗(rmin2 ) ≡ 1, yielding an expression for the lower

bound on the deposit rate:

rmin2 =
R + ωL

2
−

√(
R + ωL

2

)2

−Rω. (32)

We have shown in Proposition 1 that bank fragility decreases in the long-

term deposit rate as long as r2 < rmax2 . We now impose constraints on parameters

to ensure that the participation constraint of consumers is slack at r2 = rmax2 ,

that is V (rmax2 ) > 0. Note that θ∗(rmax2 ) = ω
R

(
1 +
√

1− L
)2 and V (rmax2 ) =

ω
(
1 +
√

1− L
)
− ω2

R

(
1 +
√

1− L
)3−ω2, resulting in a lower bound on investment

profitability:

R > R1 ≡
ω
(
1 +
√

1− L
)3

1 +
√

1− L− ω
. (33)

An upper bound on CBDC remuneration ensures that the denominator of R1 is

always positive:

ω < ω̃ ≡ 1 +
√

1− L. (34)

Note that rmin2 < rmax2 , which justifies our labels, and ensures that the bank

does not always fail, θ∗(rmax2 ) < 1, which is the economically interesting case.
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Step 2: We can write marginal bank profits as

dΠ

dr2

≡ −∂θ
∗

∂r2

(Rθ∗ − r2)−
∫ 1

θ∗
dθ. (35)

Since (Rθ∗ − r2) = r2ω
(r1−L)
r2−ωr1 > 0 and 1− θ∗ > 0 (given the bounds on r2) as well

as the parameter constraints ensuring that higher long-term deposit rates reduce

bank fragility, there is a non-trivial trade-off for the bank: higher long-term deposit

rates make the bank more stable but also reduce its profit margin.

Evaluating marginal profits at r2 = rmax
2 (where, by definition, ∂θ∗

∂r2
= 0),

gives dΠ
dr2

< 0. Moreover, ∂Π
∂r2

< 0 for all r2 > rmax2 . Thus, the bank chooses a

deposit rate r2 < rmax2 if feasible (i.e. if the participation constraint of consumers

holds). Given the parameter constraints on investment profitability and CBDC

remuneration (see step 1), the participation constraint is indeed slack, so the bank

chooses a rate r∗2 < rmax2 (establishing an upper bound on the deposit rate).

Similarly, evaluating at r2 = rmin
2 (where, by definition, θ∗ = 1) gives dΠ

dr2
> 0.

Furthermore, at r2 = rmin
2 , we also have V < 0 (i.e. the participation constraint is

violated), so the bank always chooses a higher deposit rate, r∗2 > rmin
2 (establishing

a lower bound on the deposit rate).

Step 3: Next, we show that expected bank profits Π are globally concave.

As a result, the unconstrained choice of deposit rate that ignores the participation

constraint of consumers, denoted by rΠ
2 and solving dΠ

dr2
≡ 0, is unique. To establish

global concavity, we show that the second-derivative is always negative:

d2Π

dr2
2

≡ −∂
2θ∗

∂r2
2

(Rθ∗ − r2)−
(
∂θ∗

∂r2

)2

R + 2
∂θ∗

∂r2

< 0,

because ∂θ∗

∂r2
< 0 and ∂2θ∗

∂r22
> 0.

Consider r˜2 = ω2, which solves the participation constraint investors in case

of no bank failure. Since the bank sometimes fails, θ∗ > 0, r˜2 is clearly a lower

bound on the value that solves the binding participation constraint, rPC2 > r˜2. This

bound is helpful in establishing sufficient conditions for the relevant equilibrium

30



condition to be the binding participation constraint.

By global concavity of Π, a sufficient condition for rΠ
2 < r˜2 is

dΠ(r˜2)

dr2
< 0.

Intermediate results are θ∗(r˜2) = ω2(ω−L)
R(ω−1)

, Rθ∗(r˜2) − r˜2 = ω2(1−L)
ω−1

, and
∂θ∗(r˜2)

∂r2
=

ω2−2ω+L
R(ω−1)2

. Thus, we can express
dΠ(r˜2)

dr2
< 0 as a lower bound on profitability:

R > R2 ≡
ω2

ω − 1

[
− 1− L

(ω − 1)2

(
ω2 − 2ω + L

)
+ ω − L

]
= ω2

(
1 +

(1− L)2

(ω − 1)3

)
.

(36)

As a result, we have shown that rPC2 > rΠ
2 . Finally, we verify that r˜2 ≥ rmin2 .

Rewriting θ∗(r˜2) < 1 yields another lower bound on profitability:

R > R3 ≡
ω2(ω − L)

ω − 1
. (37)

Since ω < ω̃, which implies ω2 − 2ω + L < 0, we can rank these bounds R2 > R3.

Thus, we can drop the bound R3. Taking stock, we define R˜ as the largest of all

lower bounds on the investment returns (see below for the definition).

B.2 Existence of a unique deposit rate, comparative statics

Having established that the deposit rate r∗2 corresponds to the solution to the

binding participation constraint, we next prove its existence and uniqueness.

Recall that the net value of the deposit claim is V =
∫ 1

θ∗
r2 dθ − ω2. So,

V (r∗2) ≡ 0. Note that V (rmin2 ) = −ω2 < 0 and V (rmax2 ) > 0 given the parameter

constraints on R and ω. Differentiating V with respect to r2, we obtain

dV

dr2

= −∂θ
∗

∂r2

r2 + (1− θ∗) > 0, (38)

so a higher (long-term) deposit rate increases the value of the deposit claim for

two reasons: consumers receive a high payment in the absence of a bank run and

the bank is less fragile (Proposition 1). Given the monotonicity of V in r2 and its

change of signs from the bound rmin2 to rmax2 , a solution for r∗2 exists and is unique.

Next, we study the comparative statics of r∗2. First, consider CBDC remu-
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neration ω, using the implicit function theorem, dr2
dω

= −
∂V
∂ω
∂V
∂r2

. The denominator is

positive, as shown in Condition (38). Hence, the sign of dr2
dω

is the opposite of the

sign of the numerator:
∂V

∂ω
= −2ω − ∂θ∗

∂ω
r2 < 0. (39)

It follows that r2 monotonically increases in CBDC remuneration ω:

dr∗2
dω

=
2ω + ∂θ∗

∂ω
r2

1− θ∗ − ∂θ∗

∂r2
r2

> 0. (40)

Finally, we derive the comparative statics of the equilibrium deposit rate with

respect to investment characteristics. Using the implicit function theorem again,

the results dr∗2
dL

< 0 and dr∗2
dR

< 0 follow from ∂V
∂L

= −r2
∂θ∗

∂L
> 0 and ∂V

∂R
= −r2

∂θ∗

∂R
> 0.

C Proof of Lemma 1 and Proposition 3

We first prove the lemma and then the proposition. Using the expression for dr2
dω

in Equation (40), we expand the expression for dθ∗

dω
:

dθ∗

dω
=

∂θ∗

∂ω
+
∂θ∗

∂r2

dr∗2
dω

=
∂θ∗

∂ω
+
∂θ∗

∂r2

2ω + ∂θ∗

∂ω
r∗2

1− θ∗ − r∗2 ∂θ
∗

∂r2

. (41)

Since the denominator of the second term is positive, we get dθ∗

dω
< 0 whenever

∂θ∗

∂ω

(
1− θ∗ − r∗2 ∂θ

∗

∂r2

)
+ ∂θ∗

∂r2

(
2ω + ∂θ∗

∂ω
r∗2
)
< 0. This inequality simplifies to

∂θ∗

∂ω
(1− θ∗) + 2ω

∂θ∗

∂r2

< 0. (42)

Using the equilibrium deposit rate to replace 1− θ∗ = ω2

r∗2
and the fact that ∂θ∗

∂r2
=

1
r2

[
θ∗ − ω ∂θ∗

∂ω

]
, we can re-express this condition as:

θ∗ + r∗2
∂θ∗

∂r2

< 0, (43)

which has the intuitive interpretation of an elasticity. In particular, the elasticity

of the failure threshold with respect to deposit rate, η = − r∗2
θ∗
∂θ∗

∂r2
, has to exceed 1
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for the indirect effect to dominate and thus dθ∗

dω
< 0, where r∗2 solves V (r∗2) = 0.

Using 1−θ∗ = ω2

r∗2
to rewrite Condition (42) yields ω ∂θ∗

∂ω
+2r2

∂θ∗

∂r2
< 0. Inserting

the expressions for the partial derivatives dividing by the positive common term
r∗2

R(r∗2−ω)2
, we obtain η > 1 if and only if ωr∗2(1 − L) + 2 [(r∗2)2 − 2ωr∗2 + ω2L] < 0.

Rewriting yields the following condition with a quadratic term:

h(r∗2, ω) ≡ (r∗2)2 − 3 + L

2
ωr∗2 + ω2L < 0. (44)

We turn to the proof of the proposition. First, we determine whether dθ∗

dω
< 0 when

evaluated at ω = 1 is possible. Using condition (44), this boils down to (r∗2)2 −
3+L

2
r∗2 +L < 0. Thus, we can find the roots rC2 ≡ ω

4

(
3 + L−

√
L2 − 10L+ 9

)
and

rD2 ≡ ω
4

(
3 + L+

√
L2 − 10L+ 9

)
such that h < 0 if and only if rC2 < r∗2 < rD2 .

Since rC2 < ω is inadmissible, rD2 is the relevant root, which is independent of R.

Second, we impose parameter constraints to ensure rD2 ∈ (rmin2 , rmax2 ). Using

the expression for rmax2 as given in (28) and evaluating it at r1 = 1 and ω = 1,

rD2 < rmax2 can be expressed as 1−L
4

+
√

1− L > 1
4

√
L2 − 10L+ 9. Squaring and

rewriting yields 8(1−L)(1+
√

1− L) > 0, which always holds for L < 1. Moreover,

for rD2 > rmin2 to hold at ω = 1, it suffices to show that θ∗(ω = 1, r2 = rD2 ) < 1.

This yields another lower bound on profitability:

R > R4 ≡
rD2 (rD2 − L)

rD2 − 1
. (45)

Third, r∗2 decreases in R, while rD2 is independent of it. Thus, there exists

a critical value, R5, such that r∗2 < rD2 for all R > R5. Importantly, R5 < ∞.

One can easily show that rD2 > 1 > L because
√
L2 − 10L+ 9 > 1 − L can be

rearranged by squaring to 8(1 − L) > 0. By contrast, r∗2 → 1 for R → ∞ since

θ∗ → 0 and thus r∗2 → 1 for a given L < 1 and ω = 1.

The reader may notice that the bound R2 characterized in the proof of

Proposition 2 converges to ∞ as ω → 1, thus becoming the binding bound on

profitability. However, it is important to stress that this simple sufficient condition

is quite restrictive. In fact, the numerical example in the main text shows that
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our results also hold for much lower levels of the investment profitability R.

Fourth, we show that dθ∗

dω
> 0 for large ω. Recall that dr∗2

dω
> 0 and r∗2 < rmax2 .

Then, we can denote ωmax such that r∗2 → rmax2 when ω → ωmax. In this limit,

Condition (43) is violated because ∂θ∗

∂r2
→ 0 when r2 → rmax2 . Thus, dθ∗

dω
> 0.

Note that ωmax < ω̃. To see this, recall that (i) R1 = +∞ at ω = ω̃ and (ii)

R1 <∞ for any ω < ω̃. That is, for any ω < ω̃, there exists a finite R1 such that

the participation constraint binds exactly at r2 = rmax2 . Hence, ∂R1

∂ω
> 0 implies

that there exists an ω < ω̃ and R > R1 for which r∗2 = rmax2 . We denote it as

ωmax.

Taken these steps together, we have dθ∗

dω
> 0
∣∣
ω=1

< 0 and dθ∗

dω

∣∣
ωmax

> 0.

Hence, there is at least a value of ω, denoted as ωmin, at which θ∗ is minimized.

Fifth, we show that ωmin is unique. The value ωmin solves h(r∗2, ωmin) = 0,

where h(r2, ω) is given in (44). Since r∗2 is a function of ω, h(r2(ω), ω) is a poly-

nomial where ω is the main variable. The degree of the polynomial determines

the number of possible values ωmin. Since dθ∗

dω

∣∣
ω=1

< 0 and dθ∗

dω

∣∣
ω̃
> 0, the num-

ber of solutions ωmin must be odd. To determine the degree of the polynomial

h(r2(ω), ω), it is useful to characterize a closed-form solution for r∗2. Since r∗2 solves

V (r∗2, ω) = 0 given in (7). Substituting the expression for θ∗ from (4), we obtain:

r3
2 − r2

2(R + ωL) + r2Rω(ω + 1)−Rω3 = 0. (46)

Equation (46) has three roots, which solve the corresponding depressed cubic

equation

y3 + Py +Q = 0, (47)

where y = r2−R+ωL
3

, P = 3Rω(1+ω)−(R+ωL)2

3
andQ = −2(R+ωL)3+9(R+ωL)Rω(ω+1)−27Rω3

27
.

We focus on parameters such that 4P 3 + 27Q2 > 0. Thus, there is only one real

root:

y =
3

√
−Q

2
+

√
Q2

4
+
P 3

27
+

3

√
−Q

2
−
√
Q2

4
+
P 3

27
. (48)

The expression pinning down y and, in turn, r∗2 is a function of ω. One can show
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that ω only appears at a power of 1. This implies that h(r2(ω), ω) has at most two

roots, of which only one can be in the range 1 < ω < ω̃. Since the derivative is

initially negative and eventually positive, there must be an odd number of crossings

with zero within [1, ω̃]. Hence, ωmin is unique.

D Proof of Proposition 4

The introduction of holding limits affects consumers’ decisions at t = 0 and t = 1.

At t = 0, holding limits changes the consumers’ participation constraint to:∫ 1

θ∗
r2 dθ ≥ (ωHL)2 = [1 + γ(ω − 1)]2 . (49)

The left-hand side is the value of the deposit claim to the consumer (unchanged

relative to the main text). The right-hand side is the expected return of holding

CBDC, which differs from the main text because only a fraction γ of funds can be

held in CBDC. At t = 0 an consumer invests γ in CBDC and 1−γ in storage/cash.

At t = 1, the initial investment returns ω on the γ units, whose a fraction γ is

held in the CBDC account while the remainder is held in storage/cash. Thus, the

analysis in the main text is a special case for no holding limits, ωHL(γ = 1) = ω.

At t = 1, holding limits only affects a depositor’s expected payoff from with-

drawing, r1ω
HL, so they have the intended effect of directly reducing withdrawal

incentives by lowering the remuneration of the withdrawn funds stored until t = 2.

Thus, the effective CBDC remuneration with holding limits is ωHL ≡ 1+γ(ω−1).

Once this transformation is made, the economy is identical to the one without

holding limits with the only difference that ω is replaced by ωHL.

The bank run threshold is θ∗γ = r2
R
r2−LωHL
r2−r1ωHL , where θ

∗
γ increases in γ because

∂θ∗γ
∂γ

= r2
R

r2(ω−1)(r1−L)
(r2−r1(1+γ(ω−1)))2

> 0 whenever ω > 1. This result captures the “common

wisdom” about holding limits: introducing them (i.e., setting γ < 1) reduces bank

fragility, effectively mitigating the direct effect of CBDC remuneration on fragility.

However, the introduction of holding limits also affects the sensitivity of
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the run threshold to changes in r2, thus leading to a potential ambiguous effect

on fragility when banks respond to the introduction of CBDC. The derivative of

the threshold θ∗γ with respect to r2 is now a function of γ and equal to ∂θ∗γ
∂r2

=
θ∗γ
r2
− r2

R
(r1−L)ωHL

(r2−r1ωHL)2
. Hence, the total effect of holding limits on bank fragility is

thus not obvious and again depends on both a direct effect (via lower withdrawal

incentives) and an indirect effect (via equilibrium deposit rates).

E Proof of Proposition 5

We derive the total effect of changes in policy parameters on fragility. There is the

usual direct effect and an indirect effect via deposit rates. As in the main model,

we start with the direct effect on withdrawal incentives and bank fragility at t = 1.

In the main model, π1 = ωr1n = ωL, while with contingent remuneration (CR)

we have π1,CR, as given in the main text. As a result, the failure threshold in the

withdrawal subgame is lower with contingent remuneration, θ∗CR < θ∗, which is

the intended objective of the policy. To see this, we write the failure threshold as

a function of the expected payoff from withdrawing:

θ∗ =
r2

R

r2 − π1

r2 − π1
r1
L

, (50)

so dθ∗

dπ1
=

r22(r1−L)

RL(r2−π1r1/L)2
> 0 and ∂π1,CR

∂ω
= (n− ñ)r1 > 0 and ∂π1,CR

∂ñ
= (ω−ω)r1 > 0.

Thus, contingent remuneration achieves its direct objective of reducing withdrawal

incentives, the more so, the more restrictive the policy is (lower ω and lower ñ).

Since dπ1,CR
dr1

= ñ(ω − ω) > 0 and ∂n̂
∂r1

< 0, higher short-term deposit rates

again increase fragility, dθ
∗
CR

dr1
> 0. Moreover, when evaluated at r1 = 1, we have

∂θ∗CR
∂r2

=
(r2 − π1,CR

L
)2 −

(π1,CR
L

)2
(1− L)

R(r2 − π1,CR
L

)2
=

1

R
−

π2
1,CR(1− L)

RL2(r2 − π1,CR
L

)2
(51)

π1,CR = ωL+ ñ(ω − ω), (52)

so π1,CR is a sufficient statistic for the effect of intervention parameters on fragility
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at t = 1 and comprises the effects of both ñ and ω.

As in the main model, there is also an effect of CR on the ex-ante deposit

rate and, thus, an indirect effect on fragility. For vanishing private noise, the

remuneration of CBDC is ω for θ > θ∗ and ω for θ < θ∗, resulting in the changed

participation constraint of consumers given in the main text. Expected bank

profits change to

ΠCR =

∫ 1

θ∗CR

(Rθ − r2)dθ. (53)

The incentives of the bank and consumers are again aligned in setting the

lowest feasible short-term deposit rate, r∗1,CR = 1, because dΠCR
dr1

< 0 and dVCR
dr1

=
dθ∗CR
dr1

[−r2+ω(ω−ω)] < 0 because r∗2 > ω2 in any equilibrium. Using the same steps

as in the main text, we find that r∗2,CR solves a binding participation constraint.

There is an asymmetry in policy parameters on the ex-ante choices. Lowered

CBDC remuneration ω affects the value of the deposit claim directly, while the

intervention threshold ñ only affects the ex-ante choice via its effect on fragility.

Formally, changes in ñ translate into changes in π1,CR, so we study how the latter

affects fragility. To derive the effect of the intervention on the deposit rate, we

use the IFT and the following partial derivatives:

∂VCR
∂r2

= 1− θ∗CR −
[
r2 − ω(ω − ω)

]∂θ∗CR
∂r2

> 0, (54)

∂VCR
∂π1,CR

= −
[
r2 − ω(ω − ω)

] ∂θ∗CR
∂π1,CR

< 0, (55)

∂VCR
∂ω

= −
[
r2 − ω(ω − ω)

] ∂θ∗CR
∂π1,CR

∂π1,CR

∂ω
− ωθ∗CR < 0. (56)

Thus, the effects on the deposit rate are:

dr∗2,CR
dπ1,CR

=

[
r2 − ω(ω − ω)

] ∂θ∗CR
∂π1,CR

1− θ∗CR −
[
r2 − ω(ω − ω)

]∂θ∗CR
∂r2

> 0, (57)

dr∗2,CR
dω

=

[
r2 − ω(ω − ω)

] ∂θ∗CR
∂π1,CR

∂π1,CR
∂ω

+ ωθ∗CR

1− θ∗CR −
[
r2 − ω(ω − ω)

]∂θ∗CR
∂r2

> 0. (58)
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Totally differentiating the failure threshold with respect to each policy parameter

(taking into account the indirect effect via deposit rates) yields the following:

dθ∗CR
dπ1,CR

=
(1− θ∗CR)

∂θ∗CR
∂π1,CR

1− θ∗CR −
[
r2 − ω(ω − ω)

]∂θ∗CR
∂r2

> 0, (59)

dθ∗CR
dω

=
(1− θ∗CR)

∂θ∗CR
∂π1,CR

∂π1,CR
∂ω

+ ωθ∗CR
∂θ∗CR
∂r2

1− θ∗CR −
[
r2 − ω(ω − ω)

]∂θ∗CR
∂r2

, (60)

whose denominator is positive. Hence, to obtain the inequality in the proposition,

we simply substitute the expressions for ∂θ∗CR
∂π1,CR

and ∂π1,CR
∂ω

. For ñ→ n, the benefi-

cial direct effect vanishes because ∂π1,CR
∂ω
→ 0, while the detrimental indirect effect

via lower equilibrium deposit rates remains bounded away from zero, resulting in

an overall detrimental effect on bank fragility.

F Proof of Propositions 6 and 7

Perfect competition. Consider perfect competition, β → 0. It implies that

the bank maximizes the expected return of its deposit claim (which is equivalent

to maximizing V ) subject to non-negative profits, Π ≥ 0. Our approach will be

to consider the unconstrained problem and then check whether bank profits are

indeed non-negative. The first-order condition pins down the equilibrium deposit

rate r∗2:

H(r∗2) ≡ dV

dr2

∣∣∣∣
r2=r∗2

= 0. (61)

Since H(rmax2 ) > 0, we deduce that rmax2 < r∗2 and, as a result, fragility increases

in the deposit rate around the equilibrium, ∂θ∗

∂r2

∣∣∣
r2=r∗2

> 0. Since

∂H

∂r2

≡ −2
∂θ∗

∂r2

− r2
∂2θ∗

∂r2
2

< 0, (62)

a unique global maximum exists. Using the IFT and

∂H

∂ω
≡ −∂θ

∗

∂ω
− r2

∂2θ∗

∂r2∂ω
, (63)
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we obtain
dr∗2
dω

=
∂θ∗

∂ω
+ r2

∂2θ∗

∂r2∂ω

−2∂θ
∗

∂r2
− r2

∂2θ∗

∂r22

, (64)

so dr∗2
dω

> 0 whenever r∗2 < 3ω, which arises from inserting the partial derivatives

into (63) and re-arranging. To obtain a sufficient condition for r∗2 < 3ω, note that

H(3ω) < 0 suffices. Using θ∗(r2 = 3ω) = 3ω 3−L
2R

and ∂θ∗

∂ω

∣∣
r2=3ω

= 3+L
4R

, we obtain a

sufficient condition for dr∗2
dω

> 0 under perfect competition, which is R < 3ω 9−L
4
.

Next, we turn from the effect of CBDC remuneration on deposit rates to its

effect on bank fragility. Using the total derivative of fragility, dθ∗

dω
= ∂θ∗

∂ω
+ ∂θ∗

∂r2

dr∗2
dω

,

we obtain dθ∗

dω
> 0 (after some rearrangement) whenever −∂θ∗

∂ω
∂θ∗

∂r2
− r2

∂θ∗

∂ω
∂2θ∗

∂r22
+

r2
∂θ∗

∂r2
∂2θ∗

∂r2∂ω
< 0, which always holds given the signs of the various partial derivatives

already established. Hence, higher CBDC remuneration increases fragility.

Finally, we need to establish that Π(r∗2) ≥ 0. Note that expected profits can

be written as Π = (1 − θ∗)
[
R
2

(1 + θ∗(r2))− r2

]
, where the first factor is strictly

positive because of θ∗ < 1 from the upper-dominance region. The second factor is

also positive because r∗2 ∈ (ω,R) and the following result:

R

2
(1 + θ∗)− r2 =

R

2
+
r2(r2 − ωL)

2(r2 − ω)
− r2 =

R− r2

2
+
r2

2

ω(1− L)

r2 − ω
> 0, (65)

so expected profits at the equilibrium deposit rate are strictly positive.

Imperfect competition. For β ∈ (0, 1), the equilibrium deposit rate r∗2 arises

from taking logs and differentiating, yielding the expression in Equation (14).

That is, the first-order condition that pins down r∗2 is written as Λ(r∗2) = 0, where

Λ(r2) ≡ −β
(

1− θ∗ + (Rθ∗ − r2)
∂θ∗

∂r2

)[∫ 1

θ∗
r2dθ − ω2

]
+ · · · (66)

· · ·+ (1− β)

(
1− θ∗ − r2

∂θ∗

∂r2

)∫ 1

θ∗
(Rθ − r2) dθ.

Thus, the partial derivative ∂Λ
∂ω

contains both positive and negative terms as well

as an ambiguous one. All non-positive terms are multiplied by (1− β), so a high

enough value of β suffices for ∂Λ
∂ω
> 0 and, thus, dr

∗
2

dω
> 0 from the IFT. To see this,

39



note that

∂Λ

∂ω
= −β (−θω + (Rθ∗ − r2)θrω +Rθωθr)

[∫ 1

θ∗
r2dθ − ω2

]
+ · · · (67)

· · · − β (1− θ∗ + (Rθ∗ − r2)θr) [−rθω − 2ω] + · · ·

· · ·+ (1− β)

∫ 1

θ∗
(Rθ − r2) dθ [−θω − rθrω]− (1− β)θω(Rθ∗ − r2) (1− θ∗ − r2θr)

where subscripts on θ denote first- and second-order partial derivatives of θ∗ and

recall that θω > 0 and θrω < 0.

G Proof of Proposition 8

This proof has three parts. First, we derive the run threshold. This part uses the

same argument as the proof of Proposition 1. The threshold θ∗q corresponds to the

solution to ∫ n̂(θ)

0

qr2dn =

∫ n

0

ωr1dn,

because the bank repays depositors r2 at t = 2 only when the project succeeds,

where both n̂ (θ) and n are independent of q and identical to the correspond-

ing cutoffs in the main text. Some algebra yields the threshold θ∗q stated in the

proposition. Differentiating this threshold with respect to q and ω, we obtain:

∂θ∗q
∂q

=
r2

R

r2qr2 − r2ωr1 − qr2r2 + ωLr2

(qr2 − ωr1)2 = −r
2
2

R

ω (r1 − L)

(qr2 − ωr1)2 < 0, (68)

∂θ∗q
∂ω

=
r2

R

−Lqr2 + Lωr1 + qr2r1 − ωLr1

(qr2 − ωr1)2 =
r2

R

qr2 (r1 − L)

(qr2 − ωr1)2 > 0. (69)

Second, we solve for the bank’s choice at t = 0. Differentiating the expected

profits (16) with respect to q, we obtain Equation (17). A high enough c ensures

that the solution q∗ is interior and unique (because SOCq < 0 for high c).

Third, and finally, we study how an increase in CBDC remuneration affects

financial stability. Note that the monitoring effort q∗ directly depends on CBDC

remuneration. Formally, the overall effect of a change in CBDC remuneration on
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bank monitoring effort can be expressed as follows (because of the IFT):

∂q∗

∂ω
= −

∂FOCq
∂ω

SOCq
. (70)

Since SOCq < 0, the sign of dq∗

dω
is equal to the sign of ∂FOCq

∂ω
, which is equal to

∂FOCq
∂ω

= −∂θ
∗
s

∂ω

(
Rθ∗q − r2

)
− q

∂θ∗q
∂q

∂θ∗s
∂ω

R− q
∂2θ∗q
∂q∂ω

(
Rθ∗q − r2

)
= −

[
∂θ∗q
∂ω

+ q
∂2θ∗q
∂q∂ω

] (
Rθ∗q − r2

)
− q

∂θ∗q
∂q

∂θ∗q
∂ω

R

= −
[
∂θ∗q
∂ω

+ q
∂2θ∗q
∂q∂ω

] (
Rθ∗q − r2

)
+ ω

(
∂θ∗s
∂ω

)2

R,

where

∂2θ∗q
∂q∂ω

= −r
2
2

R
(1− L)

(qr2 − ω)2 + 2ω (qr2 − ω)

(qr2 − ω)4 = −r
2
2

R
(1− L)

qr2 + ω

(qr2 − ω)3 < 0

= −
∂θ∗q
∂ω
− 2ω

qr2
2

R

(1− L)

(qr2 − ω)3 .

Substituting the expressions for θ∗q ,
∂θ∗s
∂ω
,
∂2θ∗q
∂q∂ω

, and ∂θ∗q
∂q

, we obtain

∂FOCq
∂ω

= 2ω
qr2

2

R

(1− L)

(qr2 − ω)3 (Rθ∗s − r2)+ω

(
∂θ∗q
∂ω

)2

R =
1

R
qωr3

2(L−1)2 qr2 + 2ω

(qr2 − ω)4
> 0,

which implies, in turn, that dq∗

dω
> 0.

Finally, we move on to the total effect of CBDC remuneration on bank

fragility:
dθ∗

dω
=
∂θ∗

∂ω

[
1− ω

q

dq∗

dω

]
> 0, (71)

where the sign arises because ∂θ∗

∂ω
> 0 and one can show that

[
1− ω

q

dq∗

dω

]
= 1 +

ω

q

∂2

(
q
∫ 1
r2
R
qr2−ωL
qr2−ω

(Rθ−r2)dθ− cq2

2

)
∂q∂ω

∂2

(
q
∫ 1
r2
R
qr2−ωL
qr2−ω

(Rθ−r2)dθ− cq2

2

)
∂q2

> 0.
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