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Abstract

We develop a benchmark model to study the equilibrium consequences of indexing

in a standard rational expectations setting. Individuals incur costs to participate in

financial markets, and these costs are lower for individuals who restrict themselves

to indexing. A decline in indexing costs directly increases the prevalence of index-

ing, thereby reducing the price efficiency of the index and augmenting relative price

efficiency. In equilibrium, these changes in price efficiency in turn further increase

indexing, and raise the welfare of uninformed traders. For well-informed traders, the

share of trading gains stemming from market timing increases relative to stock selection

trades.
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1 Introduction

The standard investment recommendation that financial economists offer to retail investors

it to purchase a low-fee index mutual fund or exchange-traded fund (ETF), a strategy often

described as “index investing,” or simply “indexing.” An increasing number of indexing

products are available, and are increasingly inexpensive and accessible, and more and more

investors follow this advice.1 In this paper, we develop a benchmark model to analyze

the equilibrium consequences of a decrease in indexing costs, paying particular attention to

participation and welfare.

Our model has the following three features, all of which are necessary for the topic at

hand. First, and because much of the discussion of indexing revolves around retail investors,

some agents in our model have much less information about future asset cash flows than

others. Second, while agents seek trading profits, they also have other trading motives;2 we

model these as stemming from a desire to reallocate risk from non-financial income, with the

effect on agents’ desired trades resembling discount rate shocks. Third, there are costs to

participating in financial markets, which are potentially lower for investors who index. We

characterize what happens in such a model as indexing costs fall.

The direct consequence of a fall in indexing costs is, naturally, to draw investors into in-

dexing, and away from both more active trading strategies and non-participation in financial

markets. The marginal investor who switches from non-participation to indexing is relatively

uninformed. Similarly, the marginal investor who switches out of active trading into indexing

is someone who was less informed than other active traders. So the direct consequence of

falling indexing costs is to reduce the price efficiency of the index and introduce a common

“noise” factor to stock prices of firms covered by the index, while simultaneously reducing

“liquidity” in individual stocks.3

The central questions we ask in this paper are: What equilibrium effects follow from

these direct consequences of a fall in indexing costs? And what is the net effect on investors’

welfare? In particular, do equilibrium forces dampen the direct consequences, or are the

direct consequences instead self-reinforcing?

We find that the direct consequences are self-reinforcing. Although the reduction in price

efficiency associated with indexing may sound undesirable, investor welfare increases, even

for the least informed investors, as we discuss below. The increase in the welfare of indexing

investors draws in more relatively uninformed investors, amplifying the original effect.

Conversely, the consequence of relatively uninformed investors switching from active trad-

1See, for example, French (2008) and Stambaugh (2014).
2Absent such motives, the no-trade theorem would apply.
3See evidence in, for example, Ben-David, Franzoni, and Moussawi (2018).
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ing to index investing is to increase the price efficiency of individual stock prices. Although

this sounds desirable, it reduces investor welfare. This induces yet more investors to abandon

active trading, again amplifying the original effect.

As the above discussion suggests, our key analytical result is that increases in partici-

pation in the market for a financial asset raise the welfare of those already participating.

Put differently, participation decisions are strategic complements.4 The underlying economic

force is that an individual investor prefers to trade in a market in which the average investor

is relatively uninformed; since the marginal investor is less informed than the average in-

vestor, this generates strategic complementarity. Although it may seem intuitive that an

investor prefers his average counterparty to be uninformed, this same force leads to prices

that are more divorced from cash flows, i.e., lower price efficiency, which is often interpreted

as being undesirable. Concretely, lower price efficiency in our framework means that prices

are more exposed to fluctuations in expected non-financial income that investors wish to

partially hedge, i.e., fluctuations in discount rates. As such, establishing an investor’s pref-

erence for less informed counterparties entails establishing that the benefits of a less informed

average counterparty exceed the costs of lower price efficiency.5 Perhaps surprisingly, and

despite the fact that we work with a canonical model of the type introduced by Diamond

and Verrecchia (1981), this analysis has not been conducted in the existing literature.

The central empirical predictions of our analysis are about price efficiency. As indexing

costs fall, and indexing increases, price efficiency of the index as a whole falls, while the

relative price efficiency of individual stocks increases. Moreover, price efficiency is lower for

stocks covered by the index than for those outside. It further follows that index reversals

become more pronounced, and a greater fraction of the trading gains of relatively informed

investors are attributable to “market timing” strategies as opposed to “stock selection”

strategies. Section 5 reviews empirical support for these findings.

Asides from its implications for the equilibrium effects of indexing, our paper also speaks

to the wider question of whether and how the financial sector contributes to social welfare

(see, e.g, Baumol (1965)). In particular, we work with a canonical model in which a financial

market exists because it facilitates risk-sharing, and show that informed trading generally

worsens this risk-sharing function, while uninformed trading improves it. In Section 7 we also

explore an extension of our baseline model in which the information produced by financial

4Grossman and Stiglitz (1980) analyze traders’ decisions to become informed, taking the set of trading
agents as given, and show that information acquisition decisions are strategic substitutes: the incremental
trading profits from private information decline as more traders become informed. In contrast, we consider
a setting without exogenous noise traders, and analyze traders’ participation decisions.

5This result is related to the so-called “Hirshleifer effect” (Hirshleifer (1971)), but does not follow directly
from it; see subsection 3.1 below, and also related discussions in Maŕın and Rahi (1999) and Dow and Rahi
(2003).
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markets guides resource allocation decisions (see Bond, Goldstein, and Edmans (2012) for

a survey), and in doing so formalize a positive welfare effect of the increase in the relative

price efficiency that follows from lower indexing costs.

Related literature: In its general theme, our analysis is related to papers such as Sub-

rahmanyam (1991), Cong and Xu (2019), Stambaugh (2014), and Bhattacharya and O’Hara

(2018). Subrahmanyam (1991) models the introduction of index futures, while Cong and Xu

(2019) and Bhattacharya and O’Hara (2018) model the introduction of ETFs. An impor-

tant assumption in all three papers is how the introduction of a new financial product affects

the allocation of “noise” or liquidity traders across assets.6 Stambaugh (2014) analyzes the

effects of an exogenous decline in noise traders for financial markets, and in particular, for

actively managed investment funds. Relative to all these papers, we model the behavior

of all financial market participants, and in particular, analyze how a fall in indexing costs

affects participation decisions and welfare. Like us, Peress (2005) analyzes participation, in

his case in an economy with a single risky asset that is initially held by noise traders. In his

analysis, the direct effect of a fall in participation costs is to increase participation, leading

to smaller positions for rational traders. In contrast to our analysis, these smaller positions

in turn reduce the gains to participation, dampening the direct effect of lower costs.7

In an independent, contemporaneous, and complementary paper, Baruch and Zhang

(2018) likewise study the equilibrium consequence of indexing, though from a very differ-

ent perspective. They consider a multi-asset version of Grossman (1976), so that without

indexing prices fully reveal agents’ private signals. In this setting they show that an exoge-

nous increase in indexing reduces the amount of information prices contain about individual

assets, while the amount of information prices contain about aggregates is unaffected.

We have deliberately based our analysis on the canonical model of financial markets

of Diamond and Verrecchia (1981). Like Grossman and Stiglitz (1980), Hellwig (1980),

and Admati (1985), these authors analyze trade between differentially informed agents, but

different from these papers, there are no exogenous “noise” or “liquidity” trades. Instead,

agents have heterogeneous and privately observed exposures to risk. Consequently, financial

markets hold the potential to increase welfare by allowing agents to redistribute risk. Perhaps

surprisingly, and although a model of this type has been analyzed by a significant number of

authors, results on welfare are scarce.8 A significant algebraic complication in characterizing

6Subrahmanyam (1991), and Cong and Xu (2019) allow for optimization by a subset of these traders.
7In Peress (2005), the smaller positions that stem from lower participation costs also reduce the amount

of information collected by “active” traders. As in our analysis, this reduces the information content of
prices, though via a distinct channel. Also related is Gârleanu and Pedersen (2018), who among other things
consider the choice between actively and passively managed funds in a financial market with a single risky
asset and noise traders. Gârleanu and Pedersen (2020) extend their analysis to a multi-asset model.

8For results on the effect of information on welfare in different equilibrium models of financial markets,
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welfare is that, when combined with the asset price, each agent’s private exposure shock

contains information about expected asset payoffs. To avoid this complication, Verrecchia

(1982) and Diamond (1985) consider sequences of economies in which the variance of each

individual’s exposure shock grows with the number of agents, and directly study the limit

of this sequence. In the limit economy, each agent’s exposure shock has infinite variance,

and so expected utility prior to the realization of the exposure shock is undefined, in turn

preventing the analysis of participation decisions prior to the realization of exposure shocks.9

In an independent, contemporaneous, and complementary paper, Kawakami (2017) also

makes progress in characterizing welfare in a Diamond and Verrecchia (1981) model. Whereas

we study an economy with a continuum of agents and allow for heterogeneity in the precision

of signals about cash flows that agents observe, thereby allowing us to consider the effect

of an increase in participation by relatively uninformed agents, Kawakami instead considers

a finite-agent economy with homogeneous signal precisions, in which an increase in the

size of the market is associated with better diversification of individual exposure shocks.

Analytically, we make more explicit use than Kawakami of market-clearing conditions, which

allows us to incorporate heterogeneity in signal precisions in a tractable way.

Maŕın and Rahi (1999) obtain welfare results in a relatively specialized setting: there

are two classes of agents, one class of which sees identical signals about asset payoffs and

private endowments, and another class of completely uninformed agents. Moreover, the

traded asset is in zero net supply. Dow and Rahi (2003) also analyze welfare, and obtain

some tractability by inserting a risk-neutral market maker into the economy, which reduces

the applicability of the model for analyzing aggregate financial markets. In closely related

settings, Medrano and Vives (2004) argue that “the expressions for the expected utility of

a hedger . . . are complicated,” whereas Kurlat and Veldkamp (2015) write that “there is no

closed-form expression for investor welfare.” The complications, common to our model as

well, stem from the role of exposure shocks as signals about asset cash flows, on top of the

standard risk sharing role that motivates trade.

see, for example, Schlee (2001) and Kurlat (2019). The former paper analyzes the value of public signals in a
setting in which individual endowments are public once they are realized, and so trades can be conditioned on
them, and characterizes conditions in which improvements in public information cause a Pareto deterioration.
In contrast, in our setting (inherited from Diamond and Verrecchia (1981)), individual signals are private,
and individual endowments are likewise private, even after they are realized. The latter paper analyzes
what is essentially an origination market in which sellers are strictly better informed than buyers, and
characterizes the ratio of the social to private value of buyer information. In this setting, improvements in
seller information reduce adverse selection, and so the social value of information is positive. In contrast,
in our setting improvements in trader information do not necessarily reduce adverse selection, and our
results imply that improvements in information of a positive measure of agents reduce the welfare of all
counterparties.

9If instead one modeled participation decisions as being made after the exposure shock, then almost all
agents would participate, since their exposure shocks are so large.
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The strategic complementarity of participation decisions is related to results in Admati

and Pfleiderer (1988) and Chowdhry and Nanda (1991) on the incentive for liquidity to

traders to trade in the same periods and locations, respectively, as other liquidity traders.

Different from in our analysis, in these papers liquidity traders trade for unspecified exoge-

nous reasons, so there is no channel via which price efficiency can benefit such traders.

Finally, we emphasize that we examine “indexing” in the sense of a “passive” investment

strategy based on an index. Other authors have analyzed the distinct topic of the role of

indices as benchmarks that affect the compensation of fund managers: see, e.g., Admati and

Pfleiderer (1997), Basak and Pavlova (2013), Breugem and Buss (2018), Buffa, Vayanos, and

Woolley (2019).

2 The model

2.1 Preferences, assets, endowments, information

We work with a version of Diamond and Verrecchia (1981) in which there is a unit interval

of agents (see Ganguli and Yang (2009) and Manzano and Vives (2011)) and multiple assets.

We let i ∈ [0, 1] index agents. We emphasize that this is a canonical setting, in which risk-

sharing benefits lead to gains from trade, which in turn allows for informed trading. Indeed,

we are unable to think of a simpler or more standard framework that still contains the three

key features discussed in the introduction.

Each agent i has preferences over terminal wealth Wi with a constant absolute risk

aversion (CARA) of γ. There are m risky assets available for trading; and also a risk-

free asset that is in perfectly elastic supply and has a net return that we normalize to 0.10

Each asset k ∈ {1, . . . , m} produces a payoff given by random variable X̃k, with identical

mean, and identical variance τ−1
X . All exogenous random variables in the model are normally

distributed and mutually independent. Each agent’s initial endowment of each asset is S̃.

We characterize the competitive equilibrium of the economy, where agents are small relative

to the market, and act as price-takers. The equilibrium price of asset k is P̃k.

In addition, agents have other sources of income (e.g., labor income, non-traded capital

income) that are correlated with the cash flows of the risky assets. For simplicity, we assume

the correlation is perfect. Specifically, let Z̃k and ũik be random variables, and define agent

10Alternatively, one can assume the risk-free asset is in zero net supply, and interpret the prices of risky
assets as forward prices (i.e., the amount of certain wealth that will be exchanged for the risky asset’s payoff
at the terminal date). In this case, the market for the risk-free asset clears by Walras’s Law.
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i’s income from sources other than the risky assets by

m
∑

k=1

(

Z̃k + ũik

)

X̃k. (1)

Here, Z̃k + ũik represents agent i’s non-financial exposure to the cash flow risk X̃k. Agent

i privately observes the sum Z̃k + ũik, but not its individual components Z̃k and ũik. So

agents know their own income exposures Z̃k+ ũik, but remain uncertain about the aggregate

component of other agents’ exposures, Z̃k. The variances of Z̃k and ũik are τ−1
Z and τ−1

u

respectively, and E

[

Z̃k

]

= E [ũik] = 0.

Our environment is symmetric across assets; this considerably simplifies the analysis

because it makes possible the change of basis that we describe in subsection 2.3. Moreover,

agents have the same risk aversion, initial asset endowments, and ex ante exposures to

other sources of risk, though they differ in their access to information, as described below.

These agent-symmetry properties are important in allowing us to tractably characterize the

expected utility from participation in financial markets, and hence participation decisions.

That said, the agent-symmetry assumptions can be at least slightly relaxed. For example,

it is straightforward to instead assume that some agents have greater initial endowments of

financial assets but smaller ex ante exposures to non-financial risk, provided the combined

ex ante financial and non-financial exposure remains constant across agents. Similarly, we

could allow some agents to have greater initial endowments of financial assets but lower risk

aversions, provided the two sources of variation offset each other.

Gains from trade stem from agents’ differential and privately observed exposures Z̃k+ũik.

In equilibrium, fluctuations in aggregate exposures Z̃k affect prices, and so resemble discount

rate fluctuations. It is also worth noting that one can give a more behavioral interpretation

to Z̃k + ũik: looking ahead to agents’ trades (11), Z̃k + ũik can be interpreted simply as a

shock to agent i’s desired holding of asset k, independent of the source of this shock.

The terminal wealth of agent i is determined by the combination of trading profits, payoffs

from initial asset endowments, and other income (1). For notational convenience, define

ẽik = S̃ + Z̃k + ũik

to represent agent i’s net exposure to cash flow X̃k, stemming from the combination of initial

asset holdings and non-financial exposure.

We denote by θ̃ik agent i’s trade of asset k. The terminal wealth of an agent who makes
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the vector of trades θ̃i is

W
(

θ̃i, ẽi
)

≡
m
∑

k=1

θ̃ik
(

X̃k − P̃k

)

+S̃X̃ik+
(

Z̃k + ũik

)

X̃ik =
m
∑

k=1

(

θ̃ik + ẽik
)(

X̃k − P̃k

)

+ẽikP̃k.

(2)

Prior to trading, each agent i observes private signals of the form

ỹik = X̃k + ε̃ik,

where ε̃ik is a random variable with mean 0 and variance τ−1
i .11

The precisions τ−1
i of private signals are heterogeneous across agents, so that some agents

are more informed than others. Without loss, we order agents so that signal precision τi is

decreasing in i; and for simplicity, we assume τi is strictly decreasing.12

An agent’s information set at the time of trading is hence the triple ofm-vectors
(

ỹi, ẽi, P̃
)

,

which consists of signals about cash flows ỹi; exposures ẽi; and prices P̃ .

2.2 Indexing and participation

Agents incur a cost κ > 0 of fully participating in financial markets, reflecting a combination

of information collection and processing costs, psychic costs, expected trading costs, and the

cost of potentially trading in a less than optimal way. Agents make participation decisions

prior to observing any of
(

ỹi, ẽi, P̃
)

. This timing assumption for the participation decision is

important for tractability, since it ensures that all random variables are normally distributed

at the trading stage.

In addition to fully participating in financial markets, agents have the option of partici-

pating only via trading an “index” asset. The index covers the first l ≤ m of the m assets,

where we assume that l is a power of 2 (this greatly enhances tractability, as will become

clear in the next subsection). Since all assets have the same supply S̃, the index asset likewise

11Note that an agent i has the same quality signal about all assets. We leave the interaction of heterogeneity
of signal precision across assets with heterogeneity of signal precisions across agents for future research.

12Formally, our model is one in which all agents either invest directly in individual stocks, or else invest via
passive index funds (see below). An alternative interpretation is that agents with a low i index (and hence
precise signals) are relatively good at identifying skilled mutual and hedge funds (Gârleanu and Pedersen
(2018)), and the direct investments in the model are made through such intermediaries. Looking ahead, and
as one would expect, agents’ desired trades depend on their exposure realizations. So in the intermediated
investment interpretation just described, agents would also pay attention to general “styles” of funds, in
addition to the skill of managers. See also Garćıa and Vanden (2009).
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has an equal holding of each asset k ≤ l covered, and produces a cash flow

X1 ≡ l−
1

2

l
∑

k=1

X̃k, (3)

where l
1

2 is an index divisor, set so that var (X1) = τ−1
X . Because of equal supply S̃ of the

underlying assets, the index can be viewed as either equal- or value-weighted, since the value

share of an asset k ≤ l in an index trade and in the market for assets j ≤ l is simply P̃k∑l
j=1

P̃j
.

Indexing by agent i corresponds to buying or selling equal amounts of all assets in the

index, and zero units of assets outside the index, i.e., trade vectors θ̃i such that θ̃ij = θ̃ik for

any j, k ∈ {1, . . . , l} and θ̃ik = 0 for k > l.

The advantage of participating in financial markets only via indexing is that the partici-

pation cost is lower, which we denote by κ1 ∈ (0, κ). The lower participation cost of indexing

reflects lower trading costs, because of the availability of low cost index mutual funds and

exchange traded funds (ETFs); lower cognitive demands and attention costs; and lower in-

formation costs, since as our formal analysis will show, a sufficient statistic for agent i’s

private information under indexing is the average signal for assets in the index, 1
l

∑l
k=1 ỹik,

which can be interpreted as agent i restricting attention to broad economic aggregates.

Looking ahead, the main comparative static we will be interested in is a fall in the cost

of indexing κ1. This corresponds to falling fees, greater availability, and greater awareness

of products such as low-cost index funds and ETFs. It may also reflect an increase in public

awareness of the standard advice given by finance academics.

Finally, individuals i who do not participate in financial markets at all pay no participa-

tion cost, but do not trade, i.e., θ̃ik = 0 for all assets k.

The definition of an equilibrium in terms of pricing, participation decisions, and trading

strategies is standard. However, we postpone a formal statement of equilibrium conditions

until subsection 2.4. This allows us to give the definition directly in terms of a spanning set

of synthetic assets, which we introduce next, and use to conduct our analysis.

2.3 Disentangling markets

Although the fundamentals of different assets are independent in all dimensions, the presence

of indexing agents links the prices of distinct assets. For example, if j and k are two distinct

assets covered by the index, then an indexing agent’s exposure ẽij to cash flow risk X̃j affects

the agent’s desired trade of asset k as well as of asset j.

Because of the entanglement that indexing produces between different assets covered by

the index, it is analytically very convenient to change basis and study the economy in terms
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of a set of synthetic assets that are mutually independent even in the presence of indexers.13

The case of two assets (l = m = 2) is simple. The first synthetic asset is the index

portfolio, X1 = 1√
2

(

X̃1 + X̃2

)

. The second synthetic asset is X2 = 1√
2

(

X̃1 − X̃2

)

, which

can be labeled a “spread” asset, as it allows agents to trade on the relative mispricing between

assets 1 and 2. We next generalize this construction to l > 2 assets in the index. We first

give a representative example, and then formalize the change of basis.

Example: Suppose there are m = 5 assets and the index covers the first l = 4. Then

consider the following set of 5 synthetic assets, where the 1st synthetic asset is the index

asset, and pays X1 as defined in (3); the 5th synthetic asset coincides with the underlying

asset 5, i.e., it pays X5 = X̃5; and the remaining 3 synthetic assets are long-short positions

in assets covered by the index, and pay X2, X3, X4 defined by

X2 =
1

2

(

X̃1 + X̃3 − X̃2 − X̃4

)

,

X3 =
1

2

(

X̃1 + X̃2 − X̃3 − X̃4

)

,

X4 =
1

2

(

X̃1 + X̃4 − X̃2 − X̃3

)

.

The five synthetic assets span the underlying assets X̃k. Moreover, they are uncorrelated

(i.e., cov (Xj , Xk) = 0 for all j, k), and each has variance τ−1
X . Note that E [X1] =

√
4E
[

X̃1

]

,

while E [Xj] = 0 for synthetic assets j = 2, 3, 4. Similarly the per-agent endowment of the

index synthetic asset 1 is
√
4S̃, while synthetic assets j = 2, 3, 4 are in zero net supply.

Everything about the above example extends to the general case (formally, see Lemmas

A-1 and A-2 in appendix). Specifically, we construct l synthetic assets to span assets 1, . . . , l.

Synthetic asset 1 is the index asset that pays X1 as defined in (3), with E [X1] =
√
lE
[

X̃1

]

and per-agent endowment S1 ≡
√
lS̃. Synthetic assets j = 2, . . . , l have payoffs denoted Xj ,

with E [Xj ] = 0 and per-capita endowment Sj ≡ 0. For assets j > l outside the index we

simply define Xj = X̃j, i.e., the synthetic and fundamental asset coincide. The correlation

of any pair of synthetic assets is 0. The variance of each synthetic asset is τ−1
X .

In general, we use tildes to denote quantities related to fundamental assets, and the

absence of a tilde to denote quantities related to synthetic assets. For example, P is the

vector of prices of synthetic assets, and θi is the vector of agent i’s trades of synthetic assets.

13This change of basis is not essential to solve for equilibrium prices; see Admati (1985)’s analysis of a
multi-asset version of Hellwig (1980).
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The terminal wealth of agent i given the vector of synthetic exposures ei and trades θi is

W (θi, ei) =
m
∑

k=1

(θik + eik) (Xk − Pk) + eikPk.

To solve for equilibrium prices and welfare, we work directly with the synthetic assets

described above. By construction, the synthetic assets are independent of each other in all

respects. Moreover, and importantly, indexing corresponds simply to the constraint that an

agent can trade only synthetic asset 1, with no trade of the other synthetic assets. This

means we can analyze the equilibrium in the market for each synthetic asset in isolation

(given CARA preferences). Formally, we denote the set of trades available to agents who

pay the reduced participation cost κ1 by Θ1 ≡ {θi ∈ Rm : θik = 0 if k '= 1}.

2.4 Equilibrium

The equilibrium definition is a straightforward extension of that used in competitive rational

expectations models (Grossman and Stiglitz (1980), Hellwig (1980)), with the participation

decision incorporated. To ease the formal statement of participation decisions, we first

define the expected utilities UA
i (ei), U I

i (ei), U0
i (ei) associated with full participation, or

“active” trading; with indexing, or “passive” investing; and with non-participation. For

consistency with subsequent notation, we define these objects conditional on the vector of

exposure realizations, ei, and exclusive of the participation costs κ and κ1. In particular, it

is unnecessary for our analysis to explicitly integrate out uncertainty over exposures ei.

UA
i (ei) ≡ E

[

max
θi

E [u (W (θi, ei)) |yi, ei, P ] |ei
]

,

U I
i (ei) ≡ E

[

max
θi∈Θ1

E [u (W (θi, ei)) |yi, ei, P ] |ei
]

,

U0
i (ei) ≡ E

[

u

(

m
∑

k=1

eikXk

)

|ei

]

.

Definition 1 A rational expectations equilibrium consists of non-overlapping sets of agents

who fully participate, N , and who index, N1; trading strategies {θi (yi, ei, P )} i∈[0,1] ; and

price function P (X,Z). The equilibrium conditions are that markets clear almost surely,

∫ 1

0

θi (yi, ei, P ) di = 0; (4)
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each agent i’s trading strategy is optimal given his participation decision and prices,

θi (yi, ei, P ) ∈ argmax
θ̂i

E

[

u
(

W
(

θ̂i, ei
))

|yi, ei, P
]

if i ∈ N, (5)

θi (yi, ei, P ) ∈ arg max
θ̂i∈Θ1

E

[

u
(

W
(

θ̂i, ei
))

|yi, ei, P
]

if i ∈ N1, (6)

θik (yi, ei, P ) = 0 for all assets k if i /∈ N ∪N1; (7)

and participation decisions are optimal, i.e.,

E
[

UA
i (ei) exp (γκ)

]

≥ max
{

E
[

U I
i (ei) exp (γκ1)

]

,E
[

U0
i (ei)

]}

if i ∈ N,

E
[

U I
i (ei) exp (γκ1)

]

≥ max
{

E
[

UA
i (ei) exp (γκ)

]

,E
[

U0
i (ei)

]}

if i ∈ N1,

E
[

U0
i (ei)

]

≥ max
{

E
[

UA
i (ei) exp (γκ)

]

,E
[

U I
i (ei) exp (γκ1)

]}

if i /∈ N ∪N1.

Throughout, we assume

4γ2
(

τ−1
Z + τ−1

u

)

< τX (8)

γ2 > 4τ0τu, (9)

where τ0 is the precision of agent 0’s information, i.e., the highest precision in the popula-

tion. Condition (8) ensures that expected utility is well-defined for non-participating agents;

without this condition, such agents are exposed to so much risk that their expected utilities

are infinitely low. Condition (9) ensures that an equilibrium exists at the trading stage (see

Lemma 3 below). Loosely speaking, without this condition there is too much trading based

on information relative to trading based on risk-sharing; Ganguli and Yang (2009) impose

essentially the same condition.14

3 Informed trading and welfare in each asset market

Given our construction of synthetic assets as being independent from each other in all re-

spects, in this section we analyze the equilibrium of the market for an arbitrary synthetic

asset k in isolation. Likewise, we evaluate the expected utility associated with trading asset

k in isolation. For clarity, we retain the asset subscript k in the main text, while generally

omitting it in proofs in the appendix.

14The main extension in Manzano and Vives (2011) relative to Ganguli and Yang (2009) is that they
allow for the error terms in the trader’s signals to be correlated. Non-zero correlation eliminates the need
for condition (9). Since our focus is on welfare, we choose to study the slightly more tractable model with
conditionally independent estimation errors.
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3.1 A public information benchmark

To gain intuition for our subsequent results on the relation between price efficiency and

the value of participation, it is useful to consider a benchmark case in which agents’ private

signals yik are replaced with a finite number of public signals about Xk, with all other aspects

of the model left unchanged (in particular, exposures eik are private information, and trade

occurs only after agents observe these exposures). In this case, all agents have the same

posterior of Xk at the trading stage, and so by market clearing (4) and the expression for

the optimal trade θik in (11) below,

θik + eik = Sk + Zk.

So each agent’s terminal wealth is

Wik = (Sk + Zk) (Xk − Pk) + eikPk = (Sk + Zk)Xk + uikPk. (10)

The first term in (10) corresponds to simply dividing the economy’s aggregate cash flow

equally among agents, and is unaffected by signal precision; indeed, it corresponds to the

(symmetric)15 unconstrained solution to the social planner’s problem. In contrast, the second

term depends on the price Pk, which is certainly affected by signal precision.

Expression (10) indicates that, ceteris paribus, agents dislike variance of the price Pk.

In turn, the variance of Pk is determined by its dependence on the cash flow Xk and the

aggregate exposure Zk. Higher-precision signals about Xk increase Pk’s dependence on Xk,

and hence, ceteris paribus, the variance of Pk (corresponding to the Hirshleifer effect); but

they tend to decrease Pk’s dependence on Zk, and hence, ceteris paribus, the variance of Pk.

As such, the overall effect is unclear.16

3.2 Equilibrium at the trading stage

We first characterize the equilibrium outcome of the trading stage, taking participation

decisions as given. It is immediate that agents with lower signal precision enjoy lower utility

15In non-symmetric solutions, each agent has terminal wealth Wi = (Sk + Zk)Xk + Ki, where Ki is a
constant, and

∫

Kidi = 0.
16It is worth noting that the limiting case of perfect information about Xk is straightforward. In this

case, the price Pk simply equals Xk, and so (10) reduces to Wik = eikXk, which is the autarchy outcome.
Hence welfare is minimized by perfect information about Xk, since in this case the financial market cannot
provide any risk sharing (the Hirshleifer effect). Our analysis below concerns the more relevant non-limit
case. Moreover, note that Diamond (1985) characterizes how welfare changes as the precision of public
information changes, though with the mathematical compromises discussed earlier. In Appendix C, we show
that welfare in this benchmark case indeed monotonically declines in the precision of public information,
though the proof is non-trivial, consistent with the discussion in the main text.
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from trading. Hence there is a cutoff agent nk such that all better-informed agents i ≤ nk

participate, and all worse-informed agents i > nk do not participate. As standard, we focus

on linear equilibria, i.e., equilibria in which the price of asset k is a linear function of the

cash flow Xk and the aggregate exposure Zk. We characterize equilibria by conjecturing that

the price has this linear form, and then verifying (Lemma 3).

We relegate much of this analysis to the appendix. In particular, Lemmas A-4, A-5,

A-6 establish some basic properties that we use in subsequent results. In the main text,

we focus on two results—Lemmas 1 and 2—which turn out to be critical for Propositions 1

and 2 covering participation decisions. Both Lemmas 1 and 2 hold generally in Diamond-

Verrecchia economies—and indeed, Lemma 1 holds in a wide class of CARA-normal settings.

Nonetheless, we are unaware of previous statements of either result.

In a linear equilibrium, each agent’s optimal trade has the standard mean-variance form,

θik + eik =
1

γ

E [Xk|yik, eik, Pk]− Pk

var (Xk|yik, eik, Pk)
. (11)

As typical for this class of models, an important equilibrium quantity is the relative sensitivity

of price Pk to the true cash flow Xk and aggregate exposure Zk, which we denote by ρk:

ρk ≡ −
∂Pk

∂Xk

∂Pk

∂Zk

.

We refer to ρk as the price efficiency of the risky asset, since

var(Xk|Pk)
−1 = τX + ρ2kτZ , (12)

var(Xk|yik, eik, Pk)
−1 = τX + ρ2k(τZ + τu) + τi. (13)

These expressions (derived in the proof of Lemma A-5) measure the ability of an outside

observer and agent i, respectively, to forecast the cash flow Xk.

The conditional variance var (Xk|yik, eik, Pk) is an important determinant of agent i’s

trades. Lemma 1 establishes that the harmonic mean of the conditional variance of partici-

pating agents equals the covariance of returns Xk−Pk and cash flows Xk. We stress that the

proof is very concise, and makes use only of the market clearing condition (4), the general

form of demand (11), and the assumption that random variables are distributed normally.

Lemma 1 In a linear equilibrium,

1

nk

∫ nk

0

1

var (Xk|yik, eik, Pk)
di =

1

cov (Xk − Pk, Xk)
. (14)

13



Note that Lemma 1 nests the special case in which all agents are completely uninformed

about the cash flow Xk, so that the price is unrelated to Xk, and so for any agent i,

var (Xk|yik, eik, Pk) = var (Xk) = cov (Xk − Pk, Xk).

Among other things, we use Lemma 1 to characterize the equilibrium risk premium

E [Xk − Pk]. Taking the unconditional expectation of (11) gives

E [θik] + Sk =
1

γ

E [Xk − Pk]

var (Xk|yik, eik, Pk)
.

Combined with market clearing (4) (specifically,
∫ nk

0 E [θik] di = 0), we obtain:

Corollary 1 In a linear equilibrium,

E [Xk − Pk] = γSkcov (Xk − Pk, Xk) .

As for Lemma 1, it may help to note that Corollary 1 nests the special case in which no

agent has any information, and so E[Xk − Pk] = γSkvar(Xk).

Both prices and exposure shocks play two distinct roles in determining an agent’s de-

mand: they directly affect demand, and separately, they also affect an agent’s beliefs about

the cash flow X , thereby indirectly affecting demand. To clarify this dual role, we write

θik
(

yik, eik, êik, Pk, P̂k

)

for the demand of an agent who has exposure eik and can trade at

price Pk, but whose posterior of Xk is formed using the information set
(

yik, êik, P̂k

)

. Even

though êik = eik and P̂k = Pk, keeping separate track of the two roles of prices and exposure

shocks is conceptually useful. In particular, this separation allows the following result, which

says that prices contain more information about cash flows than exposures do. The intuition

is that exposures are only informative about cash flows because they provide information on

whether a high price is due to a high cash flow Xk or a low aggregate exposure shock Zk.

That is, the information provided by exposures is subsidiary to that provided by prices.

Lemma 2 In a linear equilibrium, the ratio of the informational to non-informational effect

of prices on demand exceeds the ratio of the informational to non-informational effect of

exposures on demand,
∣

∣

∣

∫ nk

0
∂θik
∂P̂k

di
∣

∣

∣

∣

∣

∣

∫ nk

0
∂θik
∂Pk

di
∣

∣

∣

>

∣

∣

∣

∫ nk

0
∂θik
∂êik

di
∣

∣

∣

∣

∣

∣

∫ nk

0
∂θik
∂eik

di
∣

∣

∣

. (15)

The only departure of our model’s trading stage relative to Ganguli and Yang (2009) and

Manzano and Vives (2011) is that agents have heterogeneous signal precisions. As such, our

next result closely follows these previous papers. Moreover, as in these previous analyses,
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our trading stage features two equilibria. We follow Manzano and Vives (2011) and focus

on the stable equilibrium, which is the one with lower price efficiency.17

Lemma 3 Given participation nk, there is unique stable linear equilibrium, in which price

efficiency ρk is the smaller root of the quadratic

ρ2kτu − γρk +
1

nk

∫ nk

0

τidi = 0. (16)

Price efficiency ρk is decreasing in participation nk.

From Lemma 3, price efficiency is determined by the average information precision of

agents who actively trade, given by the term 1
nk

∫ nk

0 τidi. As participation increases, newly

participating agents lower this average. Even though these agents bring more information to

the market, they also bring more trade motivated by risk-sharing concerns, which functions

in the same way as noise. Consequently, the net effect is to reduce price efficiency.18

3.3 Expected utility from participation

We next turn to agents’ participation decisions. To do so, we first characterize an agent’s

expected utility from participation. As noted in the introduction, a concise representation of

expected utility in economies of this type has proved challenging to obtain in related work.

The key to a concise representation is Corollary 1’s link between the risk premium E[Xk−Pk],

the aggregate amount of risk to share, Sk, and the endogenous covariance between returns

Xk − Pk and asset cash flows Xk. Looking ahead, a concise representation is important in

order to establish the strategic complementarity of participation decisions (Proposition 2),

which in turn allows us to take comparative statics in participation costs.

17Manzano and Vives (2011) give a mathematical definition of stability. One way to think about stability
is in terms of condition (B-7) in the proof of Lemma 3. The right hand side (RHS) describes agents’ demands,
which in turn depend on price efficiency (this can be seen explicitly from (B-8)). The left hand side (LHS) of
(B-7) describes how prices must behave to clear the market, given agents’ demands on the RHS. Equilibrium
price efficiency is a fixed point of this relation. Moreover, the RHS is increasing in ρk, at least in the
neighborhood of any solution. If the RHS crosses the 45o line from below, the corresponding equilibrium is
unstable in the following sense: A small upwards perturbation in agents’ beliefs about price efficiency affects
agents’ demands and increases the RHS. To preserve market clearing, this then pushes ρk up, and precisely
because the RHS crosses the 45o line from below, the change in ρk is greater than the original perturbation
in agents’ beliefs about ρk, i.e., instability.

18More generally, the comparative static in Lemma 3 would hold even if agents have ex ante heterogeneous
hedging needs, providing that the marginal participating agent adds more trading due to hedging than trading
due to information, relative to the average participating agent. See also subsection 8.3.
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We define the single-asset analogues of UA
i (ei) and U0

i (ei) by

UA
ik (eik) ≡ E

[

max
θik

E [u ((θik + eik) (Xk − Pk) + eikPk) |yi, eik, Pk] |eik
]

,

U0
ik (eik) ≡ E [u (eikXk) |eik] = − exp

(

−γeikE[Xk] +
γ2e2ik
2τX

)

, (17)

i.e., the expected utilities from participation in the market for asset k (active trading),

and from not participating in the market for asset k. As before, we write both quantities

conditional on the exposure realization eik, and write UA
ik exclusive of the participation cost.

Non-participation utility U0
ik (eik) follows from the standard certainty equivalence formula.

Proposition 1 In a linear equilibrium with price efficiency ρk,

UA
ik(eik) = (dik (ρk)Dk (ρk))

−1/2 exp

(

−1

2
Λk (ρk) (eik − Sk)

2

)

U0
ik (eik) , (18)

where

dik (ρk) ≡ var (Xk|eik, Pk)

var(Xk|yi, eik, Pk)
, (19)

Dk (ρk) ≡ var (Xk − Pk|eik)
var (Xk|eik, Pk)

, (20)

Λk (ρk) ≡

(

cov(Pk,eik)
var(eik)

+ γcov(Xk − Pk, Xk)
)2

var(Xk − Pk|eik)
. (21)

Moreover, participation nk affects dik (ρk), Dk (ρk), and Λk (ρk) only via price efficiency ρk.

In light of Proposition 1, we often write UA
ik(eik; ρk) to make explicit its dependence on

price efficiency ρk. A participating agent’s gain relative to non-participation utility U0
ik is

represented by the benefits Λk and Dk, which stem from risk-sharing and are the same for all

agents, no matter how precise or imprecise their private information; and dik, which stems

from the the advantages of more precise private information.

We note that the risk-sharing gains are increasing in the absolute difference of an agent’s

exposure shock eik relative to the average endowment in the economy, as such agents have

more to gain from trade. These risk-sharing gains are also increasing in Λk, defined in (21),

and a composite of three terms. To interpret these terms, note first that cov(Xk − Pk, Xk)

is positive, since prices do not fully reflect future cash flows (formally, Lemma 1); that

cov(Pk, eik) is negative since prices are decreasing in the aggregate exposure Zk (formally,

Lemma A-6); and that Lemma 2 implies that the combined numerator term cov(Pk,eik)
var(eik)

+
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γcov (Xk − Pk, Xk) is positive.19 The three terms in Λk have the following interpretation.

First, agents’ final wealths depend on their exposure shocks eik only to the extent that they

cannot hedge these at the trading stage: from (11), agents undo their risk exposures by

trading against them. Thus, they prefer prices to covary as little as possible with their

exposures, i.e., for |cov(eik, Pk)| to be small. Second, welfare is decreasing in cov(Pk, Xk),

which is closely related to price efficiency ρk (in particular, by Lemma 1 it is increasing in

price efficiency), capturing the Hirshleifer effect that risk-sharing is hampered when agents

have accurate information at the time of trading. Third, welfare is decreasing in the variance

of trading profits, var(Xk − Pk|eik), as one would expect.

Turning to Dk, the denominator var (Xk|eik, Pk) is decreasing in price efficiency ρk.

Loosely speaking, one would also expect the numerator var (Xk − Pk|eik) to be decreas-

ing in price efficiency, since price efficiency makes Pk more closely related to Xk. The proof

of Proposition 2 establishes that the numerator indeed falls, and moreover is the dominant

effect, so Dk is decreasing in price efficiency, and hence increasing in participation. The key

step in the proof follows from the fact that the demand curve slopes down, even in spite of

the informational role of higher prices forecasting higher cash flows (formally, Lemma A-6).

The gains from trading on private information are captured by dik, which has a form

familiar from existing literature. In particular, dik measures the extent to which observing

the private signal yik improves agent i’s forecast of the cash flow Xk, relative to a forecast

based only on the price Pk and the agent’s private exposure eik. As one would expect, dik

and hence utility is increasing in the precision of an agent’s information, τi.

3.4 Strategic complementarity in participation decisions

Next, we show that agents’ individual participation decisions exhibit strategic complemen-

tarity. As discussed in the introduction, this is the key analytical result in the paper. And

as noted earlier, the key step in the proof is Lemma 2’s implication that the information in

prices affects demand more than the information in exposure shocks.

Proposition 2 As participation nk increases, each individual agent’s utility from participa-

tion UA
ik (eik; ρk) increases.

Economically, the key driving force behind strategic complementarity is that, as par-

ticipation nk increases, price efficiency ρk drops (Lemma 3). Loosely speaking, lower price

efficiency increases the amount of risk-sharing that the financial market enables. Specifically,

the risk sharing function of the financial market is to enable agents with high idiosyncratic

exposures uik to share cash flow risk uikXk with agents with low idiosyncratic exposures.

19This last implication is established in (B-25) in the proof of Proposition 2.
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Lower price efficiency corresponds to agents having less information about the cash flow

Xk, making risk sharing easier to sustain as in Hirshleifer (1971). However, and as discussed

in the context of the public information benchmark of subsection 3.1, the risk sharing benefits

of less efficient prices must be compared to the potential costs of more volatile prices, since

if prices are less efficient, they are relatively more exposed to the aggregate exposure shock

Zk (essentially, the discount rate), and this can easily lead to greater volatility. Proposition

2 establishes that the benefits of lower price efficiency always dominate the potential costs.

4 The effect of declining indexing costs

We are now in a position to address our main question: How does a decline in the cost of

indexing, as represented by the parameter κ1, affect equilibrium outcomes?

Since the same number of agents participate in all the non-index synthetic assets k '= 1,

by Lemma 3, price efficiency is the same for all such assets. We write ρ−1 for this common

level of price efficiency, along with ρ1 for the price efficiency of the index asset.

We start by explicitly writing the expected utilities for agents who fully participate, who

index, and who do not participate. Using the asset-by-asset utility for agents who do not

participate in a given asset market, the expected utility of agents who do not participate is:

U0
i (ei) = −

∣

∣

∣

∣

∣

m
∏

k=1

U0
ik(eik)

∣

∣

∣

∣

∣

. (22)

Similarly, the expected utility of agents who fully participate in financial markets is:

UA
i (ei; ρ1, ρ−1) = −

∣

∣

∣

∣

∣

UA
i1(ei1; ρ1)

m
∏

k=2

UA
ik(eik; ρ−1)

∣

∣

∣

∣

∣

. (23)

The expected utility of indexers is a mixture of these two cases:

U I
i (ei; ρ1) = −

∣

∣

∣

∣

∣

UA
i1(ei1; ρ1)

m
∏

k=2

U0
ik(eik)

∣

∣

∣

∣

∣

. (24)

Relative to “active traders,” these agents miss out on the gains from trading assets out-

side the index (k = l + 1, . . . , m), as well as from trading assets covered by the index in

different proportions to their index weights (as represented by non-zero positions in assets

k = 2, . . . , l). On the other hand, indexing agents benefit from lower participation costs,

κ1 < κ. (Recall that UA
i and U I

i are defined as exclusive of participation costs κ and κ1.)

As we noted earlier, the sets of agents who participate fully, N , and who participate
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either fully or via indexing, N ∪ N1, must both consist of all agents with precision levels

below some cutoff. Accordingly, define

n1 ≡ supN ∪N1,

n−1 ≡ supN.

Hence n1 is the number of agents who trade the index asset 1, while n−1 is the number of

agents trading all the remaining assets. Note that certainly n1 ≥ n−1, i.e., more agents trade

the index asset than any other asset, because all agents who participate either fully or via

indexing trade the index asset. The number of agents who index, in the sense of participating

only via indexing, is n1 − n−1.

In particular, there are two distinct possible types of equilibrium. An indexing equilibrium

is one in which n1 > n−1; and a no-indexing equilibrium is one in which n1 = n−1.

Given these observations, an equilibrium is fully characterized by the values of n1 and n−1,

i.e., by the marginal agents who trade the index asset 1 and other assets k '= 1. Accordingly,

we frequently denote a specific equilibrium by (n1, n−1).

Because of the strategic complementarities established in Proposition 2, participation

is self-reinforcing, and so there may simultaneously exist equilibria with high participation

levels, and equilibria with low participation levels. Whether such multiplicity in fact arises

depends on the distribution of information precisions τi, on which we have imposed almost

no assumptions. We state our results below allowing for such equilibrium multiplicity.

4.1 The prevalence of indexing

With these preliminaries in place, we can state our main result on how indexing costs affect

participation decisions. In particular, we consider what happens as the indexing cost κ1 falls.

This corresponds to falling fees, greater availability, and greater awareness of products such

as low-cost index funds and ETFs. It may also reflect an increase in public awareness of the

standard advice given by finance academics.

We take this comparative static while leaving the cost of full participation, κ, unchanged;

however, our results remain qualitatively unchanged if κ also falls, but by less than κ1.

As indexing costs κ1 fall, indexing equilibria are easier to support, and feature more

agents indexing and fewer agents fully participating. Conversely, no-indexing equilibria are

harder to support.

Proposition 3

(A) For any indexing cost κ1, at least one equilibrium exists.
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(B) As the indexing cost falls, indexing equilibria are easier to support, and feature more

indexing. That is, for indexing costs κ1, κ′1 such that κ1 < κ′1:

(i) If an indexing equilibrium exists at κ′1, an indexing equilibrium exists at κ1 also. Moreover,

indexing equilibria at κ1 feature more total participation, i.e., higher values of n1.

(ii) If an indexing equilibrium exists at κ′1, the maximum amount of indexing in equilibria at

κ1 exceeds the maximum amount of indexing in equilibria at κ′1.

(C) As the indexing cost falls, no-indexing equilibria are harder to support. That is, for

indexing costs κ1, κ′1 such that κ1 < κ′1, if a no-indexing equilibrium exists at κ1, a no-

indexing equilibrium exists at κ′1 also.

Note that the statement in B(i) should be interpreted in the sense of Milgrom and Roberts

(1994): if multiple indexing equilibria exist, the maximum and minimum values of n1 across

such equilibria are higher at the lower index participation cost κ1.

The economics behind Proposition 3 are relatively straightforward given the strategic

complementarity of participation decisions (Proposition 2). As indexing costs κ1 fall, this

directly increases the gain to participation-via-indexing. This in turn raises the gain to other

agents of participation-via-indexing, amplifying the original effect. At the same time, the

fall in indexing costs κ1 raises the marginal cost κ− κ1 of full participation, with analogous

effects: there is both a direct fall in full participation, which reduces the gain to other agents

of fully participating, in turn further reducing full participation. Combining, the amount

of indexing increases, with entry at both margins—some people who did not previously

participate start trading the index, and some people who previously traded non-index assets

switch to trading just the index.

Because agents who switch from full participation to indexing are better informed than

the average indexer, some readers may speculate that these marginal indexers would raise

the price efficiency of the index and reduce the attractiveness of indexing, contrary to our

argument. The reason that this does not happen is that the agents who switch from full

participation to indexing were already trading the index under full participation, and so

their switch does not affect trade in the index. Instead, the amount of trade in the index is

determined entirely by the some-participation/no-participation margin, i.e., n1.20

Given the strategic complementarity of participation decisions, Proposition 3 is largely

an application of monotone comparative statics (Milgrom and Roberts (1994)). The main

20In a model with wealth effects, it is possible that agents who switch from full participation to indexing
would trade the index more aggressively after the switch because they are no longer exposed to the risks
associated with trading non-index assets. On the other hand, the inability of these same agents to hedge
non-financial exposures that are uncorrelated with the index pushes in the opposite direction. Neither effect
arises in our model with CARA utility.
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difficulties, which are handled in the formal proof, lie in simultaneously allowing for the pos-

sibility of indexing and no-indexing equilibria, and in the fact that a fall in κ1 simultaneously

makes index participation more attractive but full participation less attractive.

4.2 Indexing and price efficiency

As discussed, reductions in indexing costs affect agents’ trading decisions both directly, and

indirectly because of changes in price efficiency. Indeed, by Proposition 1 the spillover effect

of other agents’ trading decision can be summarized entirely by price efficiency.

Here, we collect our analysis’s implications for how reductions in indexing costs affect

price efficiency. A necessary preliminary is to relate the price efficiency of synthetic assets,

which is what our analysis makes direct predictions about, to the price efficiency of actual

assets. To do so, it is in turn useful to define the relative price efficiency of assets j, k by

var(X̃j − X̃k|P̃j − P̃k)
−1.

That is, the relative price efficiency of assets j and k is the extent to which the relative price

of assets j and k forecasts the relative future cash flows of this same pair of assets. Empirical

papers such as Bai, Philippon, and Savov (2016) estimate relative price efficiency because

they include time fixed effects.

Lemma 4 The relative price efficiency of any pair of assets in the index, and also of any

pair of assets outside the index, is measured by ρ−1.

Index price efficiency, i.e., var(X1|P1)−1, is directly measured by ρ1 (recall (12)). For

a broad-based index, such as the S&P 500, index price-efficiency is close to market price

efficiency.

The following is then immediate from Lemma 3 and Proposition 3:

Corollary 2 Let κ1 be an indexing cost such that an indexing equilibrium exists. If the

indexing cost falls, then index price efficiency falls, while relative price efficiency of assets

both inside and outside the index rises.

In the case of multiplicity, Corollary 2 should be interpreted as in B(i) and B(ii) of

Proposition 3: across indexing equilibria, the maximum and minimum levels of index price

efficiency are lower, and the maximum level of relative price efficiency is higher, for lower

values of κ1.

A separate and basic prediction of our analysis is that the index asset has lower price

efficiency than all other synthetic assets, i.e., ρ1 < ρ−1. This prediction maps to a statement
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about actual assets. Assets covered by the index are linear combinations of the index asset

with other synthetic assets. In contrast, assets outside the index coincide with synthetic

assets. Intuitively, an “averaging” argument then suggests that assets covered by the index

have lower price efficiency. The following result makes this intuition precise.

Lemma 5 In any indexing equilibrium, the price efficiency of assets covered by the index is

strictly lower than the price efficiency of assets not covered by the index, i.e., for j, k such

that j ≤ l < k, var
(

X̃j |P̃j

)−1
< var

(

X̃k|P̃k

)−1
.

Index inclusion introduces a common component to stock prices. Specifically: The proof

of Lemma 5 establishes that the price of assets k > l outside the index takes the form

P̃k = constant + bmρ−1X̃k − bmZ̃k,

for some constant bm, while the price of assets j ≤ l covered by the index takes the form

P̃j = constant + blρ̃X̃j − blZ̃j +X0 + Z0, (25)

for some constant b̃l, with ρ̃ < ρ−1, and random variables X0 and Z0 that are independent

of both X̃j and Z̃j. The random variables X0 and Z0 are the common components that

indexing introduces. They are linear combinations of, respectively, cash flows of stocks in

the index,
{

X̃k′

}l

k′=1
, and exposure shocks related to stocks in the index,

{

Z̃k′

}l

k′=1
.

As discussed in the introduction, one might have conjectured that the fall in the price

efficiency of the index associated with lower indexing costs would make indexing less attrac-

tive for uninformed investors, thereby generating a countervailing force. Instead, our analysis

shows that the entry of uninformed investors is self-reinforcing: as more such investors enter,

and price efficiency drops, indexing becomes more attractive rather than less, attracting still

more uninformed investors.

Conversely, one might have conjectured that the rise in relative price efficiency of assets

covered by the index would make individual trades more attractive. Again, this is not the

case: this increase makes trading individual assets less attractive for uninformed investors,

and so is again self-reinforcing.

4.3 Indexing, market timing, and stock selection

The comparative statics for price efficiency (Corollary 2) in turn imply:

22



Corollary 3 Let κ1 be an indexing cost such that an indexing equilibrium exists. If the

indexing cost falls, the expected utility of indexing agents increases. For agents who fully

participate, the share of trading gains stemming from trading the index asset increases.

In the case of multiplicity, Corollary 2 should be interpreted as in B(i) and B(ii) of

Proposition 3: across indexing equilibria, the maximum and minimum expected utility of

indexing agents is higher for lower values of κ1, as is the maximum share of trading gains

stemming from trading the index asset for fully participating agents.

As the cost κ1 of indexing falls, the utility of indexing agents increases, reflecting both

the direct benefit of the lower cost, and the equilibrium benefit of lower index price efficiency.

In contrast, better informed agents who fully participate are subject to conflicting forces.

On the one hand, the decline in index price efficiency makes it easier to make trading profits

from the index, via “market timing” trades (see also next subsection, along with Section 5

for empirical references). On the other hand, the increase in relative price efficiency makes

it harder to profit from “stock selection” trades; this formalizes the idea that as indexing

becomes cheaper, trading individual stocks is increasingly the preserve of relatively informed

traders, who consequently struggle to profitably trade against each other.

4.4 Indexing, reversals, and informed trading

A direct implication of market-clearing (4) and agents’ trading decisions (11) is that

1

γ
E [X1 − P1|P1]

1

n1

∫ n1

0

1

var (X1|yi1, ei1, P1)
= S1 + E [Z1|P1] , (26)

with analogous identities for other assets. Moreover, E [Z1|P1] is decreasing in the price P1,

since P1 is negatively correlated with exposure Z1 (Lemma A-6). Consequently, our setting

exhibits price reversals, with high prices today associated with lower expected returns.21

The strength of reversals is captured by the steepness of the negative slope of E [X1 − P1|P1],

i.e., when this relation is strongly negative, the expected returns following high prices are

much lower than following low prices. This is determined by price efficiency, and hence in

turn by participation decisions, as shown in the next lemma.

Lemma 6 ∂
∂P1

E [X1 − P1|P1] is negative, and decreases (i.e., becomes further from 0) as

price efficiency ρ1 declines, and hence as the cost of index participation κ1 decreases.

21Consequently, if investors observe a low price for an asset, and have no exposure to economic shocks,
they should take long positions in the asset, since its conditional expected return is high. That is, investors
can profit from buying “value” stocks. Although this point is often overlooked, it is nonetheless a standard
implication of models of the type we consider here (see, e.g., Biais, Bossaerts, and Spatt, 2010).
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High prices are more likely when the average exposure Z1 is high. Consequently, agents

who observe a high asset price are unable to fully infer whether the high price indicates a

high future cash flow, or a high value of Z1 (i.e., high aggregate unwillingness to buy the

asset). Although all agents face this inference problem, agents with more precise private

signals are better able to resolve it, and to shy away from the asset when future cash flows

are in fact low. To express this formally, fix an arbitrary n̂ ∈ (0, n1), so that agents [0, n̂]

correspond to relatively well-informed investors, while agents [n̂, n1] correspond to relatively

uninformed investors. From agents’ trades (11), the difference in the average position of

well-informed to uninformed investors is given by

1

γ

(

1

n̂

∫ n̂

0

τidi−
1

n1 − n̂

∫ n1

n̂

τidi

)

(X1 − P1) . (27)

That is, informed investors own a high share of the asset precisely when returns are high,

and a low share precisely when returns are low.

Conversely, relatively uninformed investors own a high share of the asset precisely when

returns are low. By Lemma 6, it further follows that relatively uninformed investors own

a high share when current prices are high. Hence relatively uninformed investors engage in

behavior that resembles “trend chasing,” and experience lower average returns.

5 Empirical implications

The sharpest predictions of our model concern price efficiency (subsection 4.2). To recap, our

analysis predicts that (i) as indexing becomes easier, relative price efficiency rises (Corollary

2), (ii) price efficiency is lower for stocks covered by the index than for those outside it

(Lemma 5), and (iii) as indexing becomes easier, the price efficiency of the index as a whole

decreases (Corollary 2).

A number of recent empirical papers have studied related predictions, especially in regard

to ETFs. With regard to (i), Bai, Philippon, and Savov (2016) and Farboodi, Matray, and

Veldkamp (2018) find that relative price efficiency has trended upwards over approximately

the last 50 years, broadly the same time period in which indexing has become more preva-

lent. Over a more recent period, Glosten, Nallareddy, and Zou (forthcoming) document

that relative price efficiency increases precisely as ETF ownership of the underlying shares

increases.22Antoniou et al. (2019) show that an increase in ETF ownership is associated

22We also note that Farboodi, Matray, and Veldkamp (2018) additionally show that relative price efficiency
has declined for stocks outside the S&P 500, a finding that is inconsistent with our model. Among other
things, these authors emphasize the importance of accounting for changes in firm size, which is outside the
scope of our analysis. Israeli, Lee, and Sridharan (2017) estimate similar empirical specifications to Glosten,
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with a strengthening of the link between a firm’s investment and its own stock price; since

their empirical analysis includes time fixed effects, this suggests that managers believe that

increased ETF ownership increases relative price efficiency, consistent with our model.23

With regard to (ii), Coles, Heath, and Ringgenberg (2020) and Bennett, Stulz, and Wang

(2020) find that inclusion in the Russell 2000 and SP 500 indices, respectively, is associated

with a decline in price efficiency. Farboodi, Matray, and Veldkamp (2018) show that for

stocks that have been included in the S&P 500 at some point in time, price efficiency is lower

during periods in which they are included. Qin and Singal (2015) find that price efficiency

of a stock decreases in a measure of its “indexed ownership.” Ben-David, Franzoni, and

Moussawi (2018) document that ETF ownership increases stock volatility, consistent with

the hypothesis that ETFs enable “liquidity shocks [to] propagate.” Also consistent with our

analysis, they provide evidence that the increase in volatility is not due to increased price

efficiency. Similarly, Brogaard, Ringgenberg, and Sovich (forthcoming) show that firms

that use commodities covered by leading commodity indices make less efficient production

decisions than firms that use commodities outside these indices.

While prediction (iii) is harder to directly test, a closely related prediction is that, as

indexing increases, informed trading profits will stem increasingly from “timing” strategies

based on the entire index, rather than individual asset trades. (See Corollary 3, with the

caveat that expected utilities are distinct objects from expected profits.) There is at least

some empirical evidence supporting this prediction. AQR document that the correlation

between hedge fund returns and market returns has risen from 0.6 to 0.9 over the last two

decades.24 Related, Stambaugh (2014) documents a decline in asset-selection strategies by

active mutual funds over the same period. Also related, and using data since 2000, Gerakos,

Linnainmaa, and Morse (2019) show that a significant fraction of returns generated by active

mutual funds stem from market timing strategies.

Our model can also be used to study the effect of index inclusion on return variances and

covariances. For example, and as one would expect, index inclusion introduces a common

component to stock prices; see discussion immediately following Lemma 5. This is consistent

with evidence in Vijh (1994), Barberis, Shleifer, and Wurgler (2005), Greenwood (2008),

and Bennett, Stulz, and Wang (2020); and related, Da and Shive (2018) and Leippold, Su,

Nallareddy, and Zou (forthcoming), but use lagged changes in ETF ownership, and show that these are
associated with decreases rather than increases in relative price efficiency.

23Section 7 below formally incorporates managerial learning from prices. Antoniou et al. (2019) further
decompose stock prices into systematic and idiosyncratic components, where the systematic component
captures differences explained by time and industry effects. They find that increased ETF ownership has
a greater effect on the relation between investment and the systematic component of cash flows. This is
consistent with an asset k in our model corresponding to an industry as opposed to an individual firm.

24See “Hedge fund correlation risk alarms investors,” Financial Times, June 29th, 2014.

25



and Ziegler (2016) present evidence that individual stock correlations have risen with ETF

ownership. As noted, Ben-David, Franzoni, and Moussawi (2018) present evidence that ETF

ownership raises the volatility of individual stock prices.

The analysis in subsection 4.4 predicts that relatively uninformed ownership of an asset

increases when prices are high, and that this is followed by low subsequent returns. This

is consistent with the empirical evidence in Ben-Rephael, Kandel, and Wohl (2012) for

the market as a whole (i.e., the index asset), and in Jiang, Verbeek, and Wan (2017) and

Grinblatt et al. (2020) in the cross-section.25 Furthermore, Lemma 6 is consistent with the

empirical findings of Baltussen, van Bekkum, and Da (2019), who use international data to

document that negative serial correlation in index returns is associated with greater indexing,

and with Ben-David, Franzoni, and Moussawi (2018) who find that “ETF ownership increases

the negative autocorrelation in stock prices.”

Finally, it is worth noting that our model does not generate a price premium for index

inclusion, contrary to at least some empirical evidence. The reason is that changes in par-

ticipation in our model are always accompanied by changes in the supply of the asset being

traded, since we assume all agents have equal initial endowments.26 Because of this, index

inclusion affects prices only via its effect on price efficiency; and since price efficiency falls,

prices fall also. In contrast, if one were to relax the assumption of equal endowments, the

effect on prices would be determined by the relative strength of changes in price efficiency

and changes in the aggregate risk-sharing capacity of participating agents. In general, we

emphasize again that our model’s primary empirical predictions operate via price efficiency.

6 Direct versus equilibrium effects

The consequences of a decline in indexing costs stem from a combination of direct effects (e.g.,

more people index because of lower costs) and equilibrium effects (e.g., the direct increase

in indexing in turn makes indexing even more attractive). In this section, we discuss the

relative contributions of the direct and equilibrium effects.

25Less directly, this prediction is also consistent with the finding in Kacperczyk, Van Nieuwerburgh, and
Veldkamp (2014) that the fraction of mutual fund returns stemming from timing strategies is greater in
recessions. Specifically, in our setting informed investors should shift into the index when index prices
are low, and out of the index when index prices are high. To the extent to which the second half of
this strategy is constrained by difficulties shorting the index, this generates the findings of Kacperczyk,
Van Nieuwerburgh, and Veldkamp (2014). (We should also note that the same authors suggest a distinct
explanation in Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016).)

26Recall, in turn, that we use this assumption in the proof of Proposition 1. The empirical evidence on
the effects of index inclusion is mixed; while older studies found positive price reactions, Bennett, Stulz, and
Wang (2020) find that in more recent data “the positive announcement effect on the stock price of [S&P
500] index inclusion has disappeared.”
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6.1 Spillover effects of changes in informedness

We have focused on the comparative static associated with indexing costs κ1. Naturally,

however, there are other interesting questions that one could pursue using our framework.

Here, we examine the consequences of an increase in the informedness of the most informed

agents in the economy. The idea that the most informed agents have grown more informed

has been suggested by a number of authors (e.g., Glode, Green, and Lowery (2012), Fishman

and Parker (2015), Bolton, Santos, and Scheinkman (2016); closely related is the idea that

“big data” and data processing have grown in importance, e.g., Farboodi, Matray, and

Veldkamp (2018)). This exercise has the virtue of highlighting the role of equilibrium effects;

in particular, since participation costs are unchanged, there is no direct effect.

Concretely, we consider a parameterization of our economy in which an indexing equilib-

rium (n1, n−1) exists, with n−1 > 0 so that some agents fully participate and actively trade

assets other than the index. We then consider the consequences of increasing the precision

of signals of the most informed agents [0, n̂], where n̂ < n−1.

This increase in the informedness of the most informed agents raises the price efficiency

of both index and non-index assets. Consequently, fewer agents fully participate, and fewer

agents participate in financial markets (either fully or via indexing). In other words, even

though an increase in signal precisions makes prices more informative, it also makes financial

markets less beneficial. Hence our analysis formalizes the channel via which an increase in

sophistication of financial specialists places “ordinary” investors at an increasing disadvan-

tage (see references above). It also speaks to the older question of whether insider trading

is socially costly (e.g., Fishman and Hagerty (1992), Khanna, Slezak, and Bradley (1994)).

6.2 Numerical decomposition of direct versus equilibrium effects

We now return to our main comparative static of considering a drop in indexing costs κ1. We

again start from an indexing equilibrium (n1, n−1) with n−1 > 0, and associated equilibrium

price efficiency levels ρ1 and ρ−1. A fall in κ1 leads to a new equilibrium with more total

participation (n1 higher) and less full participation (n−1 lower); see Proposition 3. This

equilibrium effect can be decomposed into the direct effect associated with the change in

cost κ1, which we define as agents’ participation decisions under the new costs, but assuming

that price efficiency remains fixed at the original level (ρ1, ρ−1); and the remaining change,

which by definition is the equilibrium effect.

We illustrate the relative size of these effects via a numerical example. We emphasize that

the example is for illustrative purposes only; a realistic calibration is beyond the scope of this

paper, and in any case, for such a calibration one would want to consider a dynamic version
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Figure 1: Equilibrium participation

of our model. Appendix D details the parameter values used. We have chosen values—

especially for signal precisions τi and participation costs κ and κ1—so that equilibria with

interior levels of participation exist. In particular, the example has three groups of agents,

with minimal intra-group variation: agents with high precision signals, agents with medium

precision signals, and almost-uninformed agents. This simple setting delivers equilibria in

which strict subsets of agents fully participate, index, and do not participate.

As a first step, Figure 1 shows the equilibria of our economy. The lefthand panel plots

the following: for a candidate fraction of agents who trade the index asset (the horizontal

axis), find the price efficiency of the index asset (Lemma 3), and then find the fraction

of agents who prefer indexing to autarchy. Stable equilibria correspond to points where

this function crosses the 45o line from above. The middle and righthand plots show the

corresponding functions for the choice of full participation versus indexing, and the choice

of full participation versus autarchy.

One point that is immediately apparent from Figure 1 is that the strategic complementar-

ity effect is strong, and multiple equilibria exist. This arises in all numerical examples that we

examined. Specifically, there are four stable equilibria: No-one participates (n1 = n−1 = 0);

everyone fully participates (n1 = n−1 = 1); n1 = 62.14% index and no-one fully participates

(n−1 = 0); and n1 = 62.14% participate with n−1 = 25.65% fully participating, so that

36.49% index. We focus on the last of these equilibria. (We do not see a good theoretical

argument for selecting among these equilibria; and the one we focus on matches the empirical

fact that some agents trade actively, some index, and some do not participate.)
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Participation under Participation Change due to Change due to
initial costs κ, κ1 given reduced κ1 direct effect equilibrium effect

n1 62.14% 63.44% +0.77% +0.53%
n−1 25.65% 24.13% −0.30% −0.22%

Table 1: Decomposition into direct and equiulibrium effects.

Next, we consider a small 1% decrease in the cost of indexing κ1. Table 1 displays the

results of the decomposition described above. The decomposition shows that the direct and

equilibrium effects are of the same order of magnitude, and that both are sizable (the total

elasticity with respect to cost changes is approximately 2).

7 Indexing and firm performance: Feedback effects

The rise of index investing has generated a variety of concerns about the effect of indexing on

firm performance, including, for example, the fears that indexing investors spend less effort

on firm governance, or that indexing results in extensive common ownership, reducing com-

petition between firms, thereby reducing consumer surplus.27 We have deliberately focused

our analysis on indexing’s effects in an endowment economy, in order to clearly delineate

what we believe is an important channel.

The central economic force in our model is that indexing costs affect participation, which

affects price efficiency, which in turn affects participation. As such, the link between indexing

and firm performance that our analysis can best speak to is the possible effect of prices on

firms’ real decisions, a channel often referred to as the “feedback effect” (see Bond, Goldstein,

and Edmans (2012) for a survey). To this end, in this section we extend our baseline model

to allow for feedback effects. The extension is rich enough to embody two key effects, yet

simple enough to remain tractable.28

27For a discussion of the first point, along with some evidence against, see, for example, Appel, Gormley,
and Keim (2016). For a discussion of the second point, see, for example, Azar, Schmalz, and Tecu (2018)
and Schmalz (2018).

28A standard tractability hurdle in feedback models is to make sure that the distribution of the endogenous
cash flow is such that agents’ portfolio decisions generate prices that allow for a tractable treatment of
agents’ updating from prices. Papers such as Sockin and Xiong (2015), Bond and Goldstein (2015), Sockin
(2018), and Goldstein and Yang (2019) all contain competitive models of financial markets with asymmetric
information in which economic agents extract information from financial prices and use this information to
affect firm cash flows. On top of this standard hurdle, we also need to ensure that it remains feasible to
characterize participation decisions (Proposition 2, in turn building on Proposition 1). The issue here is that
Corollary 1—which, as we have noted, is key to characterizing expected utilities and hence participation—
does not generalize to settings with feedback effects. The reason that our analysis in this section is nonetheless
tractable is that it is one in which the feedback effects shift index cash flows only by a constant; the effects
on long-short portfolios (e.g., synthetic asset 2) are more complicated, but these assets are in zero net supply,
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7.1 Extended model

There are two assets covered by the index, m = l = 2. (These two assets can be interpreted

as covering broad sectors of the economy.) We denote by Ṽk the cash flow that is produced

by each of assets k = 1, 2. This cash flow is determined by a mixture of exogenous and

endogenous factors. Specifically, let η ≥ 0 be a constant; the endogenous components of

cash flows, which we denote by Ξ̃1 and Ξ̃2, are determined by

Ξ̃1 = argmax
ξ

E

[

ξ − exp
(

ξ − ηX̃1 + ηX̃2

)

|P̃1, P̃2

]

(28)

Ξ̃2 = argmax
ξ

E

[

ξ − exp
(

ξ − ηX̃2 + ηX̃1

)

|P̃1, P̃2

]

, (29)

where X̃k continues to denote an exogenous and randomly distributed random variable; and

the total cash flow of each asset k = 1, 2 is

Ṽk = X̃k + Ξ̃k.

In words: X̃k is an exogenous shock to the business environment of firm (or sector) k, and Ξ̃k

is the effect of the actions of firm k’s executives on cash flows. These actions—for example,

firm expansion, or the consumption of private benefits—are chosen prior to the realization

of exogenous business environment shocks X̃k; but the realized net benefit or cost of these

actions to executives depends on the realization of the business environment. In particular,

expansion of firm 1 has a lower marginal cost for firm 1’s executives when firm 1’s business

environment is more favorable, or when firm 2’s business environment is less favorable.29

Feedback effects arise in this setting because firms’ executives seek to learn about the

future business environment, X̃1, X̃2, from the financial asset prices P̃1, P̃2. Note that by

setting the parameter η to 0, executives’ decisions are independent of expectations about

X̃1, X̃2, and hence independent of prices P̃1, P̃2, so that this framework nests our baseline

model of exogenous cash flows as a special case.

Finally, an agent’s non-financial income continues to be given by (1), and in particular,

is unaffected by firms’ endogenous decisions.

7.2 Endogenous cash flows

It is straightforward to show that there is an equilibrium in which prices are linear functions

of exogenous business environment shocks X̃1, X̃2 and aggregate exposure shocks Z̃1, Z̃2.

and for zero net supply assets Corollary 1 trivially generalizes.
29The use of the exponential function as the cost function in (28) and (29) is not essential; see Bond and

Goldstein (2015).
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Given this, executives’ posteriors of X̃1, X̃2 are normal, and (28), (29) rewrite as

Ξ̃k = argmax
ξ

(

ξ − exp

(

ξ − ηE
[

X̃k − X̃−k|P̃1, P̃2

]

+
1

2
η2var

(

X̃k − X̃−k|P̃1, P̃2

)

))

,

where X̃−k denotes the business environment j '= k. Hence

Ξ̃k = ηE
[

X̃k − X̃−k|P̃1, P̃2

]

− 1

2
η2var

(

X̃k − X̃−k|P̃1, P̃2

)

.

We again analyze the economy in terms of synthetic assets, defined exactly as before. Since

there are two underlying assets there are two synthetic assets, which we refer to as the index

and spread asset, having cash flows V1 = X1+Ξ1 and V2 = X2+Ξ2, where Ξ1 and Ξ2 denote

the endogenous components of the synthetic asset cash flows:

Ξ1 = −η2var
(

X̃1 − X̃2|P1, P2

)

= −2η2var (X2|P2) (30)

Ξ2 = 2ηE
[

X̃1 − X̃2|P1, P2

]

= 2
3

2 ηE [X2|P2] . (31)

Note that the price P1 of the index asset contains no information about the difference in

business environments X2, as reflected in (30) and (31).

Feedback affects the index cash flow by a term that is constant in equilibrium, −2η2var (X2|P2).

This term captures the intuitive idea that cash flows are higher when price efficiency is

greater, so that var (X2|P2) is lower. It is the spread asset’s price efficiency that matters,

i.e., relative price efficiency.

In contrast, the unconditional mean of spread asset’s cash flow V2 is 0, regardless of either

the strength of feedback η or of price efficiency. Instead, feedback in the spread asset implies

that its cash flow responds to price realizations, increasing the volatility of the spread asset’s

cash flow. This effect is stronger when price efficiency is greater and hence the conditional

expectation E [X2|P2] is more volatile.

7.3 Equilibrium

The endogenous components of the cash flows, Ξk, are deterministic functions of prices Pk.

One can see this directly from (28), (29), without appealing to the specific expressions in

(30), (31). Given this, it is convenient to analyze the economy in terms of the prices of assets

that pay only the exogenous cash flows Vk − Ξk = Xk. We denote the price of these assets

by PX
k , and note that, precisely because Ξk is deterministic given prices,

PX
k = Pk − Ξk.
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Hence agent i’s terminal wealth given trades θi is

Wi =
2
∑

k=1

θik
(

Xk − PX
k

)

+ Sk (Xk + Ξk) + (Zk + uik)Xk

=
2
∑

k=1

θik
(

Xk − PX
k

)

+ eikXk + SkΞk, (32)

where per capita endowments are S1 =
√
2S̃ and S2 = 0 for the index and spread assets.

An immediate implication of these observations is that, given participation decisions,

equilibrium price efficiency is exactly as before (Lemma 3).

The combination of (30), (31) and (32) means that participation decisions in the feedback

economy are no harder to analyze than in our baseline case without feedback (η = 0). For

the index asset, feedback adds a cash flow component Ξ1 that is constant in equilibrium,

and is received both by agents who trade the index asset and those who do not participate

(θi1 = 0) and simply hold their original endowment. Consequently, feedback has no effect

on participation decisions for the index asset.

For the spread asset, feedback adds a cash flow component Ξ2 that fluctuates with the

price of the spread asset P2. But because the spread asset is in zero supply, S2 = 0, this

endogenous component does not affect participation decisions, as (32) makes clear.

7.4 Indexing costs and firm performance

With the equilibrium characterization in hand, we revisit our central topic, viz, the equilib-

rium effects of a falling cost of indexing. As noted, price efficiency and participation decisions

are unchanged from the baseline case. Nonetheless, feedback introduces two new effects.

First, as indexing costs κ1 fall, the increase in the price efficiency of the spread asset

reduces uncertainty about business conditions X̃1 and X̃2 inducing executives to work harder

(or consume fewer private benefits), thereby increasing the cash flow of firms, and hence of

the index asset. This creates an additional welfare benefit for all agents in the economy who

are endowed with a long position in the underlying assets (in our model, this is all agents).

Second, as indexing costs κ1 fall, the increase in the price efficiency of the spread asset

increases the sensitivity of cash flows to the price of the spread asset P2, consistent with

the empirical findings in Antoniou et al. (2019) and Bennett, Stulz, and Wang (2020);30 and

since the equilibrium price PX
2 of the exogenous part of cash flows coincides with the baseline

case, it follows that cash flows grow more volatile. Nonetheless, this increase in cash flow

30Here, we are viewing empirically-measured investment as a proxy for the decisions Ξ̃k; our analysis
predicts that the sensitivity of the relative decision Ξ2 to the price difference P2 rises with indexing.
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volatility leaves welfare unchanged, since returns Vk − Pk = Xk − PX
k are unaffected, and

agents have no initial endowment of the spread asset (see (32)).31

8 Discussion

8.1 Multiple indices

So far, we have focused on the case of a single index, which we have typically interpreted

as a broad-based market index such as the S&P500. In reality, a large number of indices

co-exist, and investment vehicles such as ETFs are increasingly available on this assortment

of indices (see, for example, Lettau and Madhaven (2018) and Easley et al. (2020)).

We can straightforwardly extend our analysis to cover multiple indices, at least when the

indices are orthogonal to each other. To fix ideas, we consider here the case of two indices:

the first a broad-based market index, corresponding to synthetic asset 1; and the second an

index corresponding to the long-short positions associated with synthetic asset 2, which by

construction is uncorrelated with synthetic asset 1. For example, the second index might be

an index tracking the value factor, which is constructed as a long-short portfolio, and which

indeed has low correlation with the overall market. Moreover, there are a number of ETFs

that track the value factor.

The participation cost of participating via the market index is κ1, and the participation

cost of participating via the value factor is κ2. Hence an agent now has two additional

participation options—participation via just the value factor, and participation via the com-

bination of the market index and value factor—along with the three possibilities considered

so far (no participation, market index, full participation).

A fall in the cost κ2 of participating via the value factor has effects that are analogous

to those analyzed in the main body of the paper. As this cost falls, more agents trade the

value factor, decreasing the price efficiency of the value factor, thereby further increasing

the attractiveness of the value factor. In a typical case, the increased attractiveness of

participation via value factor strategies reduces the number of agents who fully participate

in financial markets, increasing the price efficiency of assets not covered by either the market

index of the value factor, and also of synthetic assets other than those corresponding to the

market index and value factor, and that may correspond to other factors. In particular,

increased trading of the value factor is accompanied by an increase in the number of people

31As noted from the outset, the particular framework we have analyzed is special in significant respects,
and other specifications of feedback would potentially yield different implications for a reduction in indexing
costs. But the framework we use has the advantages of being highly tractable, and allowing us to highlight
two specific consequences of extending our model to allow prices to affect cash flows.
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who market index, in the sense of trading the market index asset but not individual assets.

Similarly, a decline in the cost of market indexing typically increases the number of people

trading the value factor but not individual stocks.

8.2 Intensive margin of information acquisition

While the participation decision in our model can be thought of as an information acquisition

decision on the extensive margin, we have abstracted away from the intensive margin of

agents’ information acquisition efforts. Here, we briefly consider an extension that features

an intensive margin. For simplicity, we focus on the case of two assets, l = m = 2, so that

the synthetic assets are simply the index and spread asset.

Suppose now that, instead of being exogenously endowed with informative signals about

cash flows yik, agents spend resources to collect information. Specifically, for constants ci > 0

and ψ, in order to collect signals about the index asset 1 and spread asset 2 with precisions

τi1 and τi2, respectively, agent i incurs a cost

ci
(

τ 2i1 + τ 2i2 + ψτi1τi2
)

. (33)

Agent i faces convex costs of increasing precision, and these costs vary across agents. We

assume that agents choose precisions at the same time that they make participation decisions.

The cost specification (33) says that agents collect two types of information: information

about market aggregates, yi1, and information about relative cash flows, yi2. We believe this

assumption is realistic; it also has the important advantage of allowing us to continue to

analyze the economy in terms of the synthetic index and spread assets.32

The parameter ψ in (33) captures the multitasking dimension of information acquisition.

In particular, if ψ > 0, then an increase in the precision of the signal about X1 increases the

the marginal cost of precision about X2, and vice versa.

Absent multitasking considerations (i.e., ψ = 0), the above model generates qualitatively

the same implications as our main model. Specifically, a fall in the cost of indexing κ1 has the

direct effect of decreasing participation in the spread asset and increasing participation in

the index asset. If precision decisions are artificially held fixed, these changes in participation

decrease price efficiency in the index asset and increase price efficiency in the spread asset.

Consequently, in equilibrium agents who trade the spread asset reduce the precisions of their

spread asset signals, while agents who trade the index asset increase the precision of their

32In contrast, if we instead assumed that agents can choose precisions of signals about the underlying cash
flows X̃1 and X̃2, then the change-of-basis to synthetic assets is much less useful. In a different context,
Van Nieuwerburgh and Veldkamp (2010) establish conditions under which investors would indeed want to
specialize and focus their information acquisition efforts on a small number of assets.
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index asset signals. These endogenous changes in precision dampen the effect of the fall in

indexing costs, but do not qualitatively change the predictions, since the net effect is still

that equilibrium price efficiency rises in the spread asset and falls in the index asset.33

Multitasking considerations—and specifically, the case in which precision of one signal

increases the marginal cost of the other signal, i.e., ψ > 0—introduce an additional effect,

as follows. To isolate the effect in a transparent way, we consider the case in which κ1 is

sufficiently low that all agents trade the index asset, and a strict subset of agents trade

spread asset. In this case, a further reduction in κ1 reduces the number of agents trading the

spread asset; but does not affect the number of agents trading the index asset, since everyone

already trades it. So if precision decisions are artificially held fixed, the price efficiency of

the spread asset increases, while the price efficiency of the index asset is unchanged.

The new effect introduced by multitasking is that agents respond by increasing the pre-

cision of signals about the index asset. Agents who trade the spread asset respond to the

increase in its price efficiency by reducing the precision of signals about the spread asset,

and—because of multitasking—increasing the precision of signals about the index asset.

Agents who previously traded the spread asset, but no longer do so after the fall in indexing

costs, likewise respond by increasing the precision of signals about the index asset, again for

multitasking reasons. Consequently, and different from our baseline model, price efficiency of

the index asset rises rather than falls. In this case, the fall in the cost of indexing generates

indirect effects that reduce the benefits of trading the index asset—though, of course, the

fall in indexing costs still carries a direct benefit.

As we noted, this multitasking effect is starkest in the case in which a fall in indexing

costs does not increase the number of agents trading the index asset. The case in which

both effects operate is more complicated, and the net effect is a quantitative question that

we leave for future research.

8.3 Revisiting the link between participation and price efficiency

The substantive implications of our analysis are all contingent on Lemma 3’s implication that

the price efficiency of an asset is decreasing in the level of participation in that asset. Recall

that this implication arises because the marginal new participating agent is less informed

than the average participating agent, but has the same non-informational trading motives.

Consequently, the marginal new participating agent adds proportionately more “noise” than

33In particular, the comparative static of Lemma 3 continues to hold, as follows. Consider an increase
in participation nk. Suppose to the contrary that price efficiency ρk increases. But then agents who were
already participating lower their signal precisions. So price efficiency falls, both because of the increase in
participation and because of the lower signal precisions. The contradiction establishes that price efficiency
is decreasing in participation.
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information to the market. Moreover, the empirical evidence surveyed in Section 5 provides

at least some support for the idea that price efficiency is decreasing participation.

Nonetheless, it is important to acknowledge that there are plausible economic forces that

would predict that price efficiency is instead increasing in participation. We discuss two

extensions of our basic model to conclude our analysis.

Heterogenous risk aversion: If agents have differing levels of risk-aversion, γi, it is

straightforward to show that equilibrium price efficiency of asset k is given by the smaller

root of the quadratic
ρ2kτu
|Nk|

∫

Nk

1

γi
di− ρk +

1

|Nk|

∫

Nk

τi
γi
di = 0, (34)

where Nk is the set of agents participating in asset k. Hence a sufficient condition for

price efficiency to decrease in participation (as in Lemma 3) is that both 1
|Nk|

∫

Nk

1
γi
di and

1
|Nk|

∫

Nk

τi
γi
di decrease in participation. Similarly, a sufficient condition for price efficiency to

increase in participation is that both 1
|Nk|

∫

Nk

1
γi
di and 1

|Nk |

∫

Nk

τi
γi
di increase in participation.

In particular, if agents differ only in risk aversion, while having the same signal precisions,

then price efficiency is increasing in participation if the most risk-averse agents gain most

from participation. While, unfortunately, participation decisions are much harder to evaluate

analytically when risk aversion is heterogeneous, it is intuitive that participation gains are

indeed increasing in risk aversion, and numerical analysis supports this intuition.34More

generally, our analysis suggests that price efficiency is decreasing in participation if the

main source of heterogeneity among agents is differing signal precisions; but increasing in

participation if instead the main source of heterogeneity is differing risk aversion.

Quadratic trading costs in place of fixed participation costs: Our main model assumes

that agents pay fixed costs (κ and κ1) to participate in financial markets. An alternative

modeling approach would be to instead assume that agents incur costs at the time of trading.

To fix ideas, we consider here the highly tractable case in which trading costs take the form
1
2 κ̂θ

2
ik, for some constant κ̂ > 0, which is potentially smaller for trades of the index asset.35

34See online appendix for expressions used in the numerical calculation. The parameter values used
are the same as in subsection 6.2, and detailed in Appendix D, other than for risk aversion γi, which is
distributed uniformly over

[

27
50 ,

33
50

]

. The main impediment to an analytical evaluation of participation is

that the generalization of Corollary 1 delivers E [X − P ] = Scov(X−P,X)
1

|N|

∫
N

1

γi
di

; it then follows that the substitution

of Corollary 1 in the proof of Proposition 1 is useful only for an agent whose risk aversion γi matches the
harmonic mean of participating agents.

35In an economy in which each agent can observe the number of agents with a given signal precision
who buy (respectively, sell) the asset, Dávila and Parlatore (forthcoming) obtain results for linear and fixed
transaction costs.
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Naturally, transaction costs reduce trade sizes, with (11) generalizing to

θik =
E [Xk|yik, eik, Pk]− Pk − eikγvar (Xk|yik, eik, Pk)

γvar (Xk|yik, eik, Pk) + κ̂
.

Under this specification of costs, all agents participate in all markets, and costs affect the

intensive rather than extensive margin of participation. The relation between price efficiency

and the magnitude of the transaction cost parameter κ̂ depends on the relative effect of the

transaction cost on trade sensitivity to cash flow signals yik and exposure shocks eik, along

with how this relative sensitivity varies across agents with differing signal precisions.

Dávila and Parlatore (forthcoming) analyze exactly this question in a closely related

economy, and find that the relation depends on the specific form of heterogeneity across

agents. In particular, they examine a model in which agents have heterogeneous prior be-

liefs about cash flows,36 and also observe subsequent signals of cash flows. They find that

price efficiency is decreasing in the transaction cost parameter if agents differ in their signal

precisions; but is increasing if instead agents differ in the accuracy of their prior beliefs.37

9 Conclusion

We develop a benchmark model to study the equilibrium consequences of indexing in a stan-

dard rational expectations setting (Grossman and Stiglitz (1980); Hellwig (1980); Diamond

and Verrecchia (1981)). Individuals must incur costs to participate in financial markets, and

these costs are lower for individuals who restrict themselves to indexing strategies. Individu-

als’ participation decisions exhibit strategic complementarity, and consequently, equilibrium

effects reinforce the direct consequences of declining costs of indexing. As indexing becomes

cheaper we find that: (1) indexing increases, while individual stock trading decreases; (2)

aggregate price efficiency falls, while relative price efficiency increases; (3) the welfare of

relatively uninformed traders increases; (4) for well-informed traders, the share of trading

gains stemming from market timing increases, and the share of gains from stock selection

decreases; (5) market-wide reversals become more pronounced. We link these predictions to

existing empirical evidence.

We end on a more speculative note, by noting two ways in which a fall in indexing

costs reduces inequality stemming from public financial markets in our framework.38 First,

36In Dávila and Parlatore’s model, agents do not have exposure to non-financial cash flows (Z + ui in our
notation) and instead trade because of heterogeneous prior beliefs.

37For completeness, in an online appendix we show that the former result relating to signal precisions holds
in our model also, at least for the case in which the population distribution of signal precisions is binary.

38Mihet (2020) examines how inequality is affected by changes in participation and information acquisition
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the switch away from active investing decreases both the mean and variance of investment

returns for the best informed agents who continue to actively invest. Second, increased

participation by relatively uninformed agents reduces the income variance of these agents.

Further work on how financial innovations affect inequality and welfare is a natural avenue

for future research.
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A Results omitted from main text

Note: Throughout the appendix, we frequently omit asset subscripts in order to enhance

notational transparency.

Lemma A-1 For any positive integers m and l ≤ m such that l is a power of 2, there

exists an m×m matrix A with the following properties: A is symmetric and invertible, with

A−1 = A (i.e., A is involutory); Ajk = 0 if j '= k and either j > l or k > l; Ajk = 1 if

j = k > l; A1k = l−
1

2 and |Ajk| = l−
1

2 for all j, k ≤ l; for any j, j′ '= j,
∑m

k=1AjkAj′k = 0;

and
∑l

k=1Ajk = 0 for j = 2, . . . , l.
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Proof of Lemma A-1: We focus on cases l = m, since the generalization to l < m is

trivial. The proof is inductive: Given the existence of an m ×m matrix A with the stated

properties, we construct a 2m× 2m matrix B with the same properties. Specifically, define

B =
1√
2

(

A A

A −A

)

.

With the exception of the symmetry and inversion properties, it is straightforward to see

that B has the desired properties. To establish that B is involutory, simply note that

BB =
1

2

(

A A

A −A

)(

A A

A −A

)

=
1

2

(

AA + AA AA− AA

AA−AA AA + AA

)

=
1

2

(

2Im 0m

0m 2Im

)

= I2m,

where Im denotes the m×m identity matrix and 0m denotes the m×m matrix in which all

entries are zero. To establish that B is symmetric, simply note that

B% =
1√
2

(

A% A%

A% −A%

)

=
1√
2

(

A A

A −A

)

= B.

Finally, for the base case of m = 1, simply define A = (1). This completes the proof.

Lemma A-2 Let A be a matrix with the properties stated in Lemma A-1. Define synthetic

assets as paying off

Xk ≡
m
∑

j=1

AkjX̃j . (A-1)

The synthetic assets have the properties stated in the main text. Moreover, the price vectors

for fundamental and synthetic assets are related by P = AP̃ and P̃ = AP .

Proof of Lemma A-2: The properties of the synthetic assets all follow directly from the

properties of the matrix A. For the price vectors, the statement P = AP̃ is immediate from

construction. Since A is involutory, it follows that AP = P̃ .

Lemma A-3 Suppose X is a normally distributed random variable, and that an information

set F consists of a set of normally distributed random variables. Then the derivative of the

conditional expectation E [X|F ] with respect to a realization X̂ of X is

∂

∂X̂
E [X|F ] = 1− var (X|F)

var (X)
.

Proof of Lemma A-3: Let Σ22 be the variance matrix of the random variables in F ; and

Σ12 be the row vector of covariances between X and the random variables in F . The vector
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of coefficients from the regressing each variable in F on X is Σ12

var(X) . So by the properties of

multivariate normality,
∂

∂X̂
E [X|F ] = Σ12Σ

−1
22

Σ%
12

var (X)
.

Also from multivariate normality,

var (X|F) = var (X)− Σ12Σ
−1
22 Σ

%
12.

Combining these two equations completes the proof.

Lemma A-4 In a linear equilibrium, ∂Pk

∂Zk
'= 0, and hence ρk is well-defined.

Proof of Lemma A-4: Differentiation of market clearing (4) with respect to Z yields

∂P

∂Z

∫ n

0

∂θi
∂P

di+
∂P

∂Z

∫ n

0

∂θi

∂P̂
di+

∫ n

0

∂θi
∂ei

di+

∫ n

0

∂θi
∂êi

di = 0. (A-2)

Suppose that, contrary to the claimed result, ∂P
∂Z = 0. Then Z and ei provide no information

about the cash flow X , so that ∂θi
∂êi

= 0 for all agents. In contrast, the non-informational

effect of exposure shocks on the portfolio decision is certainly negative (see (11)). But then

the LHS of (A-2) is strictly negative, a contradiction, completing the proof.

Lemma A-5 If Pk is a linear function of Xk and Zk then the effects of non-informational

factors on demand θik are given by

∂θik
∂eik

= −1;
∂θik
∂Pk

= −1

γ

1

var (Xk|yik, eik, Pk)
; (A-3)

while the effects of informational factors on demand θik satisfy

∂θik
∂yik

=
τik
γ
;

∂θik
∂êik

=
ρk
γ
τu;

∂Pk

∂Zk

∂θik

∂P̂k

= −ρk
γ

(τZ + τu) ;
∂Pk

∂Xk

∂θik

∂P̂k

=
ρ2k
γ

(τZ + τu) .

(A-4)

Furthermore, these imply that

∂Pk

∂Zk

∂θik
∂P̂k

∂θik
∂êik

= −τZ + τu
τu

, (A-5)

∂Pk

∂Zk

∂θik

∂P̂k

+
∂θik
∂êik

= −ρk
γ
τZ . (A-6)

Proof of Lemma A-5: Consider first the case in which ∂P
∂X '= 0. The information content
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of (yi, ei, P ) is the same as the information content of

(

yi,
P − E [P ]

∂P
∂X

+ E [X ] ,
P − E [P ]

∂P
∂X

+ E [X ] + ρ−1 (ei − S)

)

=
(

X + εi, X − ρ−1Z,X + ρ−1 (ui + si − S)
)

.

Since εi, Z, and ui + si − S are independent and all have mean 0, the conditional variance

expressions (12) and (13) follow by standard normal-normal updating. Using ∂P
∂X = −ρ∂P

∂Z ,

the corresponding conditional expectation E [X|yi, ei, P ] is given by

E [X|yi, ei, P ]

var (X|yi, ei, P )
= τXE [X ] + ρ (τZ + τu)

(

ρE [X ]− P − E [P ]
∂P
∂Z

)

+ ρτu (ei − S) + τiyi.(A-7)

Finally, if ∂P
∂X = 0 then neither the price nor the exposure shock ei contains any information

about X ; and ρ = 0; so (12), (13), and (A-7) are all immediate.

The stated expressions are then immediate from the demand equation (11), completing

the proof.

Lemma A-6 In a linear equilibrium, the aggregate demand curve slopes down, i.e.,

∫ nk

0

∂θik
∂Pk

di+

∫ nk

0

∂θik

∂P̂k

di < 0, (A-8)

and the price is an increasing function of Xk, and a strictly decreasing function of Zk,

∂Pk

∂Xk
≥ 0 and

∂Pk

∂Zk
< 0,

and so in particular ρk ≥ 0.

Proof of Lemma A-6: From Lemma A-5, ∂θi
∂P < 0 for all agents.

If ∂P
∂X = 0, then P contains no information about X , so

∫ n
0

∂θi
∂P̂

di = 0, and (A-8) is then

immediate.

If instead ∂P
∂X '= 0, then ∂P

∂X

∫ n

0
∂θi
∂P̂

di > 0 by Lemma A-5. By (B-6) and Lemma A-5,

∂P

∂X

∫ n

0

∂θi
∂P

di+
∂P

∂X

∫ n

0

∂θi

∂P̂
di = −

∫ n

0

∂θi
∂yi

di < 0. (A-9)

Hence ∂P
∂X > 0, which (again using (A-9)) implies (A-8).

Note that the above arguments also establish that ∂P
∂X ≥ 0.

Lemma A-4 establishes that ∂P
∂Z '= 0. So to establish ∂P

∂Z < 0, suppose to the contrary

that ∂P
∂Z > 0. Then ρ ≤ 0, and Lemma A-5 implies

∫ n
0

∂θi
∂ei

di < 0 and
∫ n
0

∂θi
∂êi

di ≤ 0. Combined
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with (A-8), this in turn implies that the LHS of (A-2) is strictly negative. The contradiction

completes the proof.

Lemma A-7 Let ξ ∈ Rn be a normally distributed random vector with mean µ and variance-

covariance matrix Σ. Let b ∈ Rn be a given vector, and A ∈ Rn×n a symmetric matrix. If

I − 2ΣA is positive definite, then E
[

exp(b%ξ + ξ%Aξ)
]

is well defined, and given by:

E
[

exp
(

b%ξ + ξ%Aξ
)]

= |I−2ΣA|−1/2 exp

(

b%µ+ µ%Aµ+
1

2
(b+ 2Aµ)%(I − 2ΣA)−1Σ(b+ 2Aµ)

)

.

(A-10)

Proof of Lemma A-7: Standard result.

B Proofs of results stated in main text

Proof of Lemma 1: For use throughout, note that the price P is normally distributed in

a linear equilibrium. Differentiation of market clearing (4) with respect to X gives

∂

∂X

∫ n

0

θidi = 0.

Substituting in the portfolio θi from (11); recalling the property of multivariate normality

that conditional variances do not depend on the realizations of random variables; and noting

that ∂P
∂X = cov(P,X)

var(X) , it follows that

∫ n

0

∂
∂XE [X|yi, ei, P ]

var (X|yi, ei, P )
di =

∫ n

0

cov(P,X)
var(X)

var (X|yi, ei, P )
di. (B-1)

By Lemma A-3,
∂

∂X
E [X|yi, ei, P ] = 1− var (X|yi, ei, P )

var (X)
. (B-2)

(Note that the RHS of (B-2) is simply the R2 of regressing cash flows on (yi, ei, P ).) Substi-

tution of (B-2) into (B-1) yields

(

1− cov (P,X)

var (X)

)∫ n

0

1

var (X|yi, ei, P )
di =

∫ n

0

1

var (X)
di,

which is equivalent to (14), completing the proof.

Proof of Lemma 2: At various points in the proof, we make use of ρ < 0 and ∂P
∂Z < 0 (by

Lemma A-6), and ∂θi
∂P̂

> 0 (by Lemma A-5).
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Re-arranging market-clearing (A-2) gives

0 =
∂P

∂Z

∫ n

0

∂θi
∂P

di+

∫ n

0

∂θi
∂ei

di+

(

∂P
∂Z

∫ n

0
∂θi
∂P̂

di
∫ n

0
∂θi
∂ẽi

di
+ 1

)

∫ n

0

∂θi
∂êi

di. (B-3)

By Lemma A-6 and market-clearing (A-2), we know

∫ n

0

∂θi
∂ei

di+

∫ n

0

∂θi
∂êi

di < 0. (B-4)

From (A-6) of Lemma A-5, ∂P
∂Z

∂θi
∂P̂

+ ∂θi
∂êi

< 0, which together with ∂θi
∂êi

> 0 implies

∂P
∂Z

∫ n

0
∂θi
∂P̂

di
∫ n

0
∂θi
∂êi

di
+ 1 < 0.

So substituting (B-4) into (B-3) gives

0 >
∂P

∂Z

∫ n

0

∂θi
∂P

di+

∫ n

0

∂θi
∂ei

di−
(

∂P
∂Z

∫ n
0

∂θi
∂P̂

di
∫ n
0

∂θi
∂êi

di
+ 1

)

∫ n

0

∂θi
∂ei

di

=
∂P

∂Z

∫ n

0

∂θi
∂P

di− ∂P

∂Z

∫ n

0

∂θi

∂P̂
di

∫ n
0

∂θi
∂ei

di
∫ n

0
∂θi
∂êi

di
. (B-5)

Using ∂P
∂Z < 0 and the signs established in Lemma A-5, inequality (B-5) is equivalent to

∫ n

0
∂θi
∂P di

∫ n
0

∂θi
∂P̂

di
>

∫ n

0
∂θi
∂ei

di
∫ n
0

∂θi
∂êi

di
,

which is in turn equivalent to (15), completing the proof.

Proof of Lemma 3: Differentiation of market clearing (4) with respect to X yields

∂P

∂X

∫ n

0

∂θi
∂P

di+
∂P

∂X

∫ n

0

∂θi

∂P̂
di+

∫ n

0

∂θi
∂yi

di = 0. (B-6)

Combined with (A-2), it follows that

−
∂P
∂X
∂P
∂Z

= −
∫ n

0
∂θi
∂yi

di
∫ n

0
∂θi
∂ei

di+
∫ n

0
∂θi
∂êi

di
. (B-7)
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Substituting in from Lemma A-5,

ρ =
1
γ

∫ n
0 τidi

∫ n

0

(

1− ρ
γ τu
)

di
, (B-8)

which rearranges to (16). The comparative static of price efficiency is immediate from the

fact that 1
n

∫ n

0 τidi is decreasing in n.

Proof of Proposition 1: The final wealth of agent i, given optimal trading (11), is

Wi = eiP +
E[X − P |yi, ei, P ] (X − P )

γvar(X|yi, ei, P )
.

So by the standard expression for the expected utility of an agent with CARA utility facing

normally shocks, combined with simple manipulation, agent i’s expected utility at the time

of trading is

E [u (Wi) |yi, ei, P ] = − exp

(

−γ
(

eiP +
1

2

E[X − P |yi, ei, P ]2

γvar(X|yi, ei, P )

))

. (B-9)

To obtain (18), we proceed in two stages. First, we integrate over realizations of the private

signal yi in (B-9). Second, we integrate over realizations of the price P . Note that the first

stage is relatively standard, and similar algebraic arguments can be found in the related

literature. Readers familiar with these arguments should proceed directly to the second

stage.

For the first stage, define ξi = E [X − P |yi, ei, P ] and Ai = −1/ (2var(X|yi, ei, P )). Minor

algebraic manipulation of Lemma A-7 implies

E
[

exp
(

ξ2iAi

)

|ei, P
]

= (1− 2Aivar(ξi|ei, P ))−
1

2 exp

(

Ai

1− 2Aivar(ξi|ei, P )
E[ξi|ei, P ]2

)

.

(B-10)

By the law of total variance,

var(X − P |ei, P ) = var(E[X − P |yi, ei, P ]|ei, P ) + E[var(X − P |yi, ei, P )|ei, P ]

which implies

var(ξi|ei, P ) = var(X|ei, P )− var(X|yi, ei, P ),

and so

1− 2Aivar(ξi|ei, P ) =
var(X|ei, P )

var(X|yi, ei, P )
= di,

where di is as defined in (19). Substitution and straightforward manipulation implies that
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expression (B-10) equals

d
− 1

2

i exp

(

−1

2

E[X − P |ei, P ]2

var(X|ei, P )

)

,

and so

E [u (Wi) |ei, P ] = −d
− 1

2

i exp

(

−γeiP − 1

2

E[X − P |ei, P ]2

var(X|ei, P )

)

, (B-11)

completing the first stage.

In the second stage, we integrate over realizations of P . Since P = (P − E[P |ei]) +
E[X|ei]− E[X − P |ei], the expression in the exponent of (B-11) equals

−1

2

E[X − P |ei, P ]2

var(X|ei, P )
− γei(P − E[P |ei])− γeiE[X|ei] + γeiE[X − P |ei]. (B-12)

Denote the expected return X − P given exposure ei by αe, and recall that E [ei] = S:

αe ≡ E[X − P |ei] = E[X − P ]− cov(P, ei)

var (ei)
(ei − S) . (B-13)

Hence

E[X − P |ei, P ] =
cov (X − P, P |ei)

var (P |ei)
(P − E[P |ei]) + αe. (B-14)

By substitution and Lemma A-7, the expectation of (B-11) conditional on ei is given by

E [u (Wi) |ei] = −d
− 1

2

i D− 1

2 exp (−γei (E [X ]− αe))

× exp

(

−1

2

α2
e

var(X|ei, P )
+

1

2

(

αecov(X − P, P |ei)
var(P |ei)var(X|ei, P )

+ γei

)2 var(P |ei)
D

)

(B-15)

where

D = 1 +
cov (X − P, P |ei) 2

var (X|ei, P ) var (P |ei)
. (B-16)

The law of total variance and (B-14) together yield

var (E [X − P |ei, P ] |ei) = var (X − P |ei)− var (X|ei, P ) =
cov (X − P, P |ei)2

var (P |ei)
, (B-17)

and substitution into (B-16) delivers (20).
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For use below, note also that (B-17) implies that

var (P |ei)
D

=
var (P |ei) var(X|ei, P )

Dvar(X|ei, P )
=

var (P |ei) var (X − P |ei)− cov (X − P, P |ei)2

Dvar(X|ei, P )

=
var (X|ei) var (X − P |ei)− cov (X − P,X|ei)2

Dvar(X|ei, P )

= var (X|ei)−
cov (X − P,X|ei)2

Dvar(X|ei, P )
(B-18)

where the penultimate equality follows from the fact that for any random variables r1, r2,

cov (r1 − r2, r1)
2 − cov (r1 − r2, r2)

2 = var (r1 − r2) (var (r1)− var (r2)) ,

and the final equality follows from (20).

By a combination of algebraic manipulation and (B-16), (20), (B-18), expected utility

(B-15) equals

− (diD)−
1

2 exp

(

−γeiE [X ] +
1

2

α2
e

var(X|P, ei)

(

cov(X − P, P |ei)2

Dvar(P |ei)var(X|ei, P )
− 1

))

× exp

(

γeiαe

(

cov(X − P, P |ei)
Dvar(X|ei, P )

+ 1

)

+
1

2
γ2e2i

var(P |ei)
D

)

= − (diD)−
1

2 exp

(

−γeiE [X ]− 1

2

α2
e

Dvar(X|ei, P )

)

× exp

(

γeiαe
cov(X − P,X|ei)
Dvar(X|ei, P )

+
1

2
γ2e2i

(

var(X|ei)−
cov(X − P,X|ei)2

Dvar(X|ei, P )

))

.

By further manipulation, and substitution of αe using (B-13), expected utility (B-15) equals

− (diD)−
1

2 exp

(

−γeiE [X ] +
γ2ei2

2τX
− 1

2

(αe − cov(X − P,X)γei)
2

Dvar(X|ei, P )

)

= − (diD)−
1

2 exp

(

−γeiE [X ] +
γ2ei2

2τX

)

× exp






−1

2

(

E[X − P ]− cov(X − P,X)γS − cov(X − P,X)γ (ei − S)− cov(P,ei)
var(ei)

(ei − S)
)2

Dvar(X|ei, P )






.

Substituting Corollary 1’s expression for E[X − P ] into this last expression yields (21).

Finally, the fact that each of di, D, and Λ can be written as functions of exogenous

parameters and price efficiency ρ is established in the proof of Proposition 2.
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Proof of Proposition 2: For use below, recall that ∂P
∂X = cov(X,P )

var(X) , ∂P
∂Z = cov(Z,P )

var(Z) , and hence

var (P |ei) =
cov (X,P )2

var (X)2
var (X) +

cov (Z, P )2

var (Z)2
var (Z|ei) , (B-19)

var (X − P |ei) =

(

cov (X − P,X)

var (X)

)2

var (X) +

(

cov (P, Z)

var (Z)

)2

var (Z|ei) . (B-20)

Note also that Lemmas 1 and A-5 directly imply the following expression for the non-

informational effect of prices on aggregate demand:

1

n

∫ n

0

∂θi
∂P

di = −1

γ

1

cov (X − P,X)
. (B-21)

We use repeatedly Lemma 3’s result that price efficiency decreases in participation n.

To establish the result, we show that each of the three terms di, D, and Λ are increasing

in participation n. We start with the term di, which corresponds to an agent’s expected

trading gains from her private information. Substitution of (13) delivers

di =
τX + ρ2(τZ + τu) + τi
τX + ρ2(τZ + τu)

.

Because price efficiency ρ is decreasing in participation n, the private gains from information,

di, are increasing in participation. Economically, when prices convey less information about

cash flows X , an agent’s private information about X is more valuable.

Next, we consider the term Λ. As a first step, (B-21) implies that

cov(P, ei)

var(ei)
+ γcov(X − P,X) = −γcov (X − P,X)

var (Z)

var (ei)

(

− 1

γcov (X − P,X)

cov (P, ei)

var (Z)
− var (ei)

var (Z)

)

= −γcov (X − P,X)
var (Z)

var (ei)

(

1

n

∫ n

0

∂θi
∂P

di
cov (P, Z)

var (Z)
− var (ei)

var (Z)

)

.(B-22)
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Substituting (B-20) and (B-22) into (21), and again using (B-21), gives

Λ =
γ2cov (X − P,X)2 var(Z)2

var(ei)
2

(

1
n

∫ n
0

∂θi
∂P di

cov(P,Z)
var(Z) − var(ei)

var(Z)

)2

(

cov(X−P,X)
var(X)

)2
var (X) +

(

cov(P,Z)
var(Z)

)2
var (Z|ei)

=

var(Z)2

var(ei)
2

(

1
n

∫ n

0
∂θi
∂P di

cov(P,Z)
var(Z) − var(ei)

var(Z)

)2

1
γ2

1
var(X) +

(

− cov(P,Z)
var(Z)

1
γcov(X−P,X)

)2
var (Z|ei)

=

var(Z)2

var(ei)
2

(

1
n
∂P
∂Z

∫ n

0
∂θi
∂P di−

var(ei)
var(Z)

)2

1
γ2

1
var(X) +

(

1
n
∂P
∂Z

∫ n

0
∂θi
∂P di

)2
var (Z|ei)

. (B-23)

We next show that a key term in the numerator of (B-23) is negative, i.e.,

1

n

∂P

∂Z

∫ n

0

∂θi
∂P

di− var (ei)

var (Z)
< 0. (B-24)

Inequality (B-24) holds because, by (A-5), it is equivalent

1

n

∂P

∂Z

∫ n

0

∂θi
∂P

di+
1
n

∫ n
0

∂P
∂Z

∂θi
∂P̂

di
1
n

∫ n
0

∂θi
∂êi

di
< 0,

and since ∂θi
∂ei

= −1, ∂θi
∂P̂

> 0 and ∂P
∂Z < 0, this inequality is in turn equivalent (15), i.e., prices

contain more information than exposure shocks.

Note also that, since cov(X − P,X) > 0 (by Lemma 1), equation (B-22) implies that

(B-24) is equivalent to
cov(P, ei)

var(ei)
+ γcov(X − P,X) > 0, (B-25)

a fact we refer to in the main text.

From (B-24) and (B-23), Λ is decreasing in 1
n
∂P
∂Z

∫ n

0
∂θi
∂P di. Substitution of (A-6) into the

market clearing condition (A-2), along with the basic property that the non-informational

effect of exposure shocks on demand is ∂θi
∂ei

= −1, yields

1

n

∂P

∂Z

∫ n

0

∂θi
∂P

di = 1 +
ρ

γ
τZ . (B-26)

Hence 1
n
∂P
∂Z

∫ n

0
∂θi
∂P di is increasing in price efficiency ρ, and hence is decreasing in participation

n, implying that Λ is increasing in participation n.

Finally, we consider the term D, which we start by re-expressing. By the law of total
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variance,

var (X|ei, P ) var (P |ei) =

(

var (X|ei)−
cov (X,P |ei)2

var (P |ei)

)

var (P |ei)

= var (X|ei) var (P |ei)− cov (X,P |ei)2 .

Substituting in (B-19) gives

var (X|ei, P ) var (P |ei) =
cov (Z, P )2

var (Z)2
var (Z|ei) var (X) . (B-27)

Also by (B-19), and making use of (B-21),

cov (X − P, P |ei) = cov (X,P |ei)− var (P |ei)

=
cov (X,P )

var (X)
(var (X)− cov (X,P ))− cov (Z, P )2

var (Z)2
var (Z|ei)

=

( cov(X,P )
var(X)

cov(Z,P )
var(Z)

−
cov(Z,P )
var(Z) var (Z|ei)
cov (X − P,X)

)

cov (Z, P )

var (Z)
cov (X − P,X)

=

(

−ρ+ γvar (Z|ei)
1

n

∂P

∂Z

∫ n

0

∂θi
∂P

di

)

cov (Z, P )

var (Z)

(

− 1

γ 1
n

∫ n

0
∂θi
∂P di

)

.(B-28)

Substitution of (B-27) and (B-28) into (B-16) yields:

D = 1 +

(

−ρ+ γvar (Z|ei) 1
n
∂P
∂Z

∫ n

0
∂θi
∂P di

)2

γ2var (Z|ei) var (X)
(

1
n

∫ n
0

∂θi
∂P di

)2 . (B-29)

By (B-26) and the fact that var (Z|ei) = 1
τZ+τu

,

−ρ+ γvar (Z|ei)
1

n

∂P

∂Z

∫ n

0

∂θi
∂P

di = (γ − ρτu) var (Z|ei) , (B-30)

and so

D = 1 +
(γ − ρτu)

2 var (Z|ei)
γ2var (X)

(

1
n

∫ n
0

∂θi
∂P di

)2 . (B-31)

Note also that (B-30) implies that

γ − ρτu > 0, (B-32)
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since, using 1
n
∂P
∂Z

∫ n
0

∂θi
∂P̂

di = − ρ
γvar(Z|ei) (see Lemma A-5), the LHS of (B-30) equals

−ρ
(

1 +
1
n
∂P
∂Z

∫ n

0
∂θi
∂P di

1
n
∂P
∂Z

∫ n

0
∂θi
∂P̂

di

)

. (B-33)

Expression (B-33) is strictly positive because ∂θi
∂P̃

> 0 and demand slopes down (Lemma

A-6).

Finally, from Lemma A-5 and (13),

1

n

∫ n

0

∂θi
∂P

di = −1

γ

1

n

∫ n

0

1

var (X|yi, ei, P )
di = −

τX + ρ2(τZ + τu) +
1
n

∫ n
0 τidi

γ
. (B-34)

So as participation n increases,
∣

∣

1
n

∫ n

0
∂θi
∂P di

∣

∣ declines, both because price efficiency declines;

and because the average signal precision of participating agents, 1
n

∫ n
0 τidi, declines.

It then follows from (B-31) and (B-32) that D increases as participation n increases.

Finally, substitution of Lemma 3’s expression for ρ into (B-34) yields

∣

∣

∣

∣

1

n

∫ n

0

∂θi
∂P

di

∣

∣

∣

∣

=
τX + ρ2τZ + γρ

γ
,

thereby establishing that D can be expressed as a function of ρ only, completing the proof.

Proof of Proposition 3: The main complication in the proof is that the equilibrium

conditions are different for indexing versus no-indexing equilibria. The basic strategy of the

proof is to start by finding total participation in financial markets, n1, by means of analyzing

the fixed points of a function that covers both cases, namely max {gA, gI} defined below.

For use throughout the proof, we write A +ρ1,ρ−1

i 0 if agent i prefers full participation

to non-participation when price efficiency is (ρ1, ρ−1), i.e., if E
[

UA
i (ei; ρ1, ρ−1)

]

exp (γκ) ≥
E [U0

i (ei)]. We define the relations I +ρ1
i 0 and A +ρ−1

i I etc analogously, where “I” corre-

sponds to participation via indexing. Note that the comparison between index-participation

and non-participation depends only on ρ1, and not on ρ−1; while the comparison between

full participation and index-participation depends only on ρ−1, and not on ρ1.

Also for use below, define

f (n) ≡ γ

2τu
−

√

(

γ

2τu

)2

− 1

τu

1

n

∫ n

0

τidi,

i.e., price efficiency associated with participation n (see Lemma 3).

Observe that n1 is an equilibrium level of participation in the index asset 1 only if it is
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a fixed point of either the function

gA (n) ≡ max
{

i : A +f(n),f(n)
i 0

}

,

where both here and below we adopt the adopt the convention that the maximum of an

empty set is 0; or of the function

gI (n; κ1) ≡ max
{

i : I +f(n)
i 0 given κ1

}

.

Moreover, if n1 is a fixed point of gA, then (n1, n−1 = n1) is a no-indexing equilibrium if and

only if

A +f(n1)
n1

I; (B-35)

and if n1 is a fixed point of gI , then there is an indexing equilibrium with participation n1

in the index asset if and only if for some j ≤ n1,

I , f(j)
j A. (B-36)

Finally, define

gAI (n; κ1) = max
{

i : A +f(n)
i I given κ1

}

.

By Lemma 3 and Proposition 2, the function gA (respectively, gI , gAI) is continuous and

weakly increasing in n, and is strictly increasing in the neighborhood of any n for which

gA (n) ∈ (0, 1) (respectively, gI (n) ∈ (0, 1), gAI (n) ∈ (0, 1)).

(A) Let n1 be a fixed point of max {gA, gI} (at least one fixed point exists by Tarski),

i.e., n1 = max {gA (n1) , gI (n1)}. To establish the result, we show there is an n−1 ∈ [0, n1]

such that (n1, n−1) is an equilibrium. First, consider the case in which gA (n1) < n1 and

gI (n1) = n1. So 0 , f(n1),f(n1)
n1

A and I ≈f(n1)
n1

0. Hence I , f(n1)
n1

A, implying gAI (n1) < n1.

So gAI maps [0, n1] into itself, and hence (by Tarski) has at least one fixed point in [0, n1],

say n−1. By construction, (n1, n−1) is an equilibrium. Second, consider the case in which

gA (n1) = n1 and gI (n1) ≤ n1. So A ≈f(n1),f(n1)
n1

0 and 0 + f(n1)
n1

I. Hence A + f(n1)
n1

I,

establishing that (n1, n1) is an equilibrium.

(B) As κ1 falls, the function gI strictly increases at any value of n for which gI (n) ∈ (0, 1).

So by Corollary 1 of Milgrom and Roberts (1994), the extremal fixed points of gI increase.

Moreover, condition (B-36) is easier to satisfy. This establishes (i).

For (ii), let
(

n′
1, n

′
−1

)

be the equilibrium with the most indexing at κ′1. Note that n′
−1 is

the smallest fixed point of gAI (·; κ′1). As κ1 falls, the function gAI decreases. So again by

Milgrom and Roberts’s Corollary 1, the smallest fixed point of gAI (·; κ1) is weakly smaller
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than n′
−1 (and strictly so if n′

−1 > 0). Combined with (i), the result follows.

(C) The function gA has the same set of fixed points at κ1 and κ′1. Condition (B-35) is

more demanding to satisfy at κ1. This completes the proof.

Proof of Lemma 4: Throughout the proof, we use the fact that in equilibrium there

exist scalars a and b such that the price of any non-index synthetic asset k '= 1 is Pk =

a+ bρ−1Xk − bZk.

For assets j, k outside the index, the result is almost immediate, since the synthetic and

actual assets coincide, and so

P̃j − P̃k = bρ−1

(

X̃j − X̃k

)

− b
(

Z̃j − Z̃k

)

, (B-37)

and so

var(X̃j − X̃k|P̃j − P̃k)
−1 =

1

2
τX +

1

2
ρ2−1τZ ,

establishing the result.

For assets j, k covered by the index, synthetic and actual assets differ, and so an addi-

tional step is required. The key step is to establish that the relative payoff of actual assets

1 and 2 (and hence, by symmetry, any pair of assets covered by the index) equals the lin-

ear combination payoffs of a set of synthetic assets that does not include the index asset,

specifically,
l
2
∑

i=1

X2i =

√
l

2

(

X̃1 − X̃2

)

. (B-38)

We establish (B-38) below. But taking this equality as given, along with the directly analo-

gous equalities
∑

l
2

i=1 Z2i =
√
l

2

(

Z̃1 − Z̃2

)

and
∑

l
2

i=1 P2i =
√
l

2

(

P̃1 − P̃2

)

, we know

√
l

2

(

P̃1 − P̃2

)

=

l
2
∑

i=1

P2i = bρ−1

l
2
∑

i=1

X2i − b

l
2
∑

i=1

Z2i = bρ−1

√
l

2

(

X̃1 − X̃2

)

− b

√
l

2

(

Z̃1 − Z̃2

)

,

which coincides with (B-37), and hence establishes the result for assets 1 and 2, and hence

(by symmetry) for any pair of assets j, k that are covered by the index.

It remains to establish (B-38). To do so, we show that the row vectors Ai of the matrix

A satisfy
l
2
∑

i=1

A2i =

√
l

2
(1,−1, 0m−2) , (B-39)

where 0m−2 denotes a row vector of length m− 2 in which all entries equal 0. The proof of

(B-39) can be rolled into the existing inductive proof of Lemma A-1, where recall that we
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focus on the case m = l, since the extension to m > l is trivial. The base case is l = 2, and

holds since A = 1√
2

(

1 1

1 −1

)

. For the inductive step, suppose that (B-39) holds for some

l; the matrix for the case 2l is

B =
1√
2

(

A A

A −A

)

.

Hence
2l
2
∑

i=1

B2i = 2
1√
2

√
l

2
(1,−1, 0l−2, 0l) =

√
2l

2
(1,−1, 02l−2) ,

thereby completing the proof.

Proof of Lemma 5: By symmetry of assets covered by the index, it suffices to establish

the result for the underlying asset j = 1. From Lemma A-1, the underlying asset 1 is

related to synthetic assets 1, . . . , l by X̃1 = 1√
l

∑l
i=1Xi, with analogous equalities for P̃1

and Z̃1. In equilibrium, there are constants a1, b1, b−1 such that synthetic asset prices are

given by P1 = a1 + b1ρ1X1 − b1Z1, and for any j = 2, . . . , l, by Pj = b−1ρ−1Xj − b−1Zj.

Moreover, ρ1 ≤ ρ−1, where the inequality is strict in any indexing equilibrium. Combining

these observations,

P̃1 =
1√
l

l
∑

i=1

Pi

=
1√
l

(

a1 + b1ρ1X1 + b−1ρ−1

l
∑

i=2

Xi − b1Z1 − b−1

l
∑

i=2

Zi

)

=
1√
l

(

b1ρ1 + (l − 1) b−1ρ−1

l

l
∑

i=1

Xi +
l − 1

l
(b1ρ1 − b−1ρ−1)X1 −

b1ρ1 − b−1ρ−1

l

l
∑

i=2

Xi

)

+
1√
l

(

a1 −
b1 + (l − 1) b−1

l

l
∑

i=1

Zi −
l − 1

l
(b1 − b−1)Z1 +

b1 − b−1

l

l
∑

i=2

Zi

)

=
1√
l

(

b1ρ1 + (l − 1) b−1ρ−1

l

l
∑

i=1

Xi +
b1ρ1 − b−1ρ−1

l

(

(l − 1)X1 −
l
∑

i=2

Xi

))

+
1√
l

(

a1 −
b1 + (l − 1) b−1

l

l
∑

i=1

Zi −
b1 − b−1

l

(

(l − 1)Z1 −
l
∑

i=2

Zi

))

.
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Note that

cov

(

l
∑

i=1

Xi, (l − 1)X1 −
l
∑

i=2

Xi

)

= 0

cov

(

l
∑

i=1

Zi, (l − 1)Z1 −
l
∑

i=2

Zi

)

= 0.

Hence

P̃1 =
b1ρ1 + (l − 1) b−1ρ−1

l
X̃1 +

b1ρ1 − b−1ρ−1

l

1√
l

(

(l − 1)X1 −
l
∑

i=2

Xi

)

+
a1√
l
− b1 + (l − 1) b−1

l
Z̃1 −

b1 − b−1

l

1√
l

(

(l − 1)Z1 −
l
∑

i=2

Zi

)

, (B-40)

where X̃1, Z̃1,
(

(l − 1)X1 −
∑l

i=2Xi

)

and
(

(l − 1)Z1 −
∑l

i=2 Zi

)

are mutually indepen-

dent. Consequently, since ρ1 < ρ−1,

var
(

X̃1|P̃1

)−1
< τX +

(

b1ρ1 + (l − 1) b−1ρ−1

b1 + (l − 1) b−1

)2

τZ < τX + ρ2−1τZ = var
(

X̃k|P̃k

)−1
,

completing the proof.

Proof of Lemma 6: From (26), Lemma A-5, and (B-26),

E [X1 − P1|P1] =
S1 + E [Z1|P1]

1
γ

1
n1

∫ n1

0
1

var(X1|Yi1,ei1,P1)
di

= −S1 + E [Z1|P1]
1
n1

∫ n1

0
∂θi1
∂P1

di
= −S1 + E [Z1|P1]

1 + ρ1
γ τZ

∂P1

∂Z1
.

Note that

∂

∂P1
E [Z1|P1] =

cov (Z1, P1)

var (P1)
=

cov (Z1, P1)

var (Z1)

var (Z1)

var (P1)
=
∂P1

∂Z1

var (Z1)
(

∂P1

∂X1

)2
var (X1) +

(

∂P1

∂Z1

)2
var (Z1)

.

Hence (and using the fact that ∂P1

∂Z1
is independent of Z1)

∂

∂P1
E [X1 − P1|P1] = − 1

(

1 + ρ1
γ τZ

)(

ρ21
var(X1)
var(Z1)

+ 1
) ,

completing the proof.
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C Analysis of public signal economy

For notational transparency, we consider a single-asset version of our economy, and omit all

asset subscripts. We note also that the result below does not use the assumption in our

model that E [ei] is constant across agents i.

Proposition C-1 Consider the benchmark economy described in subsection 3.1, in which

agents do not possess any private information about the asset’s cash flow X, but instead all

observe a public signal of the form Y = X + ε, where ε ∼ N (0, τ−1
ε ). In such a setting, each

agent’s expected utility is decreasing in the precision of the public signal, τε.

Proof: Agent i’s terminal wealth is

Wi = eiP + (θi + ei) (X − P ) ,

and he optimally chooses the portfolio

θi + ei =
1

γ

E [X|Y ]− P

var (X|Y )
.

So agent i’s expected utility at the trading stage is

E [− exp (−γWi) |Y, P ] = E

[

− exp

(

−γeiP − E [X|Y ]− P

var (X|Y )
(X − P )

)

|Y, P
]

= − exp

(

−γeiP − (E [X|Y ]− P )2

var (X|Y )
+

1

2

(E [X|Y ]− P )2

var (X|Y )

)

= − exp

(

−γeiP − 1

2

(E [X|Y ]− P )2

var (X|Y )

)

.

We evaluate

E

[

− exp

(

−γeiP − 1

2

(E [X|Y ]− P )2

var (X|Y )

)

|ei

]

. (C-1)

Expanding, this expression equals

E

[

− exp

(

−γeiE [X|Y ] + γei (E [X|Y ]− P )− 1

2

(E [X|Y ]− P )2

var (X|Y )

)

|ei

]

.

By market clearing,
1

γ

E [X|Y ]− P

var (X|Y )
= S + Z,
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i.e.,

E [X|Y ]− P = γvar (X|Y ) (S + Z) ,

and so (C-1) equals

E

[

− exp

(

−γeiE [X|Y ] +
γ2var (X|Y )

2

(

2ei (S + Z)− (S + Z)2
)

)

|ei
]

.

Moreover,

E [X|Y ] =
τXE [X ] + τεY

τX + τε
=
τ−1
ε E [X ] + τ−1

X Y

τ−1
X + τ−1

ε

=
(var (Y )− var (X))E [X ] + var (X)Y

var (Y )
.

Hence (C-1) equals

E

[

exp

(

−γeiE [X ] +
γ2e2i
2

var (X)2

var (Y )
+
γ2var (X|Y )

2

(

2ei (S + Z)− (S + Z)2
)

)

|ei

]

.

By the law of total variance,

var (X) = var (X|Y ) + var (E [X|Y ]) = var (X|Y ) +
var (X)2

var (Y )
.

So (C-1) equals

E

[

− exp

(

−γeiE [X ] +
γ2e2i
2

var (X) +
γ2var (X|Y )

2

(

2ei (S + Z)− (S + Z)2 − e2i
)

)

|ei
]

= E

[

− exp

(

−γeiX − γ2var (X|Y )

2
(ei − (S + Z))2

)

|ei
]

.

This expression is increasing in var (X|Y ), completing the proof.
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D Numerical example of subsection 6.2

Table D-1: Parameters used in the numerical example of subsection 6.2

Parameter Value

Reciprocal of var(X̃k) τX 1
Reciprocal of var(Z̃k) τZ 9
Reciprocal of var(ũik) τu 2.25

Mean asset payoff E

[

X̃k

]

1.5

Per-capita endowment of asset S̃ 0.1
Coefficient of absolute risk aversion γ 0.6
Assets in economy m 4
Assets covered by index l 4
Cost of full participation in financial markets κ 0.479
Cost of participation via indexing (initial) κ1 0.130
Cost of participation via indexing (after reduction) κ1 0.1287

Note that condition (8) is satisfied, since

τX − 4γ2
(

τ−1
Z + τ−1

u

)

= 0.2 > 0.

The precision of agents τi is displayed in the following figure:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Precision of agents; average precision of all agents below cutoff

Figure D-1: Precision parameter τi. Horizontal axis is identity of agent i. Dashed line shows
average precision if all agents with greater precision participate, i.e., 1

n

∫ n
0 τidi.
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E Online appendix

E.1 Heterogenous risk aversion

Equation (B-7) in the existing proof of Lemma 3 generalizes to

ρ =

∫ N
0

τi
γi
di

∫ N

0

(

1− ρ
γi
τu
)

di
,

yielding (34).

Lemma 1 generalizes straightforwardly to

∫

N

1

γi

1

var (X|yi, ei, P )
di =

∫

N
1
γi
di

cov (X − P,X)
,

and so Corollary 1 becomes

E [X − P ] =
Scov (X − P,X)

1
|N |

∫

N
1
γi
di

.

For the remainder of this discussion, we focus on the case in which signal precision is constant

across agents. In this case, Lemma 1 becomes simply

1

var (X|yi, ei, P )
=

1

cov (X − P,X)
,

and so

cov (X − P,X) = var (X|yi, ei, P ) =
1

τX + τi + ρ2 (τZ + τu)
.

Recall that ρ = −
∂P
∂X
∂P
∂Z

, so that

∂P

∂Z
= −1

ρ

∂P

∂X
= −1

ρ

cov (P,X)

var (X)

= −1

ρ

(var (X)− cov (X − P,X))

var (X)

= −1

ρ

(

1− cov (X − P,X)

var (X)

)

so that
cov(P, ei)

var (ei)
=
∂P

∂Z

var (Z)

var (ei)
= −1

ρ

(

1− cov (X − P,X)

var (X)

)

var (Z)

var (ei)
.
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To evaluate the expected utility of participation, recall from the proof of Proposition 1

that, conditional on ei, it is given by

− (diD)−
1

2 exp

(

−γieiE [X ] +
γ2i ei

2

2τX

)

× exp






−1

2

(

E[X − P ]− cov(P,ei)
var(ei)

(ei − S)− cov(X − P,X)γiei
)2

Dvar(X|ei, P )






.

To take expectations over ei, we write this expression as − (diD)−
1

2 exp (K0 +K1ei +K2e2i ),

and where K0, K1 and K2 are constants given by

K0 = −1

2

(

E[X − P ] + cov(P,ei)
var(ei)

S
)2

Dvar(X|ei, P )

K1 = −γiE [X ]−

(

E[X − P ] + cov(P,ei)
var(ei)

S
)(

− cov(P,ei)
var(ei)

− cov(X − P,X)γi
)

Dvar(X|ei, P )

K2 =
γ2i
2τX

− 1

2

(

− cov(P,ei)
var(ei)

− cov(X − P,X)γi
)2

Dvar(X|ei, P )
.

E.2 Trading costs instead of fixed participation costs

Here, we consider an alternative specification of costs, with agents paying a transaction cost

equal to 1
2 κ̂θ

2
i . So agent i chooses θi to maximize expected utility over terminal wealth

(θi + ei) (X − P ) + eiP − 1

2
κ̂θ2i .

The certainty equivalent is

(θi + ei)E [X − P |yi, ei, P ] + eiP − γ

2
(θi + ei)

2 var (X|yi, ei, P )− 1

2
κ̂θ2i ,

yielding

E [X − P |yi, ei, P ] = γ (θi + ei) var (X|yi, ei, P ) + κ̂θi,

and hence

θi =
E [X − P |yi, ei, P ]− γeivar (X|yi, ei, P )

γvar (X|yi, ei, P ) + κ̂
.

We characterize the effect of changes in the parameter κ̂ on price efficiency in the simplest

case of heterogeneous signal precision, in which a fraction λ1 and λ2 of agents have signal

2



precisions τ1 and τ2, where without loss we assume τ1 ≥ τ2 In addition, we focus on the effect

of small changes in κ̂ away from 0.

Consider a perturbation to X and Z in which X is changed by ∂P
∂Z and Z is changed by

− ∂P
∂X . By construction, this leaves the price P unchanged. By market clearing,

0 = λ1

τ1
∂P
∂Z

−ρτu ∂P
∂X

τX+τ1+ρ2(τZ+τ) +
γ ∂P

∂X

τX+τ1+ρ2(τZ+τu)
γ

τX+τ1+ρ2(τZ+τu)
+ κ̂

+ λ2

τ2
∂P
∂Z

−ρτu ∂P
∂X

τX+τ2+ρ2(τZ+τ) +
γ ∂P

∂X

τX+τ2+ρ2(τZ+τu)
γ

τX+τ2+ρ2(τZ+τu)
+ κ̂

.

Hence

0 = λ1
τ1 + ρ2τu − γρ

γ + κ̂ (τX + τ1 + ρ2 (τZ + τu))
+ λ2

τ2 + ρ2τu − γρ

γ + κ̂ (τX + τ2 + ρ2 (τZ + τu))
. (E-1)

The RHS of (E-1) is strictly positive at ρ = 0. Stable equilibria are given by solutions to

(E-1) at which the RHS is decreasing in ρ.

The derivative to the RHS with respect to κ̂ is

−λ1
(τ1 + ρ2τu − γρ) (τX + τ1 + ρ2 (τZ + τu))

(γ + κ̂ (τX + τ1 + ρ2 (τZ + τu)))
2

− λ2
(τ2 + ρ2τu − γρ) (τX + τ2 + ρ2 (τZ + τu))

(γ + κ̂ (τX + τ2 + ρ2 (τZ + τu)))
2 .

At κ̂ = 0, this expression has the same sign as

−λ1
(

τ1 + ρ2τu − γρ
) (

τX + τ1 + ρ2 (τZ + τu)
)

− λ2
(

τ2 + ρ2τu − γρ
) (

τX + τ2 + ρ2 (τZ + τu)
)

. (E-2)

Also at κ̂ = 0, there is a unique stable equilibrium, with

λ1
(

τ1 + ρ2τu − γρ
)

= −λ2
(

τ2 + ρ2τu − γρ
)

,

with both sides of this equality positive. So at the equilibrium value of ρ, expression (E-2)

has the same sign as

−
(

τX + τ1 + ρ2 (τZ + τu)
)

+
(

τX + τ2 + ρ2 (τZ + τu)
)

= τ2 − τ1 ≤ 0.

Hence an increase in the cost parameter away from 0 reduces equilibrium price efficiency ρ.
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