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Abstract

Blockchain-based platforms and decentralized finance prominently features “staking”: Be-

sides offering a convenience yield for transactions as digital media of exchange, tokens are fre-

quently staked for base-layer consensus generation or for incentivizing economic activities and

network development, and consequently earn stakers rewards. To understand the economics of

staking, token pricing, and network evolution, we build a continuous-time model of a token-

based economy where agents heterogeneous in wealth and preference for a digital platform dy-

namically allocate their wealth among consumption, onchain transaction, and staking. We cast

the interactions as a mean-field game with individual stochastic control and systematic shocks,

which underscores aggregate staking ratio as a key variable linking staking to equilibrium re-

ward rate and token pricing. We further characterize using amaster equation the expected steady

state of wealth distribution, the drivers for tradeoff between welfare and inequality, and redis-

tribution due to staking and aggregate shocks. From a comprehensive dataset covering all major

stable tokens, we derive empirical findings corroborating the model predictions. In particular,

staking ratio is positively correlated with reward rates in the cross-section and negatively cor-

related in the time series. Higher reward rates and wealth concentration attract greater future

staking, increasing the aggregate staking ratio, which in turn positively predicts token excess

returns. Finally, consumption and transaction conveniences help rationalize violations of the

uncovered interest rate parity and crypto carry premia (e.g., a long-short portfolio with OOS

Sharpe ratio of 1.6) in the data.

Keywords: Carry, Cryptocurrencies, DeFi, Heterogeneity, Inequality, PoS, Redistribution, UIP.

∗
We thank Bruno Biais, Philip Bond, Jonathan Chiu, Rod Garratt, Niklas Haeusle, Shiyang Huang, Huisu Jang, Stephen Karolyi, Leonid Kogan,

Tao Li, Evgeny Lyandres, Urban Jermann, Julien Prat, Daniel Rabetti, Qihong Ruan, Fahad Saleh, Ville Savolainen, Donghwa Shin, Jingjie Zhang,

Shunming Zhang, and conference and seminar participants at the Asian Bureau of Finance and Economic Research (ABFER) 10th Annual Conference,

the 36th Australasian Finance and Banking Conference (AFBC), the 18th Annual Conference of the Asia-Pacific Association of Derivatives (APAD),

the 19th Chinese Finance Annual Meeting (CFAM 2022), University of Cincinnati, Columbia Business School and School of Engineering and Applied

Science (Digital Finance Seminar),Crypto and Blockchain Research Economics (CBER), theDepartment of the TreasuryOffice of Financial Research, the

Economic Club of Memphis, Luohan Academy Webinar Series, Rizzo Center Decentralized Finance (DeFi) Conference at UNC Chapel Hill, the Fields-

CFI Workshop on Mathematical Finance and Cryptocurrencies, FinTech Conference at the Fubon Center for Technology, Business and Innovation

(NYU Stern), Halle Institute for Economic Research (IWH), HEC Paris, 2022 Hong Kong Conference for Fintech, AI, and Big Data in Business, Office of

the Comptroller of the Currency (OCC) Novel Charters Working Group, The Pennsylvania State University Smeal College of Business, 4th Shanghai

Financial Forefront Symposium, Tsinghua University PBC School of Finance, University of International Business and Economics School of Banking

and Finance, the China Meeting of Econometric Society (CMES 2021, Shanghai), 7th PHBS Workshop in Macroeconomics and Finance, Ripple Labs

London Onsite (Markets Team), Wolfe QES Virtual Global Innovation Conference, and Zhejiang University QingYuan Academy Digital Social Science

Public Lecture Series for helpful comments and discussions. We are also grateful to the stakingrewards.com team for generously sharing the updated

data that cover Sept 2020 - Feb 2022 for academic research and to the Fintech Dauphine Chair in partnership with Mazars and Crédit Agricole CIB, the

Hogeg Blockchain Research Institute, as well as Ripple’s University Blockchain Research Initiative (UBRI) for financial support. The paper subsumes

key results from the working paper titled “Staking, Token Pricing, and Crypto Carry.” Send correspondence to will.cong@cornell.edu.

†
Cornell University and NBER. E-mail: will.cong@cornell.edu.

§
Tsinghua University. E-mail: hezh19@mails.tsinghua.edu.cn.

¶
Tsinghua University. E-mail: ketang@tsinghua.edu.cn.



1 Introduction1

The past decade witnessed an explosive growth in blockchain-based platforms and2

cryptocurrencies, which totaled 2.5 trillion USD in market capitalization by the end of3

2021, and a rising interest in Decentralized Finance (Harvey et al., 2021), which entails4

over 130 billion USD worth of assets as of Feb 2022. Platform tokens derive value by en-5

abling users to complete economic transactions and hold stakes in the ecosystem, making6

them a hybrid of money and investible assets. The recent prevalence of token staking7

(value locking and yield farming, see, e.g., Augustin et al., 2022) for higher-layer DeFi in-8

novations as well as for base layer consensus formation (e.g., through Proof-of-Stake, PoS,9

as discussed in John et al., 2022) further calls for a unified framework to understand the use10

of tokens as transaction media, investment assets, and deposit/collateral-like instruments.11

To this end, we offer the first study relating various functions tokens provide to users12

(e.g., transaction convenience and financial rewards through holding and staking) to token13

prices, both theoretically and empirically, with endogenous adoption and agent hetero-14

geneity. We start by building a continuous-time model of an economy with a tokenized15

digital network, where agents optimally conduct transactions on a platform subject to16

endogenous productivity shocks, stake tokens to earn rewards from both newly minted17

tokens and fees, and consume offline (off-chain or off-network). We cast the interactions18

as a mean-field game (MFG) with stochastic control and systematic shocks and apply the19

master equation approach, which marks a novel application of the methodology beyond20

macroeconomics and idiosyncratic shocks. The aggregate staking ratio is a key determi-21

nant for the equilibrium reward rate and token prices. The agents’ onchain and overall22

wealth distributions in an expected steady state follow Pareto-like distributions, and stak-23

ing facilitates redistribution from poorer or more usage-focused adopters to the richer or24

investment-focused adopters, as in an inflation tax. The wedge between usage conve-25

nience and financial returns explains the violation of uncovered interest rate parity (UIP)26

and predicts profitable carry trades.27

Staking involves two broad categories of activities: those related to pan-PoS con-28

sensus protocols and those in higher-layer (decentralized) applications.
1
Fundamentally,29

1
The two are not mutually exclusive. Solana, for example, uses both PoS and DeFi staking. The clas-

sification we use follows mainstream cryptocurrency data aggregators such as CoinMarketCap. Even on

non-blockchain-based or centralized platforms, various programs that involve escrows or crowd funds can

be analyzed as a form of business layer staking through the lens of our framework.
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blockchain functions to generate a relatively decentralized consensus record of system1

states to enable economic interactions such as value or information exchanges (e.g., Cong2

and He, 2019). PoS consensus protocols have gained popularity with major market play-3

ers such as Ethereum adopting them. Under PoS, agents stake native tokens to compete4

for the opportunity to record transactions, execute smart contracts, append blocks, etc.,5

to earn block rewards and fees (e.g., Saleh, 2021; Kogan et al., 2021; Jermann, 2023). Mean-6

while, various staking programs have become popular means for incentivizing desirable7

behavior in higher layer applications, escrowing a balance of tokens under custody in a8

smart contract or deploying them to enable network economic functionalities with stakers9

earning staking rewards (e.g., Augustin et al., 2022).10

Our model applies to both categories and captures several distinguishing features of11

PoS protocols and stakable projects. First, such tokens are used on platforms that support12

specific economic transactions or broader use in onchain-based projects. This generates13

utility flows in, e.g., transaction convenience discussed in (Cong et al., 2021b; Biais et al.,14

2020). Second, the rate of staking rewards that an agent earns is influenced by other15

agents’ behavior in aggregate, but individuals take it as given when making decisions.
2

16

Third, staking participation can influence the platform’s development, e.g. by improv-17

ing the efficiency and security of services, which enriches the agents’ roles within the18

platform, although it is not a necessary feature in all the projects.19

Specifically, agents potentially heterogeneous in wealth and preference for accessing20

the digital network allocate and adjust their holdings of staked tokens, transaction tokens,21

and consumption numéraire under budget constraints, trading off staking rewards, token22

transaction convenience, and numéraire convenience for offline (off-chain or off-platform)23

consumption. Transaction convenience endogenously increases in platform productivity,24

which evolves over time and is potentially influenced by staking activities while the stak-25

ing reward rate is jointly determined by aggregate reward and tokens staked.26

In equilibrium, the staking reward rate solves a fixed point problem. Token price dy-27

namics are fully endogenous and are described by a partial differential equation akin to28

the Black-Merton-Scholes formula. We simplify the equation to an ordinary differential29

equation concerning the total token valuation, subject to an intuitive boundary condition30

that tokens are worthless for unproductive platforms. We show that the staking ratio,31

2
Polkadot (DOT) constitutes an example: the reward rate for validators is determined by the current

aggregate staking ratio. The fewer DOTs are staked, the higher the yield is for a planned amount of reward.
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defined as the ratio of aggregate tokens staked in the economy to the total quantity of1

tokens in supply, proves crucial for token pricing and reward rate determination in equi-2

librium. Related to the TVL (total value locked) metric that practitioners emphasize, it3

constitutes a new predictor for token price dynamics. UIP is naturally violated because4

of agents’ usage utility which is generally divergent and not reflected in wealth or token5

price returns, leading to staking-ratio-based trading strategies.6

When agents are heterogeneous in wealth and types, the cross-sectional equilibrium7

reward rate is then determined by the whole distribution of agents, each solving an op-8

timal dynamic control problem taking the market states as given. Under the endogenous9

evolution of the wealth distribution, the system is captured by coupled stochastic partial10

differential equations. The staking ratio then involves the weighted average of individual11

staking choices, which in turn is shaped by the agents’ wealth distribution. The resulting12

reward rate further enters agents’ onchain wealth dynamics. Therefore, agents’ individ-13

ual dynamic optimizations interact and co-evolve with the wealth distribution in such an14

MFG. The resulting equilibrium is characterized by a so-called master equation, which15

relates the value function to individual states and also captures influence from the system16

states with common shocks.17

We show that our findings from the baseline model remain robust, and further discuss18

the impact and evolution of wealth heterogeneity. In particular, we derive analytically the19

expected stationary wealth distribution, which is Pareto-like. Higher platform productiv-20

ity provides greater usage benefits for all users while exacerbating their wealth inequality.21

In general, the tradeoff between aggregate welfare and inequality also depends on staking22

design, user-type distribution, and the platform development stage. We further numeri-23

cally examine the impulse responses of wealth distribution and staking ratio to aggregate24

shocks, e.g., in platform productivity. We observe over-responses in the staking ratio due25

to the intricate interplay among agents within a dynamically evolving distribution, along26

with the cascading consequences of the platform’s post-shock development.27

We derive three main sets of model predictions concerning the economics of staking28

and its asset pricing implications. First, the staking reward is positively related to the29

staking ratio in the cross-section. While more staking reduces the reward rate for any30

given reward quantity, more rewards induce more staking, creating a higher staking ratio31

for individual agents and in aggregate (which is exacerbated by wealth concentration).32
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Second, expected price appreciation increases with the aggregate staking ratio. Note that1

both the price drift and staking ratio are functions of platform productivity. In equilibrium,2

agents stake more when the platform productivity is low, yet that is exactly the time3

that more wealth can be potentially allocated onto the platform in the future. A higher4

staking ratio also feeds back to the productivity growth, which increases future demands5

for tokens and their prices. Third, there are generally predictable excess returns to staking6

over holding the numéraire, which arise as compensation for the losses in transaction and7

consumption convenience, in a similar spirit as Valchev (2020). The model thus implies8

that UIP fails for stakable tokens. We derive the expression for crypto carry and find that9

higher carry attracts greater staking, generating greater price appreciation and excess10

return. Because the reward rate mechanically decreases with a greater staking ratio, carry11

predicts lower excess returns in the time series than in the cross-section.12

We test these model implications empirically and find corroborating evidence in a13

comprehensive dataset covering all major stakable tokens and DeFi projects. We obtain14

information about 66 tokens from stakingrewards.com spanning July 2018 to November15

2022. We first document that a higher reward ratio for staking significantly and positively16

relates to a higher staking ratio. A 10-percentage-points increase in the aggregate reward17

ratio (e.g., from 10% to 20%) is associated with a 7.79-percentage-point higher staking ratio18

in average. Moreover, the reward rate has a predictable effect on changes in the staking19

ratio in both cross-section and short-time windows. On average, a one percentage point20

increase in reward rate in the previous week increases the staking ratio in the following21

week by about 0.026 percentage points. This property is robust to adding both two-way22

fixed effect and control variables including market cap and token return volatility. How-23

ever, its significance decreases with longer time intervals, reflecting to some extent the24

mechanical downward adjustment of the reward rate when more tokens are staked (be-25

cause the same staking rewards have to be divided among more staked tokens).26

We next verify that a larger staking ratio indeed predicts greater token price appre-27

ciation in subsequent weeks. When the staking ratio increases by one percentage point,28

the corresponding token price appreciates by 0.066% in the following week. Considering29

that the variation of staking ratio is often large, especially in the cross-section, this effect30

is relevant for investment decisions. Crypto market return and size factors do not ex-31

plain the predictive power of the staking ratio, which is closely related to market liquidity32
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and depth, and reflects the fact that tokens can be commodity-like.
3
Staking reduces the1

supply of liquid cryptocurrencies, and hence pushes up the token’s prices and increases2

the convenience yields of tokens. This resembles how using commodities as collateral3

increases the spot price and the convenience yield of the underlying commodities (Tang4

and Zhu, 2016).5

Finally, we follow Fama (1984) to test if “interest rate” (i.e. reward rate) predicts “cur-6

rency excess returns” (i.e., token excess return) and find that UIP is indeed violated. We7

construct a carry trade strategy that goes long high-carry crypto assets and shorts low-8

carry assets, yielding an annualized Sharpe ratio of 1.60 with weekly rebalancing. Crypto9

carry predicts excess returns almost one-for-one in the cross-section, with a reduced al-10

beit significant effect in the time series. Intuitively, a higher reward rate attracts more11

staking, which persists over the locked period, reducing the reward rate going forward12

and thus the total expected return, as our model implies.13

Literature. Our study adds to the literature on blockchain economics and cryptocurrency14

markets.
4
In particular, we build on the tokenomics framework of Cong et al. (2021b) and15

Cong et al. (2021d) to add to emerging studies on Proof-of-Stake protocols (e.g., Fanti et al.,16

2021; Saleh, 2021; Benhaim et al., 2021) and debates on the environmental and scalability17

issues associated with Proof-of-Work (PoW) protocols (e.g., Cong et al., 2021a; Hinzen18

et al., 2019). We also add to the emerging literature on DeFi (e.g., Park, 2021; Cong et al.,19

2022; Li et al., 2022).20

The most closely related paper to ours is John et al. (2022) which theoretically ex-21

amines native PoS crypto assets that serve primarily as investment vehicles, whereas we22

focus on the platform tokens with a combination of utility flow and investment function23

while endogenizing agents’ dynamic consumption off the network. While both studies24

demonstrate that the equilibrium staking ratio increases in staking rewards, John et al.25

(2022) find that staked asset value can exhibit a non-monotonic relationship with block26

3
Commodities Futures Trading Commission (CFTC) regards cryptocurrencies as commodi-

ties, see, e.g., https://www.cftc.gov/sites/default/files/2019-12/oceo_
bitcoinbasics0218.pdf.

4
Existing studies mostly examine issues related to consensus algorithms (Biais et al., 2019; Saleh, 2021),

cryptocurrency mining (e.g., Cong et al., 2021a; Lehar and Parlour, 2020), scalability (e.g., Abadi and Brun-

nermeier, 2018; John et al., 2020), fee designs Easley et al. (2019); Basu et al. (2019); Huberman et al. (2021),

DeFi (e.g., Harvey et al., 2021; Capponi and Jia, 2021), ICOs (e.g., Lyandres et al., 2019; Howell et al., 2020),

pricing of crypto assets (e.g., Liu et al., 2019; Cong et al., 2021b; Prat et al., 2019), manipulation and regula-

tion (e.g., Griffin and Shams, 2020; Li et al., 2021; Cong et al., 2021c, 2023), or digital currencies (e.g., Gans

et al., 2015; Bech and Garratt, 2017; Chiu et al., 2019; Cong and Mayer, 2021).
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rewards and cause redistribution across agents with divergent trading horizons. We com-1

plement this by endogenizing potential adopters’ outside option, exploring agents’ het-2

erogeneity in wealth and usage preference, as well as considering DeFi staking in addition3

to the PoS consensus. Also closely related is Jermann (2023) who develops a macrofinance4

model specifically for Ethereum and quantitatively estimates the long-run staking ratio5

of ETH and the implied money supply. While both studies pin down equilibrium staking6

considering platform usage value relative to staking benefits, we endogenize the plat-7

form productivity process whereas Jermann (2023) endogenizes the token supply. Conse-8

quently, our focus is on token pricing instead of monetary policy. Fanti et al. (2021) is the9

earliest to develop a cash-flow-based valuation framework of PoS cryptocurrencies to un-10

derstand how the liquidity of validators’ holdings, token valuation, and network security11

relate to one another. Their focus is on long-run transaction fees, we focus on block re-12

wards, endogenous reward rate, and transaction dynamics. Empirically, a recent article by13

Augustin et al. (2022) characterizes the risk and return trade-offs of yield farming using14

data from PancakeSwap. We offer likely the first theoretical framework to think about15

returns to DeFi staking, UIP violations, and crypto carry, with empirical corroborating16

evidence.17

Differing from all aforementioned studies, we employ mean-field game analysis to18

study agent heterogeneity and its interaction with general forms of staking in steady19

states and transitions. In particular, we derive onchain and overall wealth distribution20

in the long run, highlight the trade-off between platform development and equality, and21

demonstrate how staking facilitates redistribution. Our study not only represents one of22

the earliest adaptations of mean-field games and the master equation solution in finance,23

but also innovates by introducing expected steady-states and transition path analysis.24

Finally, studies in international finance examine uncovered interest rate parity (e.g.,25

Fama, 1984; Lustig et al., 2019). Carry and its predictability have been analyzed not only26

for currencies but also for other assets such as equities (e.g., Fama and French, 1998; Grif-27

fin et al., 2003; Hou et al., 2011), bonds (e.g., Ilmanen, 1995; Barr and Priestley, 2004), and28

commodities (e.g., Bailey and Chan, 1993; Casassus and Collin-Dufresne, 2005; Tang and29

Xiong, 2012). Koijen et al. (2018) applies a general concept of carry and finds that carry30

predicts returns in both the cross-section and time series. We add by documenting UIP31

violations and carry among cryptocurrencies (and with fiat currencies). We theoretically32

7



rationalize the observations and link carry to tokenomics, complementing recent empir-1

ical work by Franz and Valentin (2020) that documents deviations from covered interest2

parity among cryptocurrencies.3

The remainder of this paper is structured as follows. Section 2 sets up a dynamicmodel4

of staking and token pricing. Section 3 characterizes a homogeneous-agent equilibrium5

to illustrate key mechanisms and convey economic intuition. Section 4 solves the full6

model under heterogeneous settings and derives further implications in the mean-field7

equilibrium. Section 5 introduces the data, stylized facts, and hypotheses to test. Sec-8

tion 6 presents empirical evidence corroborating our theory. Section 7 concludes. The9

appendices contain the institutional details of staking, introduction to mean-field games10

(including the derivation of themaster equation), formal proofs of propositions, numerical11

procedures, and various extended discussions.12

2 A Model of Tokenized Economy with Staking13

2.1 Model Setup14

In a continuous-time economy with infinite horizon, a continuum of agents optimally15

allocate individual wealth between the offline real economy for consumption and a gen-16

eral digital marketplace (e.g., a tokenized blockchain platform, henceforth referred to as17

“the platform”) where they can conduct peer-to-peer transactions while participating in18

staking programs for network services and contribution (e.g., consensus recordkeeping,19

liquidity provision, or improving system security in DeFi protocols).
5
A generic consump-20

tion good serves as the numéraire and the medium of exchange in the digital network is21

its native token.22

Platform productivity and token price. As in Cong et al. (2021b,d), productivity 𝐴𝑡23

captures the general usefulness and functionality of the platform, i.e., the convenience24

users obtain by transacting on the platform using its tokens. We assume that 𝐴𝑡 evolve25

endogenously according to:26

d𝐴𝑡 = 𝜇𝐴(Θ𝑡)𝐴𝑡d𝑡, (1)

where Θ𝑡 is the endogenous staking ratio, i.e., the ratio of the aggregate number of staked27

tokens to the total number of tokens, which constitutes a potential state variable that in-28

5
Our findings remain robust under finite horizons, though the numerical procedures have to bemodified.
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fluences token prices and agent decisions. In base layers (pan-PoS consensus protocols)1

and/or higher layers (DeFi applications and Layer 2 projects), staked tokens contribute to2

the development of the platform by maintaining node operations, facilitating the achieve-3

ment of consensus, and increasing the security level of the network, respectively. There-4

fore, a higher staking ratio typically improves platform productivity, i.e., the drift of 𝐴𝑡 is5

weakly increasing in Θ𝑡 .
6

6

Without loss of generality, we denote the token price (in units of the numéraire) as7

𝑃𝑡 , which is endogenously determined by 𝐴𝑡 , the token issuance (total supply) 𝑄𝑡 , as well8

as external demand shocks (e.g., regulatory changes, market sentiment swings, and noise9

trading that are independent of (𝐴𝑡 , 𝑄𝑡)) captured in a Markov stochastic process 𝑆𝑡 sat-10

isfying d𝑆𝑡/𝑆𝑡 = 𝜇𝑆d𝑡 + 𝜎𝑆d𝑍𝑡 with one source of Brownian innovations {𝑍𝑡 , 𝑡 ≥ 0}. In11

our setting, we treat 𝑆𝑡 as a demand shifter so as to understand the impact of aggregate12

shocks.
7

13

The token price, 𝑃𝑡 = 𝑃(𝐴𝑡 , 𝑄𝑡 , 𝑆𝑡), then follows a general diffusion process with en-14

dogenous and potentially time-varying 𝜇𝑡 and 𝜎𝑡 , which we shall solve for:15

d𝑃𝑡 = 𝑃𝑡𝜇𝑡d𝑡 + 𝑃𝑡𝜎𝑡d𝑍𝑡 . (2)

Agents, adoption, and convenience. We normalize the continuum of agents to be one16

unit measure and allow heterogeneity in their wealth. At time 𝑡, the economy wealth17

distribution is denoted as𝑚𝑡 = 𝑚(𝑤𝑡), where𝑚𝑡 is assumed to be an absolutely continuous18

density on 𝑊 = [𝑤,∞] ⊂ ℝ+
. Agent indexed by 𝑖 is characterized by her current wealth19

𝑤𝑖,𝑡 . Each agent makes consumption-portfolio choices among staked (locked) tokens, non-20

staked (tradable) tokens, and holding the numéraire (consumption goods or fiat). An agent21

becomes a platform user if she holds tokens either for staking or transactions on the22

platform. To simplify notations, we omit the subscript 𝑖 in the general formulation of23

agents whenever feasible.24

Users gain convenience from holding tokens and conducting economic activities on25

6
We could have introduced Brownian shocks to 𝐴𝑡 directly, as we did in previous drafts, but they do not

add new economic insights and are left out for parsimony and ease of numerical computation. Its effects are

similar to aggregate demand shocks. Also, staking could hurt platform productivity if the staker competition

is so fierce that fewer stakers participate. Instead of allowing 𝜇𝐴 to potentially decrease in Θ𝑡 , we capture

this by explicitly modeling the staking competition.

7
If one allows 𝑆𝑡 to be independently and identically distributed across individuals (e.g., capturing in-

dividual sentiments), the problem is further simplified without resorting to the Master Equation, as we

show in earlier drafts of the paper. Correlations in indivudal sentiments or preferences can also be used to

microfound the aggregate demand shock.
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the platform. Since staked tokens are locked from the staker’s perspective, they can only1

derive transaction convenience from non-staked (tradable) tokens, which we model simi-2

larly as in Cong et al. (2021b,d): For an agent holding 𝑥𝑡 (in numéraire, positive) worth of3

tradable tokens on the platform, she derives a utility flow:4

d𝑣(𝑥𝑡) = d𝑣𝑡 = 𝑥1−𝛼𝑡 (𝑁𝑡𝐴𝑡𝑈𝑡)𝛼d𝑡 − 𝜑d𝑡. (3)

With 𝛼 ∈ (0, 1), the marginal transaction convenience
𝜕𝑣
𝜕𝑥 > 0 and decreases with 𝑥𝑡 .5

𝑈𝑡 = 𝑈𝑖,𝑡 = 𝑈(𝑢𝑖,𝑡 , 𝑤𝑖,𝑡) > 0 is differentiable in 𝑢𝑖,𝑡 and reflects transaction needs. 𝑢𝑖,𝑡 indi-6

cates the agent’s idiosyncratic transaction preference at time 𝑡 that is i.i.d. with bounded7

support. The individual’s transaction needs increase with wealth 𝑤𝑖,𝑡 , whereas the type8

varies the marginal needs. 𝑁𝑡 is the measure of staked tokens so that a larger 𝑁𝑡 cor-9

responds to an ecosystem with great effectiveness of validators that facilitate onchain10

transaction. For DeFi staking, especially the ones where token staking has contempora-11

neous network externality, 𝑁𝑡 nicely maps to the concept of Total Value Locked (TVL) and12

the industry’s emphasis on it. In general, we only need 𝑁𝑡 to be smoothly increasing in13

the amount of tokens staked and is zero when no token is staked.14

At any time 𝑡, agents can choose not to participate, so that our results are not driven15

by switching costs. Agents adopting the platform need to incur a flow cost 𝜑 per unit of16

time for platform adoption to realize the transaction convenience as the second term in17

(3) shows. It captures the required effort and attention for participation.
8
Even though18

we focus on token convenience as a medium of exchange, the reduced-form convenience19

could also include other utility flows such as governance and voting rights.20

Following Bansal and Coleman (1996) and Valchev (2020), the convenience of holding21

numéraire is reflected in the reduction of transaction costs in consumption. Denote the22

cost as Ψ𝑡 = Ψ𝑡(𝑦𝑡 , 𝑛𝑡 , 𝐴𝑡) ≥ 0, where 𝑦𝑡 and 𝑛𝑡 are consumption and numéraire holdings23

respectively. Naturally,
𝜕Ψ
𝜕𝑦 ≥ 0, 𝜕Ψ𝜕𝑛 < 0. Then − 𝜕Ψ

𝜕𝑛 > 0 reflects the marginal convenience24

yield of holding the numéraire. Intuitively, when the platform productivity is lower, the25

relative convenience of numéraire is higher. Thus, we assume
𝜕Ψ
𝜕𝐴 ≤ 0.26

Token transaction convenience and cost enter agents’ wealth dynamics rather than27

utility, for two reasons: First, token convenience flows and transaction costs are typically28

pecuniary in practice, corresponding to business profits and liquidity costs on real bal-29

8
It can also include the opportunity cost of earning risk-free interests offline, as in Cong et al. (2021b).

If we take this interpretation, then the reward rate needs to be redefined to be in addition to the risk-free

rate. For simplicity, we set the risk-free rate to zero.

10



ances, respectively. Second, this approach is functionally equivalent to accounting them1

in the utility function (Feenstra, 1986), and is a standard approach in the literature on2

convenience yields of bonds, for example.3

Staking and staking rewards. Staking rewards incentivize agents to stake their tokens4

to either generate consensus records in a base layer or participate in some DeFi program,5

such as a liquidity pool or insurance pool. In practice, staking rewards come from fees oth-6

ers pay and additional token issuance (emission). To model staking rewards from newly7

issued blocks, we assume that the total amount of tokens at time 𝑡, 𝑄𝑡 , follows a general8

dynamic process: d𝑄𝑡 = 𝐸(𝐿𝑡 , 𝐴𝑡)𝑄𝑡d𝑡, where 𝐸 is the “emission rate” function and 𝐿𝑡 is9

the aggregate amount of staked tokens at 𝑡.9 This token supply dynamics reflect not only10

a potential “inflation” but also the redistribution of onchain wealth between transaction11

users and token stakers, in a similar spirit to that in John et al. (2022).12

We denote the aggregate rewards generated by the transaction fees (e.g., ETH gas)13

as 𝐹𝑡 = 𝐹(𝐿𝑡 , 𝐴𝑡 , 𝑄𝑡). 𝐹𝑡 is dependent on the current scale of validators in the ecosystem,14

as well as the platform productivity that reflects the capacity of processing transactions.15

Therefore, it also involves 𝐿𝑡 and 𝐴𝑡 .
10
The total amount of tokens distributed as rewards16

𝑅𝑡 then becomes:17

𝑅𝑡 = 𝑅(𝐸𝑡𝑄𝑡 , 𝐹𝑡) ≡ 𝑅(𝐿𝑡 , 𝐴𝑡 , 𝑄𝑡). (4)

All staked tokens are fungible and consequently all stakers face an instantaneous reward18

rate akin to interest rates on bank deposits:
11

19

𝑟𝑡 ≡
𝑅(𝐿𝑡 , 𝐴𝑡 , 𝑄𝑡)

𝐿𝑡
. (5)

Here we only require that 𝑅𝑡 being increasing in 𝐸 and 𝐹 (since they are both sources of20

staking rewards) and that 𝑟𝑡 being weakly decreases with 𝐿𝑡 , as is observed in practice.
12

21

9
The emission schedule is typically public information at the time of staking, and can be at least esti-

mated based on real-time blockchain data (see details in Online Appendix OA1.2). Meanwhile, as Jermann

(2023) proves, the equilibrium token supply could be well controlled by the ecosystem design. Therefore,

we set the dynamic of 𝑄𝑡 without uncertainty terms. However, 𝐸 could vary over time.

10
The gas fee of a transaction in practice entails base and priority fees. The base fee is burned whereas

the priority fee is paid to the validator as a tip, which varies across validators and users. 𝐿𝑡 , as a proxy of

the size of validators, does not equal the number of the validators, but reflects the staking scale competition

across the validators, and is usually a good proxy in practice. Online Appendix OA1.2 contains more details.

11
For simplicity, we do not model the term structure of staking rewards—the focus of John et al. (2022).

In our continuous-time setting, we only need staked tokens to be locked for 𝑑𝑡. In our empirical tests, we

only require agents to know the next period’s reward emission.

12
For example, many programs fix the total amount of rewards, which implies that staking more tokens

reduces the reward per token staked. More generally, 𝐿𝑡 decreases the average unit staking rewards 𝑟𝑡

11



To capture the cost of node operation and risk of slashing, we assume that stakers incur1

costs at a rate 𝑐𝑡 < 𝑟𝑡 proportional to their staking amount.
13

2

It is straightforward to conclude that if someone stakes 𝑘𝑡 tokens (𝑘𝑡𝑃𝑡 dollars), by Itô’s3

Lemma, the wealth increments from staking satisfy:4

d(𝑘𝑡𝑃𝑡) = 𝑘𝑡d𝑃𝑡 + 𝑃𝑡(𝑟𝑡 − 𝑐𝑡)𝑘𝑡d𝑡 = (𝑘𝑡𝑃𝑡)[(𝜇𝑡 + 𝑟𝑡 − 𝑐𝑡)d𝑡 + 𝜎𝑡d𝑍𝑡]. (6)

2.2 Agents’ Problem and Staking as Optimal Control5

Taking as given the system staking reward rate, 𝑟𝑡 , each agent with personal wealth6

𝑤𝑡 decides at time 𝑡 the consumption rate 𝑦𝑡 and a portfolio consisting of 𝑙𝑡 numéraire-7

equivalent amount of staked tokens, 𝑥𝑡 numéraire-equivalent amount of tradable tokens8

and 𝑛𝑡 numéraire, where 𝑥𝑡 , 𝑙𝑡 , 𝑛𝑡 ∈ [0, 𝑤𝑡], 𝑛𝑡 = 𝑤𝑡−𝑥𝑡−𝑙𝑡 . The individual stochastic control9

problem involves using (𝑦𝑡 , 𝑥𝑡 , 𝑙𝑡) to optimize a discounted life-time utility:10

max
{𝑦𝑠 ,𝑥𝑠 ,𝑙𝑠}∞𝑠=𝑡

E𝑡 [∫
∞

𝑡
𝑒−𝜙(𝑠−𝑡) (𝑦𝑠)d𝑠] , (7)

where  (𝑦𝑡) is the agent’s instant utility from consumption, which is strictly increasing11

and concave, and 𝜙 is the discount rate. Because staked tokens cannot be instantaneously12

liquidated, the agent also faces the budget constraint, 𝑦𝑡 ≤ 𝑤𝑡 − 𝑙𝑡 .13

Meanwhile, the agent’s overall wealth dynamics satisfy:14

d𝑤𝑡 = [(𝑥𝑡 + 𝑙𝑡)𝜇𝑡 + 𝑙𝑡(𝑟𝑡 − 𝑐𝑡) + 𝑣𝑡 − 𝑦𝑡 − Ψ𝑡]d𝑡 + (𝑥𝑡 + 𝑙𝑡)𝜎𝑡d𝑍𝑡

= 𝑓 (𝑦𝑡 , 𝑥𝑡 , 𝑙𝑡 ; 𝑤𝑡 , 𝑟𝑡 , 𝐴𝑡)d𝑡 + 𝑔(𝑦𝑡 , 𝑥𝑡 , 𝑙𝑡 ; 𝑤𝑡 , 𝑟𝑡 , 𝐴𝑡)d𝑍𝑡 .
(8)

Note that if we allow some of 𝑙𝑡 to contribute towards 𝑥𝑡 , our framework can be used15

to study the recent popular “liquid staking” that surpassed decentralized lending in TVL,16

where stakers can get staking rewards without being restricted by the lock-up.
14

17

from both channels. For gas or service fees, since a higher 𝐿𝑡 indicates the ecosystem has more validators

and better capacity of validations, it generates competition on validating transactions, also depreciates the

premium of prioritized transactions. Note that the definition and operation of priority fees are reported on

the official website of Ethereum, as well as third-party knowledge pages, e.g., blocknative. As for emissions,

the common practices mostly adopt such a reward offering strategy. Otherwise, staking would be more like

cooperation and generate quite low liquidity to the ecosystem. For example, the corresponding reward rate

of Ethereum EIP1559 takes the form of 𝑘/
√
𝐿. This study scope setting is also a common practice. Jermann

(2023) offers an in-depth analysis on optimal policies across a generalized form of 𝑘𝐿−1/𝑠 .
13
The time-varying nature of 𝑐𝑡 captures the fact that gas fees and risks of slashing could change over

time. However, this is not crucial for our key economic insights.

14
https://www.coindesk.com/markets/2023/02/27/liquid-staking-replaces-defi-lending-as-second-

largest-crypto-sector/. This is achieved through wrapped tokens that allow unsupported assets to be

traded, lent, and borrowed on DeFi platforms. Our earlier example of Solana is supported by liquid staking

platforms such as Lido, as of 2022.

12



2.3 Staking Ratio, Reward Rate, and Market Clearing1

Staking ratio. We define 𝜃𝑖,𝑡 as the staking ratio given reward rate 𝑟𝑡 at time 𝑡, then:2

𝜃𝑖,𝑡 = 𝜃(𝑟𝑡 , 𝐴𝑡 , 𝑤𝑖,𝑡 , 𝑢𝑖,𝑡) =
𝑙(𝑟𝑡 , 𝐴𝑡 , 𝑤𝑖,𝑡 , 𝑢𝑖,𝑡)

𝑥(𝑟𝑡 , 𝐴𝑡 , 𝑤𝑖,𝑡 , 𝑢𝑖,𝑡) + 𝑙(𝑟𝑡 , 𝐴𝑡 , 𝑤𝑖,𝑡 , 𝑢𝑖,𝑡)
=
𝑙𝑖,𝑡
𝑞𝑖,𝑡
, (9)

where 𝑞𝑖,𝑡 = 𝑥𝑖,𝑡 + 𝑙𝑖,𝑡 is the aggregate individual onchain value. The overall staking ratio,3

Θ, the ratio of the aggregate number of staked tokens to the total number of tokens, is a4

resulting control under system states, 𝑟 , 𝐴, and the aggregation of agents’ states,5

Θ𝑡 = Θ(𝑟𝑡 , 𝐴𝑡 , {𝑤𝑖,𝑡 , 𝑢𝑖,𝑡}𝑖∈[0,1]) =
𝐿𝑡𝑃𝑡
𝑄𝑡𝑃𝑡

=
∫𝑊 𝑙(𝑤𝑡)𝑚𝑡(𝑤𝑡)d𝑤𝑡

∫𝑊 [𝑥(𝑤𝑡) + 𝑙(𝑤𝑡)]𝑚𝑡(𝑤𝑡)d𝑤𝑡
. (10)

Agents stake taking as given the reward rate. That is, the staking ratio is a function6

of the current reward rate 𝑟𝑡 . It can be shown that Θ𝑡 is continuous in 𝑟𝑡 . Staking ratio is7

important because it links individual choices with global states.
15

8

Equilibrium reward. According to (5), 𝑟𝑡 is influenced by the aggregate stake, 𝐿𝑡 , and9

thus by the aggregation of agents’ controls, Θ𝑡 . At the same time, Θ𝑡 is a function of 𝑟𝑡 .10

Then the equilibrium staking reward rate, 𝑟∗𝑡 , solves the fixed-point problem:11

𝑟∗𝑡 = 𝑟(Θ∗(𝑟∗𝑡 , 𝐴𝑡)). (11)

Note that the reward rate decreases in Θ𝑡 . We later show that all the agents’ staking12

amount increases with 𝑟𝑡 , which then gives a unique equilibrium 𝑟∗𝑡 .13

Define 𝜌𝑡 as the staking reward ratio, then: 𝜌𝑡 ≡ 𝑅𝑡
𝑄𝑡

⇒ 𝑟𝑡 = 𝜌𝑡
Θ𝑡
. Since 𝜌𝑡 has a one-to-one14

correspondence to the equilibrium 𝑟∗𝑡 , the equilibrium staking ratio can also be represented15

as Θ∗(𝜌𝑡 , 𝐴𝑡). In our subsequent comparative statics analysis, we use Θ∗(𝜌𝑡 , 𝐴𝑡), while re-16

taining the notation Θ(𝑟𝑡 , 𝐴𝑡) to highlight the output of agents’ choices. When the system17

is at the equilibrium, Θ∗(𝑟∗𝑡 , 𝐴𝑡) = Θ∗(𝜌𝑡 , 𝐴𝑡).18

Token market clearing. The total quantity of tokens 𝑄𝑡 is equal to the sum of token19

holdings affected by the noisy demand shock:
16

20

𝑄𝑡𝑃𝑡 = ∫
𝑊
(𝑥𝑡 + 𝑙𝑡)𝑚𝑡d𝑤𝑡𝑆𝑡 . (12)

15
For notational simplicity, {𝑤𝑖,𝑡 , 𝑢𝑖,𝑡}𝑖∈[0,1] are omitted in the remainder of the paper. In practice, Θ𝑡 can

be publicly tracked using data from websites such as StakingRewards.com or original platform networks.

16
Naturally, the token price that satisfies the (onchain) market clearing condition should simultaneously

clear both the staking and non-stakingmarket. Otherwise, arbitrage opportunities arise. We simultaneously

obtain the staking market clearing by combining (10) and (12), i.e., 𝑃𝑡𝐿𝑡 = 𝑃𝑡𝑄𝑡Θ𝑡 = ∫𝑊 𝑙𝑡𝑚𝑡d𝑤𝑡𝑆𝑡 .

13



3 Equilibrium Characterization and Implications1

To convey core economic intuitions, we first solve for a baseline Markovian equilib-2

riumwith homogeneous agents each having the same type 𝑢 and non-negative (but finite)3

initial wealth, and set the transaction threshold to be zero. In a symmetric equilibrium, the4

evolution of individual wealth is the same across agents, which is denoted by 𝑤𝑡 . Section5

4 derives the equilibrium under the general settings with agent heterogeneity.6

For homogeneous agents, we leave out the distribution𝑚 and write the indirect utility7

function (given that 𝑄𝑡 does not enter, as we show later):8

𝐽 (𝑡, 𝑤𝑡 , 𝐴𝑡 , 𝑟𝑡) = max
{𝑦𝑠 ,𝑥𝑠 ,𝑙𝑠}∞𝑠=𝑡

E𝑡 [∫
∞

𝑡
𝑒−𝜙(𝑠−𝑡) (𝑦𝑠)d𝑠] . (13)

We then derive the Hamilton-Jacobi-Bellman (HJB) equation:9

𝜙𝐽 (𝑡, 𝑤, 𝐴, 𝑟) =max
{𝑦,𝑥,𝑙}

{
 (𝑦) + 𝑓 (𝑦, 𝑥, 𝑙; 𝑤, 𝑟 , 𝐴)

𝜕𝐽
𝜕𝑤

+
1
2
𝑔(𝑦, 𝑥, 𝑙; 𝑤, 𝑟 , 𝐴)2

𝜕2𝐽
𝜕𝑤2 + 𝜇𝐴(Θ)𝐴

𝜕𝐽
𝜕𝐴

}
,

(14)

where we leave out the time subscript, 𝑡, for simplicity.10

3.1 Rewards and Staking Activities11

We start by analyzing the agents’ optimal decisions. At the instant of decision-making,12

the agent takes the reward rate 𝑟𝑡 as given. Intuitively, the marginal transaction conve-13

nience is decreasing with 𝑥𝑡 , the value of tradable token held.14

Proposition 1. Optimal individual staking. For an agent with wealth 𝑤𝑡 and type 𝑢15

under system states {𝐴𝑡 , 𝑟𝑡}. the optimal staking ratio, 𝜃∗𝑡 , is unique and satisfies:16

𝜃∗𝑡 = max

{

0, 1 −
𝑁𝑡𝐴𝑡𝑈𝑡
𝑞𝑡 (

1 − 𝛼
𝑟𝑡 − 𝑐𝑡)

1
𝛼
}

. (15)

The reward rate, 𝑟𝑡 , appears in the denominator, implying that the individual staking17

ratio is weakly increasing in 𝑟𝑡 . When the marginal transaction convenience becomes18

smaller than the staking reward rate, i.e., 𝑟𝑡 − 𝑐𝑡 > (1 − 𝛼)(𝑁𝑡𝐴𝑡𝑈𝑡𝑥∗𝑡
)𝛼 , an agent starts to stake19

excess tokens. Because to an individual, the benefits of staking is constant, an interior20

solution exists. Substituting the agents’ individual optimal choices into (10), we obtain21

the aggregate staking ratioΘ(𝑟𝑡 , 𝐴𝑡 , 𝑤𝑡 , 𝑢). Market clearing guarantees the existence of this22

equilibrium staking ratio, which is weakly increases with reward rate 𝑟𝑡 . {𝑟𝑡 , Θ(𝑟𝑡 , 𝐴𝑡 , 𝑤𝑡 , 𝑢)}23

satisfies (10) and (11). The equilibrium is determined by the aggregate staking reward ratio24

𝜌𝑡 . The following proposition states that the higher aggregate staking reward attracts25

agents to stake more, leading to a higher staking ratio.26

14



Proposition 2. Equilibrium staking ratio. The optimal token holding, 𝑞𝑡 = 𝑥𝑡 + 𝑙𝑡 , is1

unique, positive, and equal for any individual type 𝑢. The equilibrium overall staking ratio,2

Θ∗
𝑡 , is unique and satisfies:3

𝜌(Θ∗
𝑡 ) = Θ∗

𝑡

{
(1 − 𝛼) [

𝑁(Θ∗
𝑡 )𝐴𝑡𝑈𝑡

𝑞𝑡(1 − Θ∗
𝑡 ) ]

𝛼

+ 𝑐𝑡
}
. (16)

In particular, when treated as a system state, higher total reward ratio 𝜌 leads to a higher4

aggregate staking ratio in equilibrium, i.e., ∀𝜌′ > 𝜌 > 0,5

Θ∗(⋅, 𝜌′) > Θ∗(⋅, 𝜌). (17)

Proposition 2 gives a general characterization of how aggregate staking reward affects6

staking ratio in equilibrium. The result (16) applies to both cross-sectional comparison and7

time series analysis. Consider the economic meanings of the right hand. The aggregate8

wealth inflow affects transaction convenience by two forces. The inflow from expected9

price appreciation has a diminishing marginal transaction convenience on the one hand,10

and thus moves to the stake pool, increasing the network effect therefore increasing the11

convenience benefits, ultimately making the two forces in balance. Importantly, (17) gen-12

erates comparative statics on 𝜌𝑡 . For a given platform productivity 𝐴𝑡 , as the aggregate13

staking reward ratio 𝜌𝑡 increases, the corresponding overall staking ratio increases.14

3.2 Staking Ratio & Price Dynamics15

We link staking activities to token prices. In general, the token price appreciates when16

more agents’ wealth flows into the platform, whether it is due to high platform produc-17

tivity and thus large transaction convenience, or due to greater participation in staking.18

We are interested in the drift term 𝜇𝑡 of token prices, which depends on both the platform19

states and the agents’ control cross-sectionally. For simplicity, we omit the subscript 𝑡20

when there is no ambiguity.21

By Proposition 2, a participating agent’s optimal onchain wealth, 𝑞𝑡 , is unique. Com-22

bining with the market clearing condition, (12), as well as the equilibrium reward rate:23

0 = (𝜇 + 𝑟(Θ) − 𝑐 +
𝜕Ψ
𝜕𝑛 )

𝜕𝐽
𝜕𝑤

+
𝑃𝑄
𝑆
𝜎2 𝜕2𝐽
𝜕𝑤2 , (18)

where
𝜕Ψ
𝜕𝑛 may also be a function of 𝑃𝑡 and 𝑄𝑡 . Further, as 𝑃𝑡 is endogenously given by 𝐴𝑡 ,24

𝑄𝑡 , and 𝑆𝑡 . As the price dynamic, (2) defines, 𝜇𝑡 and 𝜎𝑡 are also endogenously determined.25

Applying Itô’s Lemma and matching the coefficients to (2), we obtain:26

𝜇𝑡 =
1
𝑃𝑡 (

𝜕𝑃𝑡
𝜕𝐴𝑡

𝐴𝑡𝜇𝐴𝑡 +
𝜕𝑃𝑡
𝜕𝑄𝑡

𝑄𝑡𝐸𝑡 +
𝜕𝑃𝑡
𝜕𝑆𝑡

𝑆𝑡𝜇𝑆𝑡 ) , 𝜎𝑡 =
1
𝑃𝑡
𝜕𝑃𝑡
𝜕𝑆𝑡

𝑆𝑡𝜎𝑆𝑡 . (19)

15



Note that
𝜕𝑃𝑡
𝜕𝑄𝑡

is negative, thus the emission adds negatively to price drifts. In other words,1

emissions of staking rewards cause “inflation,” a concern token holders well recognize.2

Combined with (19), the previous propositions, (18) can be rearranged as a partial3

differential equation with respect to 𝐴𝑡 and 𝑄𝑡 , i.e., with 𝐼 = − 𝜕𝑤𝑤𝐽
𝜕𝑤𝐽

:4

0 =
𝜕𝑃
𝜕𝑄

𝐸𝑄 +
𝜕𝑃
𝜕𝐴

𝐴𝜇𝐴(Θ∗) +
[
𝜕𝑃𝑡
𝜕𝑆𝑡

𝑆𝑡𝜇𝑆𝑡 −
𝑄𝐼
𝑆 (

𝜕𝑃
𝜕𝑆
𝑆𝑡𝜎𝑆)

2

]
+ [𝑟(Θ∗) − 𝑐 + 𝜕𝑛Ψ] 𝑃, (20)

(20) differs from a Black-Scholes-type partial differential equation (PDE): First, the5

“theta” term in Black-Scholes (BS) equation reflecting the variation of the derivative value6

over time is absent in (20). Instead, the term
𝜕𝑃
𝜕𝑄𝐸𝑄 captures the expected inflation from7

token issuance. Second, since 𝐴𝑡 , the productivity that drives token price, is not trad-8

able, the coefficient of
𝜕𝑃
𝜕𝐴 is 𝐴𝜇𝐴 instead of zero.

17
Moreover, there is a “flow” term,9

[𝑟(Θ∗) − 𝑐 + 𝜕𝑛Ψ] 𝑃 , that reflects the excess gain from staking rewards offsetting the stak-10

ing cost and convenience loss. 𝜕𝑛Ψ, indicating the loss of numéraire convenience, is typi-11

cally negative and could be a function of 𝐴𝑡 . [
𝜕𝑃𝑡
𝜕𝑆𝑡
𝑆𝑡𝜇𝑆𝑡 −

𝑄𝐼
𝑆 ( 𝜕𝑃𝜕𝑆 𝑆𝑡𝜎

𝑆)
2

] captures the impact12

of external risk, where the later term features the impact of agents’ risk aversion, and does13

not appear in the risk-neutral BS equation.14

(20) is a PDE involving derivatives w.r.t. 𝐴𝑡 , 𝑄𝑡 , and 𝑆𝑡 , which is hard to solve. The mar-15

ket clearing condition, (12), can be alternatively represented as a condition on aggregate16

wealth allocated to the platform, and is related to the emission rate, but not the aggregate17

amount of tokens, 𝑄𝑡 . Substituting the preceding equation into (20) converts the PDE into18

an ordinary differential equation (ODE). Moreover, to pin down a precise analytical ex-19

pression, we specify a log utility functional form for the agents given that the level risk20

aversion is not our focus, a Ψ𝑡 linear in numéraire holding that captures the differential21

convenience direct consumption, and a zero sentiment (noise) drift 𝜇𝑆 .1822

Proposition 3. Token price and dynamic. 𝑃𝑡 is separable, 𝑃𝑡 = 𝑉 (𝐴𝑡 )𝑆𝑡
𝑄𝑡

, where 𝑉 (𝐴𝑡)23

captures the aggregate wealth allocated to the platform, and satisfies the ODE24

0 = 𝑉 ′(𝐴𝑡)𝐴𝑡𝜇𝐴(Θ𝑡) + [𝑟(Θ𝑡) − 𝑐𝑡 − 𝐸(Θ𝑡 , 𝐴𝑡) + Ψ𝑛(𝐴𝑡)] 𝑉 (𝐴𝑡) −
[𝜎𝑆(𝐴𝑡)𝑉 (𝐴𝑡)]2

𝑤𝑡
, (21)

where Θ𝑡 = Θ(𝐴𝑡 , 𝑉 (𝐴𝑡)) and satisfies (16), 𝑤𝑡 indicates the aggregation of agents’ wealth.25

Given the boundary condition lim𝐴𝑡→0 𝑉 (𝐴𝑡) = 0, the ODE has a unique solution.26

17
If the fundamental productivity were tradable, the coefficient of

𝜕𝑃
𝜕𝐴 would have been 𝑟𝑓𝐴, where 𝑟𝑓 is

the risk-free rate and normalized to zero.

18
We numerically verify that the model implications hold under general CRRA utilities.
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The economic implications of (21) are similar to our previous discussion of (20). Under1

a fixed inflation rate, in equilibrium, the expected price drift, 𝜇𝑡 , and staking ratio, Θ𝑡 ,2

are both functions of platform productivity, 𝐴𝑡 . The boundary condition requires that a3

useless platform attracts no adopters.4

Solving the ODE, we find that the equilibrium staking ratio Θ𝑡 and expected price5

appreciation 𝜇𝑡 are positively related (Figure 1). Because staking ratio can be computed6

from onchain information, it can help predict price changes.7

Figure 1: Staking ratio and price dynamics.
This graph shows the joint relationship between the system staking ratio Θ𝑡 and the price drift 𝜇𝑡 . The

blue curve is the case where the staking ratio feeds back the platform productivity 𝐴𝑡 process (the main

model), while the gray curve shows the case for comparison where the feedback effect does not exist. The

colored scatter points on the two curves mark the corresponding point (Θ𝑡 , 𝜇𝑡) for different values of ln(𝐴𝑡)
respectively. As this graph shows, greater staking ratio relates to higher expected price appreciation.

There are two main economic driving forces. The first force comes directly from pro-8

ductivity 𝐴𝑡 . On the one hand, 𝜇𝑡 declines in 𝐴𝑡 . As 𝐴𝑡 grows, agents allocate more wealth9

on the platform and less off-chain wealth, thus the potential future price appreciation is10

reduced, which generates the similar user-base stabilizing effect of tokens as Cong et al.11

(2021b). On the other hand, Θ𝑡 also declines in 𝐴𝑡 , because higher 𝐴𝑡 results in a larger12

transaction convenience. Therefore, the joint dynamics of 𝜇𝑡 and Θ𝑡 exhibit a positive re-13

lationship. This mechanism also explains the shape of the curve when the staking ratio14

is low. Such force does not rely on the feedback mechanism but in general a market phe-15

nomenon. Therefore, we can see from Figure 1 that even without the feedback effect (the16

grey curve), 𝜇 and Θ are positively related.17

The second is the feedback effect of staking on the 𝐴𝑡 process. As (1) and (19) show,18

a high staking ratio increases the productivity drift 𝜇𝐴𝑡 , and then leads to a large price19

17



drift 𝜇𝑡 . This mechanism illustrates the role that staking plays in platform growth. In PoS,1

the system state with a relatively high staking ratio implies a strong network of highly2

engaged validators, so that the consensus and confirmation are efficiently reached. As for3

high-layer staking economy such as DeFi applications, with a certain capital value, a high4

staking ratio relates to a high TVL (total value locked), which is recognized as improving5

the security level of the platform. For both layers of the staking economy, the staking ratio6

positively impacts the growth of platform productivity 𝐴𝑡 through the above-mentioned7

paths respectively, therefore resulting in a greater drift. As a reflection of the value of the8

platform, the price drift increases accordingly to (19). Online Appendix OA3.5 discusses9

further the implications of the feedback effect.10

3.3 Token Excess Returns, UIP Violation, and Crypto Carry11

Each token holder takes on the risk of token price fluctuation and loses the conve-12

nience of holding the numéraire. Denote the expected financial excess return of unit13

staked token over the numéraire by 𝜆𝑡 , 𝜆𝑡 ≡ E𝑡 [d𝑃𝑡 + 𝑃𝑡𝑟 staked token] /𝑃𝑡 = 𝜇𝑡 + 𝑟𝑡 − 𝑐𝑡 .14

Proposition 4. Predictable excess return. The unit excess return, 𝜆𝑡 , satisfies15

𝜆𝑡 = −
𝜕Ψ
𝜕𝑛𝑡

+ 𝑞∗𝑡 𝜎
2
𝑡 𝐼 > 0, (22)

where − 𝜕Ψ
𝜕𝑛𝑡

> 0 is the marginal convenience of holding numéraire, 𝑞∗𝑡 is the optimal onchain16

wealth, 𝐼 = − 𝜕𝑤𝑤𝐽
𝜕𝑤𝐽

> 0. RHS is positive, implying predictable excess returns.17

Proposition 4 follows directly from the agents’ optimization. The positive RHS of18

(22) implies predictable excess returns that arise as compensation for convenience losses19

and volatility risk. This phenomenon closely relates to the uncovered interest rate parity20

(UIP) in the foreign exchange market, since the token price in numéraire corresponds to21

the exchange rate, whereas the staking reward rate corresponds to the concept of interest22

rate. UIP implies that the expected returns on default-free deposits across currencies are23

equalized, and thus the expected excess return 𝜆𝑡 should be zero.19 However, (22) violates24

the UIP owing to the presence of two positive terms. First, when the relative convenience25

of numéraire increases, staked token is compensated with a higher financial return. This26

19
In relevant research on currency UIP, the more common notation reads 𝜆𝑡 = E𝑡 [d𝑆𝑡/𝑆𝑡 + 𝑖𝑓 𝑜𝑟𝑒𝑖𝑔𝑛𝑡 − 𝑖𝑙𝑜𝑐𝑎𝑙𝑡 ],

where 𝑆𝑡 is the log exchange rate (foreign currency units per unit of local currency). The corresponding

terms of 𝑆𝑡 , 𝑖𝑓 𝑜𝑟𝑒𝑖𝑔𝑛 and 𝑖𝑙𝑜𝑐𝑎𝑙 are 𝑃𝑡 , 𝑟𝑡−𝑐𝑡 and the numéraire risk-free rate 𝑟𝑓𝑡 (normalized to zero), respectively.

In related empirical works, 𝑟𝑓𝑡 is not always zero, and the time is discrete. The corresponding equation of

UIP reads E𝑡 [log 𝑃𝑡+1 − log 𝑃𝑡] = 𝑟𝑓𝑡 − (𝑟𝑡 − 𝑐𝑡).

18



interpretation of UIP violation shares similar ideas with Valchev (2020); Jiang et al. (2021)’s1

explanation of the UIP puzzle in classical asset types such as bonds. The second term on2

the R.H.S represents the impact of volatility risk.
20

3

In a nutshell, the excess return of holding the token comes from both the staking re-4

ward and the price appreciation of tokens. But there is no free lunch. The excess return5

reflects the compensation for the missed convenience of holding the numéraire for con-6

sumption. This observation is general because convenience is a relative concept between7

any two assets. What this implies is that based on the same numéraire, the expected excess8

returns can be different for different tokens. Moreover, by using any of cryptocurrencies9

as numéraire, we can verify that UIP fails in general in the cryptocurrency market.10

UIP violations naturally lead to profitable currency carry trades, which go long in11

baskets of currencies with high interest rates and short in low ones. In fact, carry is a12

general concept that applies in a host of asset classes, e.g., equities, bonds, commodities,13

Treasuries, credits, and options (Koijen et al., 2018). Its predictability of excess returns14

and investment performance are widely documented and studied (e.g., Lustig et al., 2014;15

Bakshi and Panayotov, 2013; Burnside et al., 2011; Menkhoff et al., 2012; Koijen et al., 2018;16

Daniel et al., 2017). As a direct application to the violation of UIP, our model implies prof-17

itable crypto carry trades, where following Koijen et al. (2018), crypto carry is similarly18

defined as currency carry:19

carry𝑡 ≡
𝑟𝑡 − 𝑐𝑡 − 𝑟 𝑓

1 + 𝑟 𝑓
. (23)

4 Agent Heterogeneity and Mean-Field Equilibrium20

We now solve the full model under agent heterogeneity in both wealth and usage21

need for the platform. We find that all aforementioned model implications hold. We also22

derive the expected stationary wealth distribution, which exhibits a Pareto-like shape.23

While higher platform productivity offers greater transaction convenience, inequality also24

increases. We further subject the economy to aggregate shocks to examine its response25

dynamics, thereby elucidating the competitive dynamics among agents, rationalizing the26

20
This explanation is related to studies using term structure models (e.g., Bansal, 1997; Lustig et al., 2019),

where the difference between domestic and foreign bond risk premia, expressed in domestic currency, is

determined by the volatility difference of the permanent components of the stochastic discount factors.

In addition, alternative relevant explanations for the UIP violation have been proposed in previous stud-

ies, ranging from time-varying risks including liquidity and volatility (e.g., Bekaert, 1996; Verdelhan, 2010;

Lustig et al., 2011; Gabaix and Maggiori, 2015) to peso problems (e.g., Burnside et al., 2011).
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direct and indirect impact paths, etc.1

Intuitively, poor agents with greater usage preference of the platform may stake less,2

which in turn affects the aggregate staking ratio and token pricing. Further, introducing3

wealth heterogeneity into the dynamic process enables us to discuss the evolution of the4

wealth distribution and its long-run outcomes, and thus inequality and redistribution.5

4.1 The MFG Approach and Derivation of the Master Equation6

Wealth heterogeneity and themean-field game. With wealth heterogeneity, the den-7

sity 𝑚𝑡 enters the determination of staking ratio and reward rate as (10) and (11) show.8

Since agents solve their optimal control based on staking reward rates,𝑚𝑡 enters the value9

function as an additional argument. For such a system involving the evolution of distri-10

bution, we employ the so-called “backward-forward MFG system” for the system with11

a backward HJB and a forward FP equation (law of motion).
21

Because the external ag-12

gregate (common) shock hits every agent, it adds randomness to the distribution so that13

{𝑚𝑡}𝑡≥0 is a random flow of measures.
22

The resulting stochastic PDE system has been14

thoroughly studied on its mathematical properties and applications, especially the equiv-15

alent system defined by a so-called “master equation.” In the following, we build upon16

Cardaliaguet et al. (2019) and Bilal (2023) to characterize the system with a master equa-17

tion. For notational simplicity, we omit some arguments of a function whenever feasible.18

21
The mean field game (MFG) theoretical approach has been developed by Lasry and Lions (2007);

Cardaliaguet et al. (2019), and applied in macroeconomics (e.g., Achdou et al., 2022) and related Bitcoin

mining competition (Bertucci et al., 2020). Online Appendix OA3.1 provides a detailed review.

22
Let us compare aggregate shocks with another class of shocks that are also usually discussed, where

each agent has an independent individual uncertainty. Although every agent randomly moves from her

initial state, the stochasticity of directions and displacements is smoothed out after the summation of nu-

merous agents, resulting in a deterministic evolution of the distribution. In contrast, the aggregate shock

here randomly shifts system states and thus affects all agents systematically, despite the different exposures.
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The standard time-dependent formulation of these coupled stochastic PDEs reads:1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜙𝐽𝑡d𝑡 − d𝐽𝑡 =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

max
𝑦,𝑥,𝑙 [

 (𝑦; 𝑤, 𝑚) + 𝑓 (𝑥, 𝑙; 𝑤, 𝑚)
𝜕𝐽𝑡
𝜕𝑤

+
1
2
𝑔2(𝑥, 𝑙; 𝑤, 𝑚)

𝜕2𝐽𝑡
𝜕𝑤2 ]

+ 𝜇𝐴𝐴
𝜕𝐽𝑡
𝜕𝐴

−
𝜕𝑔(𝑤,𝑚)𝑣𝑡

𝜕𝑤

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

d𝑡 − 𝑣𝑡d𝑍𝑡

≡
{
 (𝑤, 𝑚) + 𝐿(𝑤,𝑚)[𝐽 ] + 𝜇𝐴𝐴

𝜕𝐽𝑡
𝜕𝐴

−
𝜕𝑔(𝑤,𝑚)𝑣𝑡

𝜕𝑤

}
d𝑡 − 𝑣𝑡d𝑍𝑡 ,

d𝑚𝑡 = [−
𝜕
𝜕𝑤

(𝑓 (𝑤, 𝑚)𝑚𝑡(𝑤)) +
𝜕2

𝜕𝑤2 (
1
2
𝑔2(𝑤, 𝑚)𝑚𝑡(𝑤))] d𝑡 −

𝜕
𝜕𝑤

[𝑔(𝑤,𝑚)𝑚𝑡(𝑤)d𝑍𝑡]

≡ 𝐿∗(𝑤)[𝑚]d𝑡 −
𝜕
𝜕𝑤

[𝑔(𝑤,𝑚)𝑚𝑡(𝑤)d𝑍𝑡] ,
(24)

where the second equal signs of the two equations define the notations for the optimized2

situation, including the utility  , wealth drift 𝑓 and diffusion 𝑔 . 𝐿(𝑤)[𝐽 ] is the Dynkin3

operator w.r.t. the individual state 𝑤. 𝐿∗(𝑤)[𝑚] is also a useful operator, in which the star4

script reminds it is the adjoint operator of 𝐿. 𝑣𝑡 is a function for penalty.
23

5

Regarding this system, the key of the master equation approach is to notice that6

the time-dependence of the value function d𝐽𝑡 itself in (24) comes totally from the time-7

dependence of 𝑚𝑡 .
24

As shown below, it treats 𝐽𝑡 as 𝐽 (⋅, 𝑚𝑡) and replaces d𝐽𝑡 by the FP8

equation and the infinite-dimensional Itô’s Lemma. As Bilal (2023) points out, though ad-9

ditional definitions introduced, the master equation brings substantial ease for discussion10

on economic insights, since it captures the system to be a Markovian representation of11

the agents’ problem by a single equation. In this staking economy, the master equation12

reads:13

𝜙𝐽 (𝑤,𝑚, 𝐴) =  (𝑤, 𝑚) + 𝐿(𝑤)[𝐽 ] + 𝜇𝐴𝐴
𝜕𝐽
𝜕𝐴

+
𝜕
𝜕𝑤 [𝑔(𝑤) ∫

𝛿𝐽
𝛿𝑚

(𝑤, 𝑤′, 𝑚)
𝜕𝑔(𝑤′)𝑚(𝑤′)

𝜕𝑤′ d𝑤′
]

+ ∫
𝛿𝐽
𝛿𝑚

(𝑤, 𝑤′, 𝑚)𝐿∗(𝑤′)[𝑚]d𝑤′

+
1
2 ∫ ∫

𝛿2𝐽
𝛿𝑚2 (𝑤, 𝑤

′, 𝑤′′, 𝑚)
𝜕𝑔(𝑤′)𝑚(𝑤′)

𝜕𝑤′
𝜕𝑔(𝑤′′)𝑚(𝑤′′)

𝜕𝑤′′ d𝑤′d𝑤′′.
(25)

Without heterogeneous wealth and aggregate shocks, the master equation degener-14

ates into the HJB equation, which corresponds to the first three terms on the right-hand15

23
With the randomness in forward-backward SDEs, the HJB equation needs to involve a martingale as

penalties to guarantee the solution is indeed adapted (according to the theory regarding forward-backward

SDEs, see e.g., Pardoux and Râs
,
canu, 2014).

24
Put differently, 𝐽𝑡 = 𝐽 (𝑤𝑡 , 𝐴𝑡 , 𝑚𝑡) and the total derivative would include the time-dependence of all the

state arguments. While in the HJB, the time-dependence of 𝑤𝑡 and 𝐴𝑡 have already been accounted for.
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side. The next three terms intuitively capture the decomposition of the impact of𝑚𝑡 on the1

forward evolution of the MFG system: the first is derived from the penalty, i.e., it captures2

how the agents evaluate the impact of the realization of the evolutionary uncertainty of3

wealth distribution. The second represents the impact of the “deterministic” changes in4

the wealth distribution. Similar to the volatility risk (acts on wealth) of classical uncer-5

tainties, the evolutionary uncertainty of the distribution is volatile and results in a risk6

(the second-order term w.r.t. 𝑚), as the last term in (25) reflects.
25
The derivation is shown7

in Online Appendix OA3.2.The extra terms imply that aggregate shocks not only affect an8

individual agent 𝑤 directly, but also affect other agents, whose responses in turn affect 𝑤.9

4.2 Implications of Wealth Heterogeneity10

Individual’s optimal staking. Heterogeneous agents differ in the trade-off between11

staking and convenience gains they face, some even quit the staking pool.12

Proposition 5. Individual staking under heterogeneity. For agent 𝑖 with wealth 𝑤𝑡13

and usage preference 𝑢𝑖,𝑡 , the optimal 𝑞∗𝑡 is unique. The optimal individual staking ratio 𝜃∗𝑡 is14

heterogeneous w.r.t. agents’ transaction needs 𝑈𝑡 = 𝑈(𝑢𝑡 , 𝑤𝑡) and satisfies:15

𝜃∗𝑡 = max

{

0, 1 − (
1 − 𝛼
𝑟𝑡 − 𝑐𝑡)

1
𝛼 𝑁𝑡𝐴𝑡𝑈𝑡

𝑞∗𝑡
𝕀{𝑈𝑡 > 𝑈0}

}

, (26)

where 𝕀 is an indicator function, 𝑈0 = 𝜑
𝑁𝑡𝐴𝑡 (

𝑟𝑡−𝑐𝑡
1−𝛼 )

1−𝛼
𝛼 .16

The indicator function captures the impact of the threshold 𝜑. The unchanged, how-17

ever, is all the agents weakly increase their staking under a higher reward rate. Figure 218

visualizes this implication and the determination of the cross-sectional equilibrium. As19

the aggregation of all the agents, the overall staking ratio (the blue curve) weakly increases20

with the given reward rate. Further, the resulting staking ratio leads to a new system re-21

ward rate (the gray curve). Then the equilibrium falls at the intersection.
26

In addition,22

we can see that big whales enter the staking pool first as the reward rate increases, since23

25
Note that extra arguments 𝑤′, 𝑤′′

enter the derivatives. They are generated from infinite-dimensional

Itô’ Lemma: d𝐽𝑡 = ⟨ 𝛿𝐽𝛿𝑚 , d𝑚𝑡⟩ + 1
2 ⟨d𝑚𝑡 | 𝛿

2𝐽
𝛿𝑚2 |d𝑚𝑡⟩. The inner product is defined in the appropriate functional

space, ⟨𝑓 (𝑥), 𝑔(𝑥)⟩ = ∫ 𝑓 (𝑥)𝑔(𝑥)d𝑥 . ⟨ℎ|𝑓 (𝑥, 𝑥′)|𝑔⟩ = ⟨⟨𝑓 (𝑥, 𝑥′), ℎ(𝑥)⟩, 𝑔(𝑥′)⟩. The derivatives w.r.t. 𝑚 refer

to the Fréchet derivatives applied in infinite dimension, and appear to have extra arguments, i.e.,
𝛿𝐽
𝛿𝑚 =

𝛿𝐽
𝛿𝑚 (𝑤, 𝑤

′, 𝑚), 𝛿2𝐽
𝛿𝑚2 = 𝛿2𝐽

𝛿𝑚2 (𝑤, 𝑤′, 𝑤′′, 𝑚). The rigorous definitions are described in Online Appendix OA3.1.

One can roughly compare them with Jacobian and Hessian in the finite-dimensional case respectively.

26
When it falls in the gray area, some agents may not stake and only transact on the platform.
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their marginal transaction needs are relatively lower. From another perspective, the re-1

tail agents are less likely to be interested in staking, since the staking reward, also their2

contribution to the platform by staking are relatively negligible.3

Figure 2: Individual staking decisions and equilibrium staking ratio.
The three dashed curves plot the individual staking ratios of retails (who own little wealth), rich whales,

and the middle-class. The blue curve is the aggregated overall staking ratio. The staking ratio further leads

to the resulting reward rate as the gray curve shows. Then, the equilibrium is the solution to the fixed point

problem as visualized by the intersection of the blue and gray curves.

System equilibrium states and redistribution. The qualitative implications of the4

model remain intact despite the presence of heterogeneous agents.
27
However, the crucial5

difference is that the wealth distribution plays a pivotal role as an additional argument in6

shaping all the cross-sectional equilibrium states, leading to redistribution. Specifically,7

heterogeneity in wealth causes agents to have different tradeoffs between transaction us-8

age and staking rewards, leading to different individual staking ratios. Agents who value9

usage benefits more or have less wealth tend to stake less, and consequently suffer from10

emission inflation, whereas stakers, especially the wealthy ones, accumulate more to-11

kens, and thus onchain wealth. This insight shares the same spirit as in John et al. (2022),12

though the agent heterogeneity modeled there is different, and the redistribution is be-13

tween short-term and long-term holders. Under log utility, on-chain redistribution also14

corresponds to an overall wealth redistribution in equilibrium.15

27
The essence that generates this assertion is that the system states are still calculated as aggregations

across the crowd, whereas agents have the same direction of shifts in staking relative to different reward

rates as mentioned above. Online Appendix provides a detailed discussion on the derivation process.
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4.3 Expected Stationary State1

The cross-sectional equilibrium exists under any given wealth distribution, while we2

further consider the steady state from the time dimension. With the continuous arrival3

of aggregate shocks, we should consider the expected steady state, 𝔼(d𝑚𝑡) = 0. It reflects4

the evolution on average and directly corresponds to the deterministic onchain steady5

state if there is no realized external shock. As discussed in Appendix OA3.5, if the agents6

obtain log utilities, 𝑈𝑖,𝑡 = 𝑈(𝑢𝑖,𝑡 , 𝑤𝑖,𝑡) = 𝑢𝑖,𝑡𝑤𝑖,𝑡 , and the random user type 𝑢𝑖,𝑡 is independent7

of wealth, then all the agents’ wealth change linearly. It is widely known that the re-8

sulting stationary distribution is a Pareto distribution.
28
We relax the above requirement9

by allowing for correlation between 𝑢 and 𝑤, e.g., 𝑢𝑖,𝑡 ∼ 𝑢̄ (𝑤𝛽−1
𝑡 , 𝜎2

𝑋 ), where 𝑢̄ captures10

the tendency to transact (as opposed to stake). Then from the perspective of the whole11

crowd, there are different marginal benefits between staking (still constant return to scale12

given the reward rate 𝑟) and transaction (expectations affected by wealth). The following13

proposition solves for the general expected stationary distribution and shows it depends14

on the platform productivity.15

Proposition 6. Expected stationary distribution. The agents’ wealth distribution in the16

expected stationary state is:17

𝑚(𝑤) = 𝑐0
1
𝑤𝜙 exp

(
 𝑢̄𝛼 (

1 − 𝛼
𝑟 − 𝑐 )

1−𝛼
𝛼

𝑁𝐴
𝑤𝛽−1

𝛽 − 1)
, (27)

where  = 2𝜎2
(𝜇+𝑟−𝑐−Ψ𝑛)2

, (𝜇, 𝑟 , Ψ𝑛, 𝜎, 𝑁 ) are all functions of 𝐴 at the cross-sectional equilibrium.18

𝑐0 is a normalization constant such that ∫ ∞
𝑤 𝑚(𝑤)d𝑤 = 1. As 𝛽 → 1, the distribution is a19

Pareto distribution with tail parameter 𝑎 = [𝜙 − 𝛼 ( 1−𝛼
𝑟−𝑐 )

1−𝛼
𝛼 𝑁𝐴𝑢̄] − 1.20

We further investigate how the platform state influences the stationary wealth dis-21

tribution as Figure 3 shows.
29

The distributions are Pareto-like, with a large amount of22

wealth concentrated in a few people. Panel A tells us that as the platform productiv-23

ity increases, the distribution involves a fatter tail, implying the rising wealth inequality.24

28
When the agent’s wealth changes linearly over time, the law of motion generates a Pareto distribu-

tion (e.g., Wold and Whittle, 1957; Gabaix, 2009). It is worth pointing out that we make a methodological

contribution by avoiding the common assumption in the literature of a representative agent that gives a

deterministic evolution of the distributions.

29
To make the situations comparable, we normalize the wealth to the multiplier of the lowest onchain

wealth in corresponding cases. Since in different cases, the agents have co-movements in on/off-chain

trade-offs. The normalized onchain wealth allows us to focus on inequality issues.
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Higher platform productivity generates larger benefits than the off-chain activities, while1

in this process, the richer has larger onchain allocation, and gains more wealth growth.2

Meanwhile, higher productivity increases the transaction convenience of all agents, which3

explains why many retail agents still use the platform.4

Similarly, as demonstrated in Panel B, higher tendencies to stake (lower 𝑢̄) reduce5

inequality. In fact, both user type (𝑢̄ and 𝛽) and staking design (e.g., 𝜌) can alter the level6

of inequality. Platforms without staking or with less generous staking rewards (lower 𝜌)7

would not have as much staking participation, and therefore exhibit higher inequality.

Figure 3: Expected stationary wealth distribution.
This graph shows the stationary wealth distribution under different platform states. The wealth is normal-

ized to be the multiplier of the lowest wealth in each case. Panel A shows the comparison among different

levels of platform productivity. Panel B compares different overall staking tendencies, which is examined

by adjusting 𝑢̄, the general scale of transaction demand in user types.

8

Wealth inequality and total welfare. Just like in the real economy, inequality can be9

a double-edged sword. On the one hand, it results in a lower equilibrium staking reward10

rate and squeezes out retail agents from staking, which reduces their welfare. On the other11

hand, inequality is correlated with high platform productivity (and thus greater average12

user utility). Agents may still want to join a well-developed platform for usage, even in13

an economy with large onchain and overall wealth inequality.14

These implications further help us understand the different stages of platform growth.15

In the initial stage, the tokenized economy is often accompanied by relatively low inequal-16

ity. Participating in staking can attract excess capital into the network and promote its17

development. As the platform grows, a few rich agents with larger marginal benefits in18

staking than transacting dominate staking activities, whereas other agents hold tokens19

mostly for onchain usage and speculation. This helps to rationalize why in practice, once20

platforms become large, a division of labor among participants emerges where valida-21
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tion is often done by prominent asset owners such as exchanges, who provide consensus1

through PoS while earning staking revenues.2

4.4 System Trajectories and Aggregate Shocks3

According to the master equation (25), agents do not directly respond to any specific4

shocks, but “internalize” them through the penalty term as well as the volatility risk of5

penalty. To numerically solve (25), we obtain the value functions under shock series 𝑧,6

denoted as 𝐽 (𝑤, 𝑚, 𝐴, 𝑧), and simulate all the possible series under the given stochastic7

process to derive the origin 𝐽 (𝑤, 𝑚, 𝐴). This idea offers additional potential to examine8

the evolutionary paths under certain realized series of shocks. To solve 𝐽 , we follow the9

perturbation approach introduced in Bilal (2023), as detailed in Online Appendix OA2.10

Figure 4 shows the impulse response paths when there are different series of shocks.11

Panel A simulates a booming market with positive external demand shocks. The direct12

and initial effect is a universal wealth growth across all agents, leading to a decrease in the13

share of retail agents and, consequently, an increase in the overall staking ratio. As time14

goes on, the growing productivity generates more benefits from transaction and reduces15

the staking ratio.Panel B simulates a declining market with negative demand shocks, in16

which the response paths are nearly symmetric. Panels C and D reveal the periods with17

low and high oscillations. The whole system has immediate and violent response to each18

round of external fluctuations. This is because the latest arriving shock brings the di-19

rect impact, while the previous opposite shock only affects the current state indirectly20

by the changes in the distribution.
30
Further, the changing nature of productivity obtains21

quantitative-level differences among the rounds.22

Panel E shows an experiment that involves a negative “MIT shock” to the platform23

productivity at 𝑡 = 0 and compare it to the steady benchmark. The deviations in the24

staking ratio are similar to those in Panel B, but the explanation differs. Here, agents in-25

crease their staking ratios relative to the benchmark not because they have more wealth,26

but because transaction convenience drops. The higher staking ratio provides a larger27

platform growth drift, which partially offsets the productivity loss caused by the shock.28

However, when compared to the benchmark, agents continue to experience lower wealth29

growth, gradually leading to relatively lower staking ratios. Consequently, the productiv-30

30
At a specific period, the response can be roughly viewed as some combination of the continuous impacts

of historical shocks. Online Appendix OA2 tests the impacts over time of a separate unit shock and also

details the method that allows setting up a sequence of shocks.
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Figure 4: Impulse response paths under different realization of shocks.
Panels A-D show the impulse responses to different shock paths, i.e., continuous good and bad news, low

and high-frequency oscillations, respectively. The time unit is roughly calibrated to one-day. In each panel,

subplot (1) shows the response of𝑚𝑡(𝑤), i.e. their deviations from the steady states, with different𝑤. Subplot
(2) shows the response of staking ratio. Panel E shows the Monte Carlo simulation of a -0.1 negative shock

to ln(𝐴), where the subplots show the deviations of staking ratio and log productivity. The grey region

includes the curves under fewer simulations.

ity falls behind. This indicates that the stakingmechanism plays a role in shaping platform1

growth, yet it is insufficient to fully compensate for significant productivity shocks.2

5 Data, Stylized Facts, and Hypotheses3

5.1 Data on Stakable Tokens4

Our main data source is Stakingrewards.com, arguably the largest collector of informa-5

tion related to staking covering both historical and real-time data on most stakable assets.6

Our sample covers daily observations of 66 stakable tokens including Ethereum 2.0. By7

the end of 2021, our sample set makes up 37.78% of the total cryptocurrency market cap-8

italization (64.34% when excluding Bitcoin), and respectively consists 80.35% of the PoS9

market and 97.88% of the DeFi market.
31
The sample period covers July 2018 through Nov10

2022, covering the initial birth and rapid growth of “staking,” as well as the bear market11

during 2022. Our sample includes all stakable assets with a market value of more than12

100 million US dollars at a snapshot of Aug 2020 (as we initially wrote the paper), some13

of which have collapsed in 2022. The additional information about staking is typically14

aggregated from the official websites of each token, including details of staking participa-15

tion methods (Online Appendix OA1.2), reward sharing rules, real-time staking amount16

(staking ratio), etc.17

31
According to CoinMarketCap and StakingRewards.com. The sample set includes 48 base-layer pan-PoS

protocols and 29 high-layer DeFi platform tokens. The two are not mutually exclusive as mentioned.
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Table 1: Summary statistics.
Panel A summarizes the raw variables. We obtain means and standard deviations clustered by each token

for the key variables, and report the statistics between groups in Panel B.

Panel A: Raw variables.
Daily 7-Day 30-Day

N Mean Std.Dev N Mean Std.Dev N Mean Std.Dev

Reward Rate, 𝑟 (%, Annual) 41003 13.42 17.78 5867 13.28 16.05 1387 13.16 15.69

Reward Ratio, 𝜌 (%) 39546 6.31 8.86 5660 6.26 8.58 1339 6.20 8.47

Staking Ratio, Θ (%) 41706 46.37 23.06 5964 46.39 23.09 1415 46.36 23.13

Price Appreciation, 𝑟𝑝𝑟𝑖𝑐𝑒 (%) 43114 -0.04 7.25 6091 -0.34 22.93 1391 -2.13 54.42

Δ𝑟 40788 -0.03 7.86 5745 -0.13 4.68 1301 -0.51 8.76

ΔΘ 41505 0.00 1.33 5851 0.03 3.37 1333 0.03 6.25

Panel B: Group-summarized values.
N Mean Std.Dev Min 25% Median 75% Max

𝑚𝑒𝑎𝑛(𝑟) 66 14.86 15.44 0.02 6.33 9.84 15.77 75.39

𝑠𝑑(𝑟) 66 7.21 10.39 0.01 1.43 2.47 9.60 43.69

𝑚𝑒𝑎𝑛(Θ) 65 44.05 22.22 2.78 27.26 44.22 59.61 97.77

𝑠𝑑(Θ) 65 8.16 5.98 0.27 3.50 6.81 11.69 25.48

𝑚𝑒𝑎𝑛(𝑟𝑝𝑟𝑖𝑐𝑒) 66 -0.01 0.50 -1.17 -0.23 0.04 0.15 2.72

𝑠𝑑(𝑟𝑝𝑟𝑖𝑐𝑒) 66 6.76 3.05 3.89 5.53 6.25 6.80 23.88

Table 1 displays the summary statistics. In most analyses, we also aggregate the daily1

observations into weekly andmonthly data for discussions and robustness. Panel B shows2

there is a large dispersion in reward rate, staking participation, and price returns among3

tokens: the mean staking reward rate ranges from 0.02% to 75.39%, while the mean staking4

ratio ranges from 2.78% to 97.77%.5

5.2 Styled Facts About Staking and Token Pricing6

Aggregate trends. For base layers, the shift of focus away from PoW and onto the PoS7

consensus algorithms have been evident and timely.
32

The PoS share has increased sub-8

stantially over time from 5% in Oct. 2019 to over 20% in Oct. 2021. As of Oct. 2021, the9

PoS market cap is $326.775 Billion, up from $21.117 Billion a year ago. The annual growth10

rate reached 1,550%, while the overall crypto market cap is up by 673%. The entire staking11

economy has grown to over 4 million total users by the end of 2021.12

Staking rewards and token price returns. The study of stakable tokens is related to13

international finance. Token price and staking reward rate can be compared to exchange14

rates and interest rates. If we treat the U.S. dollar as a local currency, then the change of15

token prices (denominated in US dollar) is equivalently considered as the change in foreign16

exchange rates. Moreover, earning staking reward rates is akin to earning interest rates.17

Figure 5 illustrates a plot of the excess return in the next week against the interest rate18

32
According to 2021 Staking Ecosystem Report by StakingRewards.
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spread calculated as the “foreign interest rate” minus the “local interest rate.” Each blue1

circle in the figure indicates a weekly data point for a particular token and the grey line2

shows a fitted line. The observed upward slope implies that an increase in the foreign3

interest rate relative to the local one is associated with an increase in the excess return4

on the cryptocurrency over the local currency, i.e., the crypto version of “the UIP puzzle,”5

which we formally test and discuss in Section 6.3.6

Figure 5: Reward rate spread and token exchange rate.
This figure shows the relationship between the reward rate spread (interest rate spread) and the crypto-

token exchange rate (excess return). We treat the US dollar as local currency and the 1Y treasury interest

rate as the local interest rate. The data is from the Federal Reserve. Each point in the figure indicates a

weekly data point for a particular token. The staking reward rate (annualized) is treated as the foreign

interest rate, and the x-axis, the interest rate spread, is calculated as the foreign interest rate minus the local

interest rate. The y-axis is the excess return in the next week, including the interest rate spread and the

price appreciation. Panel A shows the whole sample set, whereas Panel B focuses on the sub-sample set

that limits the interest rate spread lies in a relatively common range (< 50%). The blue lines show linear

smoothing of the scatter points in two panels, respectively.

5.3 Hypothesis Formulation7

Our model generates a rich set of predictions and reveals mechanisms underlying cer-8

tain empirical regularities. However, tests on the model implications concerning onchain9

and offchain wealth distribution, expected steady states, etc., are limited by data availabil-10

ity. We collect data to test the three main sets of model predictions. The first concerns11

the determination of staking ratio. Proposition 2 implies that (H1a) A higher staking12

reward ratio 𝜌 corresponds to a higher staking ratio Θ. Proposition 5 suggests that13

heterogeneity also impacts equilibrium. In particular, (H1b) A higher share of large14

investors is associated with a higher staking ratio. In practice, it may take time to15

reach the cross-sectional equilibrium. Therefore, we expect: (H1c) A higher reward rate16

𝑟 predicts an increase in staking ratio in the short term.17
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Regarding token prices, Proposition 3 shows a positive predictability of staking ratio1

on price appreciation, i.e., (H2a) Staking ratio Θ positively predicts token returns.2

Finally, concerning crypto carry and interest rate parity, Proposition 4 shows: (H3a)3

Uncovered interest rate parity is violated among stakable tokens. Consequently,4

we expect: (H3b)Crypto carry trade strategies are profitable. Moreover, (H3c) Carry5

predicts excess return in tokens.6

6 Empirical Findings7

6.1 Linking Reward Rate and Wealth Concentration to Staking8

To test (H1a) empirically, we first calculate the daily average of aggregate staking9

reward ratio 𝜌 and staking ratio Θ for each token over its entire sample period. Figure10

6 plots the relationship between staking reward ratio and staking ratio, in which each11

token generates one scatter point. The grey dashed line shows the linear fit of the scat-12

tered observations. The positive slope indicates that the reward is positively related to13

the staking ratio.
33

This pattern corroborates Proposition 2, which also implicitly illus-14

trates that averaging over the time series roughly conforms to the equilibrium. We also15

visualize the relationship under earlier data coverage (up to Oct. 2020) as Panel B shows.16

Although there are fewer stakable tokens in the earlier period, the significant positive17

correlation between the staking ratio and staking reward ratio still exists, which suggests18

the relationship is robust in the sample period.19

We further test (H1a) in panel regressions (Table 2). We take the staking ratio, Θ𝑖,𝑡 ,20

as a dependent variable, and the staking reward ratio, 𝜌𝑖,𝑡 , as the main explanatory vari-21

able. As Column (1) shows, the value of estimation implies a 10-percentage-points higher22

aggregate reward ratio is associated with a 7.79-percentage-points higher staking ratio.23

After inducing time-varying platform controls and investment-related controls, the cor-24

responding estimates decrease to about 3.7 points yet still significant. Different sample25

periods and two-way fixed effects are considered. We cluster standard errors on both26

token and time dimensions together with the fixed effects, which deals with the poten-27

tial heterogeneity in the treatment effects as suggested by Petersen (2008); Abadie et al.28

(2017). The positive correlation between staking reward and staking ratio remains robust.29

33
After removing potential high-influential points (with mean staking reward ratio higher than 15%), the

resulting blue dashed line shows that the positive correlation still holds, with an even larger slope.
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Figure 6: Staking ratio versus staking reward.
This figure corresponds to (H1a), the relationship between staking ratio Θ𝑡 and staking reward ratio 𝜌𝑡 . In
Panel A, each token generates one point by calculating its mean Θ𝑡 and 𝜌 over the sample period. The size

and color of the points indicate the standard deviations of 𝜌 and Θ respectively. The gray dashed line is the

linear smoothing. The blue line is the smooth after removing the influential points with 𝜌 larger than 15%.
In Panel B, we do the same thing under earlier data coverage (up to Oct. 2020).

Recall that staking essentially acts as an inflation tax, i.e., facilitates redistribution from1

more usage-focused adopters to richer or investment-focused adopters. A larger staking2

reward ratio corresponds to a heavier tax and, forces lower usage preference.3

The time-varying token-specific controls bring alternative evidence for our theoret-4

ical framework. 𝑎𝑖,𝑡 is a proxy of platform productivity.
34

The model illustrates that the5

equilibrium staking ratio negatively relates to the platform productivity, 𝐴𝑡 , since it in-6

creases transaction convenience with certain staking rewards. The share of large asset7

users (big whales), whale𝑖,𝑡 , links to heterogeneity and Hypothesis (H1b), which will be8

discussed specifically later. Token age is a concern it usually relates to reward designs.9

We capture age effects by two dummies, NotLaunched𝑖,𝑡 and 𝑌 0
𝑖,𝑡 , which equal 1 when the10

token is in the stage before and within one year of launching on mainstream exchanges,11

respectively. Younger platforms may have not distributed tokens to many agents, thus12

should be associated with lower staking. Investment-related concerns are also controlled13

34
The platform productivity is captured by the average onchain transaction processing per second. In

practice, numerous platforms and blockchains aim to increase the transaction size of the flows processed on

their chains, reflecting the platform productivity. Meanwhile, it is also influenced by the overall transaction

needs, which means it does not necessarily to measure the hardware upper limits. However, both the

two forces are closely related to the concept of transaction convenience and fit our main use for inducing

platform productivity. Therefore, it is not necessary here to separate the two forces. Note that it may

not capture the whole progress of platform development, such as transaction security and performance on

specific financial services. It is beyond our scope to suggest an aggregated measurement.
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e.g., platform size. Table 2 also corroborates these views.1

Table 2: Staking ratio with respect to the staking reward ratio.
This table tests (H1a), i.e., the relationship between staking ratio, Θ𝑖,𝑡 , and the aggregate staking reward

ratio, 𝜌𝑖,𝑡 , in the same period. Controls are the token age, captured by two dummies, NotLaunched𝑖,𝑡 and
𝑌 0𝑖,𝑡 , which equal 1 when the token is before, and within one year of launching on mainstream exchanges,

respectively; the proxy of platform productivity, a𝑖,𝑡 ; the value share of tokens held by big-asset accounts,

Whale𝑖,𝑡 , the token market cap, and price volatility. Token and time effects are fixed. Sample sets with differ-

ent horizons (weekly and monthly) are tested. Standard errors clustered in both token and time dimensions

in parentheses.
∗∗∗

,
∗∗
,
∗
indicate statistical significance at the 1%, 5% and 10% respectively.

Dependent: StakingRatio𝑖,𝑡
(1) (2) (3) (4) (5) (6) (7) (8) (9)

7-Day 30-Day

𝜌𝑖,𝑡 0.779
∗∗∗

0.428
∗∗

0.429
∗∗

0.360
∗∗

0.374
∗∗

0.794
∗∗∗

0.439
∗∗∗

0.413
∗∗

0.431
∗∗

(0.190) (0.162) (0.161) (0.170) (0.173) (0.188) (0.155) (0.155) (0.173)

NotLaunched𝑖,𝑡 -0.076 -0.162
∗∗

-0.183
∗∗

-0.113
∗∗

-0.130
∗∗

(0.064) (0.063) (0.064) (0.053) (0.051)

𝑌 0𝑖,𝑡 0.004 -0.059 -0.073 -0.028 -0.042

(0.030) (0.047) (0.045) (0.038) (0.037)

a𝑖,𝑡 -0.747
∗∗∗

-0.417
∗∗

-0.623
∗∗∗

-0.415
∗∗∗

(0.158) (0.159) (0.143) (0.098)

1
100 log(Cap)𝑖,𝑡 1.686 1.991 1.124 1.582

(1.756) (1.719) (1.843) (1.809)

1
100Volatility𝑖,𝑡 0.236 0.328 1.590 0.965

(0.344) (0.397) (1.806) (1.459)

Whale𝑖,𝑡 0.217
∗∗∗

0.171
∗∗

(0.071) (0.075)

Token FE Yes Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes Yes

Observations 5,660 5,660 5,660 1,364 1,364 1,339 1,339 308 308

R
2

0.088 0.811 0.812 0.917 0.920 0.089 0.801 0.929 0.931

The previous test focuses on contemporaneous correlations in equilibrium. As (H1c)2

mentioned, it takes time to achieve equilibrium in practice, then the reward rate 𝑟 should3

predict future staking ratio Θ in short terms (transition process). Also, when agents face4

multiple tokens, the predictability could appear in the cross-section. Table 3 reports the5

tests for (H1c). We use the change in staking ratio, ΔΘ𝑖,𝑡 = Θ𝑖,𝑡 − Θ𝑖,𝑡−1, as the dependent6

variable, and the reward rate in the previous period, 𝑟𝑖,𝑡−1, as the main independent. Its7

estimated coefficients are all positive, implying that a larger reward rate predicts a positive8

change in staking ratio, e.g., column (6) shows that if the annual reward rate increases by9

one percentage point, then the overall staking ratio will increase by 0.026 percentage10

points in the following week. This can be a large effect considering the magnitude of the11

changes in the rewards rate in the staking economy and the size of the time window. The12

lag staking ratio is controlled to capture the potential diminishing marginal effects. Time-13
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varying platform controls are also considered, which do not exhibit significant influences.1

This is reasonable since the platform characteristics enter the equilibrium clearly, but2

their impact on the transition process could be complex. In addition, the statistical power3

of such predictability decreases as the time window expands. This is partly due to the4

aggregation of noise over a longer time period. More importantly, the longer periodmakes5

the predicted impact already reflected in the formation of new equilibrium.6

Table 3: Staking ratio with respect to the staking reward rate.
This table tests (H1c), i.e., how people’s staking choices are affected by the reward rate. The dependent

is the change of overall staking ratio, 𝛥StakingRatio𝑖,𝑡 , and the main independent is the reward rate in

the previous period, r𝑖,𝑡−1. Controls include: the token age, the proxy of previous platform productivity, the

previous percentage of tokens held by big-asset accounts that are similar in previous tables, and the previous

staking ratio, StakingRatio𝑖,𝑡−1 that capturing potential diminishing marginal effect. Token and time effects

are fixed. Sample set with different horizons (weekly and monthly) are tested. Standard errors clustered in

both token and time dimensions in parentheses.
∗∗∗

,
∗∗
,
∗
indicate statistical significance at the 1%, 5% and

10% respectively.

Dependent: ΔStakingRatio𝑖,𝑡
Daily 7-Day 30-Day

(1) (2) (3) (4) (5) (6) (7) (8) (9)

r𝑖,𝑡−1 0.002
∗∗∗

0.003
∗∗∗

0.001
∗∗

0.001
∗∗

0.002
∗

0.026
∗

0.030 0.049
∗∗

0.006

(0.000) (0.001) (0.001) (0.001) (0.001) (0.015) (0.024) (0.020) (0.019)

StakingRatio𝑖,𝑡−1 -0.009
∗∗∗

-0.009
∗∗∗

-0.016
∗∗∗

-0.103
∗∗∗

-0.294
∗∗∗

(0.002) (0.002) (0.004) (0.028) (0.057)

NotLaunched𝑖,𝑡 -0.001 -0.002
∗

-0.009 -0.029

(0.001) (0.001) (0.006) (0.021)

𝑌 0𝑖,𝑡 0.000 -0.001 -0.006 -0.012

(0.000) (0.001) (0.005) (0.016)

a𝑖,𝑡−1 0.005 0.018 0.046

(0.006) (0.047) (0.107)

Whale𝑖,𝑡−1 0.003 0.019 -0.002

(0.002) (0.011) (0.036)

Token FE Yes Yes Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 39,359 39,359 39,359 39,359 10,636 5,559 1,511 1,266 344

R
2

0.0006 0.043 0.049 0.049 0.172 0.063 0.197 0.124 0.322

Wealth concentration and aggregate staking. As Section 4 illustrates, agents are het-7

erogeneous in staking propensities. In particular, large-asset agents (whales) tend to stake8

more, implying that when the tokens are more concentrated in whales, the equilibrium9

staking ratio would be higher (H1b). We test this hypothesis in Columns (5) and (9) of10

Table 2, where the coefficients of whale𝑖,𝑡 are significantly positive. That is, concentration11

implies additional general tendencies to staking. Importantly, if staking benefits the plat-12

form in a fundamental way (such as enhanced network security), wealth concentration13
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may not be all bad — large stakeholders are more interested in becoming facilitators of1

the platform’s services than pure users. Agents, on the other hand, may have incentives2

to pursue larger usage benefits at the cost of more concentration, as discussed earlier.3

In practice, staking/voting pools for prominent platforms are often backed by large ex-4

changes and foundations, which is consistent.5

6.2 Equilibrium Staking Ratio and Token Price Dynamics6

Table 4 reveals the tests for (H2a), i.e., staking ratio positively predicts token price7

changes. We calculate the log token price change at time 𝑡 for token 𝑖, rprice𝑖,𝑡 = log( 𝑃𝑖,𝑡
𝑃𝑖,𝑡−1

),8

and regress it on the previous staking ratio. We consider the factors in the cryptocurrency9

market, including market and market value factors that have important impacts on price10

changes as discussed in Liu et al. (2019). The estimated coefficient of staking ratio is sig-11

nificantly positive, which implies that a higher staking ratio predicts larger token price12

appreciation. As column (4) shows, if the staking ratio of a token increases by one percent-13

age point, its price will appreciate by 0.066% in the next week. Considering there is often14

a large variation in the staking ratio, this effect can have a significant impact on price. The15

significant positive estimates also suggest that this effect is robust against different time16

windows. With the inclusion of more control variables that have been suggested to affect17

the token’s pricing in recent studies, staking ratio has incremental predictive power. The18

additional controls include platform controls (token age, productivity, and whale share)19

for possible predictable price appreciation from platform characteristics, the previous re-20

turns for the potential phenomenon of momentum, and the influence of onchain network21

activities, 𝛥Network𝑖,𝑡−1.35 To further consider the time-series auto-correlation, we adopt22

two-way fixed effects regression in columns (3), (6), and (9), where the estimated rolling23

CAPM 𝛽 captures the forces from market fluctuations. The estimated coefficients remain24

significant and positive with two-way clustered standard errors.25

Further discussion may lie in the differences in the predictive power of staking ratio26

across market sentiment, as well as among the roles played in platform development of27

staking. We test the same specification on multiple sub-samples, including bull and bear28

periods, pan-PoS and DeFi groups in Online Appendix OA3.6 and OA3.7. The estimated29

coefficients of Θ𝑖,𝑡−1 are all positive, among which only the bear-period sub-sample ex-30

35
It is the lagged log differences in the total amount of addresses with non-zero balance on the platform.

As Cong et al. (2021b) discusses, cryptocurrency returns exhibit network adoption premia. The estimated

coefficient of the network adoption term is positive and consistent with prior research.
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Table 4: Staking ratio and token prices.
This table tests (H2a), i.e. staking ratio predicts token price appreciation. The dependent 𝑟price𝑖,𝑡 is the log
price change. The main independent is the staking ratio of the previous period, StakingRatio𝑖,𝑡−1. Con-

trols include the market return 𝑀𝐾𝑇𝑡 , the log market cap log(Cap)𝑖,𝑡−1, the proxy of network adoption

𝛥Network𝑖,𝑡−1, the price return of the previous period 𝑟price𝑖,𝑡−1, and rolling CAPM beta, 𝛽𝑖,𝑡 . Token charac-

teristic controls include the token age, platform productivity, and the previous percentage of tokens held

by big-asset accounts that are similar to previous tables. We also do the test in different horizons and with

token-specific and time fixed effects. Standard errors clustered in both token-specific and time dimensions

in parentheses.
∗∗∗

,
∗∗
,
∗
indicate statistical significance at the 1%, 5% and 10% respectively.

Dependent: 𝑟price𝑖,𝑡
Daily 7-Day 30-Day

(1) (2) (3) (4) (5) (6) (7) (8) (9)

StakingRatio𝑖,𝑡−1 0.009
∗∗

0.027
∗∗∗

0.022
∗∗

0.066
∗∗∗

0.172
∗∗

0.138
∗

0.208
∗

0.347
∗

0.372
∗∗

(0.004) (0.007) (0.008) (0.023) (0.068) (0.071) (0.121) (0.197) (0.139)

𝑀𝐾𝑇 𝑡 0.968
∗∗∗

1.029
∗∗∗

0.844
∗∗∗

0.685
∗

2.445
∗

2.201

(0.031) (0.043) (0.264) (0.352) (1.435) (1.496)

𝛽𝑖,𝑡 -0.002 -0.037 -0.132

(0.002) (0.031) (0.104)

log(Cap)𝑖,𝑡−1 -0.002
∗∗∗

-0.002
∗∗

-0.005
∗∗∗

-0.027
∗∗∗

-0.031
∗∗∗

-0.038
∗∗∗

-0.120
∗∗∗

-0.121
∗∗∗

-0.113
∗∗∗

(0.000) (0.001) (0.001) (0.006) (0.009) (0.009) (0.034) (0.043) (0.021)

𝑟price𝑖,𝑡−1 0.021 0.035 0.008 -0.075
∗

0.127
∗

-0.076

(0.050) (0.060) (0.040) (0.042) (0.062) (0.074)

𝛥Network𝑖,𝑡−1 0.167
∗∗∗

0.224
∗∗∗

0.195 0.366 0.992 0.996

(0.058) (0.068) (0.207) (0.259) (1.393) (1.216)

a𝑖,𝑡−1 0.047 0.069 0.603
∗∗

0.306 1.007 0.614

(0.030) (0.041) (0.258) (0.235) (0.825) (0.946)

Whale𝑖,𝑡−1 -0.010 -0.013 -0.006 -0.103 -0.179 -0.253

(0.009) (0.009) (0.086) (0.073) (0.341) (0.201)

NotLaunched𝑖,𝑡 -0.003 0.011
∗∗∗

0.075
∗∗∗

0.108
∗∗

0.119 0.159

(0.002) (0.004) (0.024) (0.040) (0.154) (0.126)

𝑌 0𝑖,𝑡 0.002 0.007
∗∗

0.021 0.056
∗∗

-0.073 0.114

(0.002) (0.003) (0.021) (0.020) (0.084) (0.107)

Token FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes

Observations 41,544 10,887 9,991 5,872 1,530 1,434 1,347 334 322

R
2

0.267 0.346 0.478 0.043 0.054 0.507 0.120 0.207 0.640

hibits lower statistical significance. This suggests the positive relationship between stak-1

ing ratio and price appreciation to be a generally existing phenomenon in our sample. As2

applications to such predictability, we also discuss the portfolio performance sorted by3

staking ratio in Online Appendix OA3.8.4

6.3 UIP Violation and Crypto Carry5

UIP violation. We test Hypothesis (H3a), i.e., whether UIP is violated, using the regres-6

sion specification in Fama (1984): let the excess return 𝜆𝑖,𝑡 = log 𝑃𝑖,𝑡+1−log 𝑃𝑖,𝑡+(𝑟𝑖,𝑡−𝑐𝑖,𝑡)−𝑟
𝑓
𝑡 ,7

𝑖 represents token 𝑖, and regress 𝜆𝑖,𝑡+1 on 𝑟
𝑓
𝑡 − 𝑟𝑖,𝑡 + 𝑐𝑖,𝑡 with coefficient 𝐵, where 𝑃𝑡 is the8

price denominated in local currency, 𝑟 𝑓 is the local interest. Under UIP, 𝐵 = 0, i.e. the ex-9
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cess return is not forecastable by current interest rate differences. We examine different1

time horizons as Valchev (2020) does, and use different assets as local, including US dol-2

lar, Bitcoin, Ethereum and stakable ETH 2.0. Table 5 reports the findings.
36
All the results3

show significantly negative estimated 𝐵. Moreover, 𝐵 < 0 and is close to −1, implying4

that a higher interest rate will predict a positive appreciation of the exchange rate. This5

leads to potential arbitrage opportunities. We also use each single token as local currency,6

respectively. The regression results (reported in Online Appendix OA3.9) all violate the7

UIP, i.e., the phenomenon also exists within the token market.8

Table 5: Test of UIP violation.
This table tests (H3a), i.e., the panel regression results of UIP test. In each row, we use a different asset as

local currency and report the estimated coefficients of 𝐵 with different data horizons. Estimated coefficients

of 𝐵 and the corresponding robust standard errors clustered by tokens are reported.

Local Horizon: 7-day Horizon: 30-day

Currency Coef., 𝐵 Std. Err. 𝑅2
Coef., 𝐵 Std. Err. 𝑅2

US Dollar −1.02 (0.044) 0.33 −1.12 (0.176) 0.11
Bitcoin −1.02 (0.034) 0.37 −1.08 (0.134) 0.11
Ethereum −1.04 (0.033) 0.37 −1.09 (0.126) 0.12
Eth 2.0 −1.04 (0.014) 0.42 −1.25 (0.059) 0.17

UIP violations naturally prompt us to examine the predictability of crypto carry to9

token excess return and the performance of the crypto carry trade portfolio.10

Crypto carry trades. We test the performance of carry-trade strategies (H3b). Tokens11

in the asset pool are ordered by their carry in the previous period, and then divided into12

the top 𝑋% of assets, the bottom 𝑋% and the middle group. Then we construct a carry13

trade portfolio by going long high carry group with equal weight and going short low14

with equal weight at the end of each week. For long tokens, we also stake them to earn15

staking reward rate, while for the short assets, we also compensate for the staking reward16

rate. The portfolio is rebalanced every week.
37

The performance of such crypto carry17

trade mainly measures the cross-sectional effect. Since we long high carry and short18

36
While in practice, there are various ways to stake (e.g., delegating and running a node), which corre-

sponds to different reward rates and costs, the staking programs mostly feature delegation/voting (that our

data correspond to), which incurs negligible operational costs. We therefore normalize 𝑐{𝑖,𝑡} for all tokens to
a constant (we use zero because only their relative magnitude matters).

37
The choice of 𝑋 does not affect our observation of the main characteristics of the carry trade portfolio.

We also assume that the staking rules allow a one-week stake period. Most stakable tokens do offer such

flexible staking options, and our data for reward rates are also selected in the corresponding options. For

some rare exceptions, we can assume the existence of some derivatives that would enable such an asset

allocation. Such derivatives are gradually appearing in practice. Considering the abnormal fluctuation of

token price and staking ratio when a staking project is first launched, our weekly asset pool does not include

new staking projects that come out within a week.
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low carry, the portfolio carry is always positive. If the portfolio always achieves positive1

returns, it means that in the cross-section, assets with higher carry have greater aggregate2

returns. We also report related strategies for comparison: (i) hold the same portfolio but3

without stake (and not compensate for staking); (ii) apply the same strategy but adjust4

the portfolio every month; (iii) Considering the potential short-selling limits, examine the5

average return of equal-weighted full-sample / (top 50%) high-carry / low-carry tokens.6

Table 6 reports the statistics of these strategies. The carry strategy has a significantly7

greater positive return and yields a Sharpe ratio of 1.60. For higher moments, the strong8

positive skewness is associated with the currency carry trade shown by Brunnermeier9

et al. (2008). Moreover, the carry strategy exhibits excess kurtosis, indicating fat-tailed10

positive and negative returns, which is consistent with Koijen et al. (2018)’s findings for11

currencies and commodities. The long-short carry trade strategy exhibits relatively stable12

returns, especially considering the high volatility of cryptocurrencymarkets and the circle13

of bulls and bears during 2020-2022. The non-staking strategy also yields positive returns,14

implying that the carry strategy earns excess returns not only from carry (staking reward)15

but also from price appreciation. Moreover, the monthly-rebalanced strategy exhibits16

fewer returns. There are two potential explanations. (i), the reward rate decreases with17

contemporaneous staking ratio mechanically. Therefore, investors cannot consistently18

earn high carry over a long period without timely position adjustments. (ii), the reversal19

of reward rate further influences the staking ratio, which then weakens the effect on price20

appreciation. In addition, long-only strategies corroborate the carry premia: longing top21

50% tokens with high carry still outperforms the simple equal-weighted benchmark, while22

the bottom 50% performs the worst. Their cumulative returns are also plotted in Figure23

OA3.9, ensuring the above observations.24

Excess return predicted by carry. In (H3c), the return predictability can come from25

both the crypto carry itself and any price appreciation that is related to or predicted by26

carry. We follow Koijen et al. (2018) to regress the overall excess return on the previous27

carry. Table 7 reports the estimations of the coefficient of carry, 𝐶. The results in Table28

7 imply that carry is a strong predictor of expected return. In Columns (1) and (3), with-29

out crypto specific fixed effect, the estimated coefficient is around 1, which means that30

high staking reward rate tokens neither depreciate nor appreciate on average.
38

Hence,31

38
If the expected return moves one for one with carry, 𝐶 = 1; if the total return is unpredictable, 𝐶 = 0.
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Table 6: Statistics of carry strategies.
This table corresponds to (H3b) and reports the statistics of carry trade strategies. The first three rows

report the results of the long-short carry strategies. The rows below report long strategies. Annualized

mean, standard deviations, skewness, kurtosis, maximum drawdown (MDD), and Sharpe ratio are reported.

Strategy Mean St.dev. Skewness Kurtosis MDD Sharpe Ratio

(Annual, %) (Annual, %) (%) (Annual)

Long-short Strategy:
1W-Carry Trade (Staking) 65.820 41.095 1.410 18.772 29.966 1.602
1W-Carry Trade (Non-staking) 52.497 41.104 1.404 18.719 35.920 1.277
1M-Carry Trade (Staking) 45.051 56.929 1.260 20.508 69.497 0.791

Long Strategy:
EW All assets 15.577 78.244 −1.576 7.672 92.934 0.199
EW High Carry 49.416 81.309 −1.103 4.687 90.419 0.608
EW Low Carry −16.404 80.444 −1.804 9.907 95.645 −0.204

investors can earn reward rate differential using carry trade (e.g., Koijen et al., 2018).1

Table 7: Carry and excess returns.
This table tests (H3c). The dependent variable is the excess return, and the independent variableis the

carry in the previous period. Standard errors that clustered in both token-specific and time dimensions in

parentheses.
∗∗∗

,
∗∗
,
∗
indicate statistical significance at the 1%, 5% and 10% respectively.

Dependent: ExcessReturn𝑖,𝑡
7-Day 30-Day

(1) (2) (3) (4) (5) (6) (7) (8)

Carry𝑖,𝑡−1 0.956
∗∗∗

0.901
∗∗∗

0.968
∗∗∗

0.917
∗∗∗

0.968
∗∗∗

0.773 1.009
∗∗∗

0.846
∗∗

(0.053) (0.095) (0.042) (0.071) (0.296) (0.534) (0.216) (0.383)

Token FE Yes Yes Yes Yes

Time FE Yes Yes Yes Yes

Observations 5,745 5,745 5,745 5,745 1,301 1,301 1,301 1,301

R
2

0.230 0.239 0.441 0.447 0.038 0.094 0.333 0.374

Once the token-fixed-effect is added, the estimated 𝐶 is less than 1 and even insignif-2

icant, especially when the time window expands.
39

The time series carry predicts less3

expected return:
40

Despite a high reward rate leads to a high staking ratio, and thus a4

higher price appreciation, there is a downward adjustment effect of the reward rate in the5

time series. As the sum of carry (approximately equal to the reward rate) and the price6

appreciation, the excess return is then influenced by the adjustment. Comparing the re-7

sults of weekly data with those of 30-day data, the downward adjustment effect is also8

magnified when the time window becomes larger, and thus the estimated 𝐶 decreases.9

39
Without token-specific and time-fixed effects, 𝐶 represents the total predictability of returns from carry

from both its passive and dynamic components. Token fixed effects will remove the predictable return com-

ponent of carry that comes from passive exposure to tokens with different unconditional average returns.

40
This phenomenon is similarly found in commodities (Koijen et al., 2018): when a commodity has a high

spot price relative to its futures price, implying a high carry, the spot price tends to depreciate on average,

thus lowering the realized return on average below the carry.
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7 Conclusion1

Staking has become a hallmark feature in many distributed networks involving hun-2

dreds of billions of dollars. In addition to offering a convenience yield for transactions,3

blockchain-based tokens are frequently staked for base-layer consensus generation or for4

incentivizing economic activities in DeFi protocols and platform development, and con-5

sequently earn staker’s rewards. We build the first dynamic model of a token-based econ-6

omy where agents endogenously allocate wealth on and off a digital platform and use7

tokens either to earn rewards or to transact. We solve this mean-field game with stochas-8

tic controls and systematic shocks, and identify staking ratio as a fundamental variable9

linking staking to the endogenous reward rate and token price. The staking ratio is pro-10

portional to the reward rates in the cross-section but negatively correlated to reward rates11

in the time series; it positively predicts the returns of cryptocurrencies. Furthermore, the12

model rationalizes violations of the uncovered interest rate parity, and the significant13

crypto carry premia that we empirically document.14

The framework can be explored further for studying the utilities of platform tokens.15

For example, DeFi projects increasingly lock up both native and non-native tokens. Al-16

lowing multiple tokens to be used within a network may cause the payment utility of17

native tokens to decline. But stable tokens entitle the holders to instead collect rewards18

(fees and subsidies), while providing functionalities such as security or liquidity for the19

networks. Given that many platforms use staking to foster adoption and demand, pti-20

mally designing the various utilities of tokens and understanding their implications on21

token prices constitute interesting future research. Similarly, it remains an open question22

how to jointly design token supply policy and staking protocols, especially with multiple23

types of tokens.24

Appendix
Proof of Proposition 1. The marginal utility of staked and non-staked tokens are

𝑀𝑈𝑙 = 𝑀𝑈𝑜 + (𝑟𝑡 − 𝑐𝑡)
𝜕𝐽
𝜕𝑤

,𝑀𝑈𝑥 = 𝑀𝑈𝑜 + (1 − 𝛼)(
𝑁𝑡𝐴𝑡𝑈𝑡
𝑥𝑡 )

𝛼 𝜕𝐽
𝜕𝑤

, (A.1)

where 𝑀𝑈𝑜 = (𝜇𝑡 + 𝜕Ψ
𝜕𝑛𝑡
) 𝜕𝐽𝜕𝑤 + 𝑞𝑡𝜎2

𝑡
𝜕2𝐽
𝜕𝑤2 , 𝑞𝑡 = 𝑥𝑡 + 𝑙𝑡 . is the common part of 𝑀𝑈𝑙 and 𝑀𝑈𝑥 .

Note that 𝑀𝑈𝑙 − 𝑀𝑈𝑜 stays the same in 𝑙, while 𝑀𝑈𝑥 − 𝑀𝑈𝑜 decreases in 𝑥 . Thus, when
treat 𝑞𝑡 , is given, there exists at most a unique 𝑥̃𝑡 ≤ 𝑞𝑡 that satisfies 𝑀𝑈𝑙 = 𝑀𝑈𝑥 , i.e.,
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𝑥̃𝑡 = ( 1−𝛼
𝑟𝑡−𝑐𝑡 )

1
𝛼 𝑁𝑡𝐴𝑡𝑈𝑡 .41 Substitute (10) and note the boundaries, then (1) is obtained.

Proof of Proposition 2. When there is an inner point solution of individual staking

ratio, the on-chain allocation is already in optimal, i.e., 𝑀𝑈𝑙 = 𝑀𝑈𝑥 , Then the marginal

onchain utility in optimal reads𝑀𝑈𝑞 = (𝜇+𝑟 −𝑐+𝜕𝑛Ψ)𝜕𝑤𝐽 +𝑞𝜎2𝜕𝑤𝑤𝐽 , where the subscript
of time 𝑡 is omitted. By risk aversion and the definition of Ψ𝑡 , 𝑀𝑈𝑞 decreases in 𝑞. Note
that under a risk-aversion setting, when 𝑞 → ∞, 𝑀𝑈𝑞 → −∞. Thus, there exists a unique

𝑞∗ ≥ 0 that satisfies the first-order condition, 𝑀𝑈𝑞 = 0, if 𝑀𝑈𝑞(𝑞 = 0) ≥ 0. Otherwise,
𝑞∗ = 0.42 Consider the case when 𝑞 = 𝑥 . Similarly, the marginal transaction convenience

is decreasing, leading to decreasing 𝑀𝑈𝑞 and a unique solution to the F.O.C.

In equilibrium, ∫𝑖 𝑥
∗
𝑖 d𝑖 = ( 1−𝛼

𝑟𝑡−𝑐𝑡 )
1
𝛼 𝑁𝑡𝐴𝑡 ∫𝑖 𝑈𝑖𝑡d𝑖 = ( 1−𝛼

𝑟𝑡−𝑐𝑡 )
1
𝛼 𝑁𝑡𝐴𝑡𝑈𝑡 .43 Then Θ∗ = 1 −

( 1−𝛼
𝑟𝑡−𝑐𝑡 )

1
𝛼 𝑁𝑡𝐴𝑡𝑈𝑡

𝑞∗𝑡
≡ Θ∗(𝑟𝑡). 𝑟∗𝑡 fits (11). Substituting into agents’ optimization, we obtain

0 = (1 − 𝛼) [
𝑁𝑡(Θ∗

𝑡 )𝐴𝑡𝑈𝑡
𝑞∗𝑡 (1 − Θ∗

𝑡 ) ]

𝛼

−
𝜌
Θ∗ + 𝑐𝑡 ≡ ℎ1(Θ∗(𝜌))𝑞∗(𝜌)−𝛼 − ℎ2(𝜌). (A.2)

The notations above indicate the fact that both Θ∗
and 𝑞∗ are affected by the reward ratio

𝜌 given 𝐴 and 𝑤.

Θ′(𝜌) =
Θ∗ + Θ∗2𝛼ℎ1(Θ∗(𝜌))𝑞∗(𝜌)−𝛼−1𝑞∗′(𝜌)

Θ∗2ℎ′1(Θ∗(𝜌))𝑞∗(𝜌)−𝛼 + 𝜌
, (A.3)

where the denominator is positive. Consider 𝑞∗′. 𝜕𝑀𝑈𝑞
𝜕𝜌 = (1 − Θ)𝜕𝑤𝐽 + 𝜎2𝜕𝑤𝑤𝐽 𝑞∗′(𝜌).

Suppose there is an 𝜌, s.t. 𝑞∗′(𝜌) < 0. Under risk-aversion, 𝜕𝑤𝑤𝐽 < 0 and thus
𝜕𝑀𝑈𝑞
𝜕𝜌 > 0

for all 𝑞. Since 𝑞∗ is the solution of F.O.C., 𝑞∗′(𝜌) > 0, leading to contradiction. Back to

(A.3), we obtain Θ′(𝜌) > 0. Thus if there is a Θ(𝜌) satisfies (A.2), it must be unique. For

existence: the first term on the R.H.S. of (A.2) tends to infinite when Θ → 1, thus the
R.H.S. must be positive. Θ → 0, 𝑁𝑡 tends to zero and thus the R.H.S. must be negative.

Proof of Proposition 3. Substituting the derivatives w.r.t. 𝑉 (𝐴𝑡) into (20), we obtain

0 = 𝑉 ′(𝐴𝑡)𝐴𝑡𝜇𝐴(Θ𝑡) + [𝑟(Θ𝑡) − 𝑐𝑡 − 𝐸(Θ𝑡 , 𝐴𝑡) + Ψ𝑛(𝐴𝑡)] 𝑉 (𝐴𝑡) − [𝜎𝑆𝑉 (𝐴𝑡)]2. (A.4)

Then, we show that under current specific forms assumed in Section 3.2, 𝐼 and Θ𝑡 are

both at most functions of 𝐴𝑡 and 𝑉 (𝐴𝑡), but do not contain any derivatives of 𝐴𝑡 . Precisely,

41
The only case where such 𝑥̃𝑡 does not exist is that 𝑀𝑈𝑙 ≤ 𝑀𝑈𝑥 even when 𝑙𝑡 = 0. Then, the individual

staking ratio is zero. The entry cost in (3) avoids the case where 𝑙 and 𝑥 both tend to zero.

42
Note that 𝑞∗ could be larger than individual wealth since self-financing is allowed.

43
We focus on the inner case, since the corner solution leads to a trivial equilibriumofΘ∗ = 0 andΘ∗′(𝜌) =

0. The integral seems unnecessary under a representative-agent setting; it, however, helps understand the

aggregation of on-chain tradable allocation in the general case with heterogeneity. Also note that ∫𝑖 𝑈𝑖𝑡d𝑖
equals to 𝑈𝑡 since agents are homogeneous and in a unit measure.
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Ψ𝑡 = 𝜓(𝐴𝑡)(𝑤𝑡 − 𝑛𝑡). From the first-order derivatives of the HJB equation, we obtain

𝜕𝑤𝐽 =  ′(𝑦𝑡) = 1
𝑦𝑡
. Agents with log-utilities face changing investment opportunities, 𝐼 =

−𝜕𝑤𝑤𝐽 /𝜕𝑤𝐽 = 1
𝑤𝑡
, and the on/off-chain allocation is linear in agent’s wealth.

44
Meanwhile,

(16) implies that Θ𝑡 satisfies 𝜌(Θ𝑡 , 𝐴𝑡) = Θ𝑡

{
(1 − 𝛼) [

𝑁(Θ𝑡 )𝐴𝑡𝑈𝑡
𝑉 (𝐴𝑡 )(1−Θ𝑡 )]

𝛼
+ 𝑐𝑡

}
and thus uniquely

exists as a function of 𝐴𝑡 and 𝑉 (𝐴𝑡) without any derivatives. Therefore, we obtain (21). It

follows the form 𝑉 ′(𝐴) = 𝐹(𝐴, 𝑉 (𝐴)), where 𝐹 is continuously differentiable. Therefore,

the ODE has a unique solution given the boundary condition.

Proof of Proposition 4. Rearrange the formula of 𝑀𝑈𝑞 to obtain (4).

Proof of Proposition 5. Similar to previous proofs, there exists a unique 𝑥̃𝑖,𝑡 s.t. 𝑀𝑈𝑙 =
𝑀𝑈𝑥 .45 Based on the proof of Proposition 2, we denote the unique solution of 𝑀𝑈𝑞 = 0
as 𝑞∗𝑖,𝑡 . Agents may vary in trade-offs between convenience benefits and the fixed entry

cost 𝜑. When 𝑥̃𝑖,𝑡 < 𝑞∗𝑖,𝑡 , (3) yields d𝑣(𝑥̃) = [(
1−𝛼
𝑟𝑡−𝑐𝑡 )

1−𝛼
𝛼 𝑁𝑡𝐴𝑡𝑈(𝑢𝑖,𝑡 , 𝑤𝑖,𝑡) − 𝜑] d𝑡. Only when

𝑈(𝑢𝑖,𝑡 , 𝑤𝑖,𝑡) are large enough s.t. d𝑣𝑡 > 0, i.e., 𝑈𝑡 > 𝜑
𝑁𝐴 (

𝑟−𝑐
1−𝛼)

1−𝛼
𝛼 ≡ 𝑈0, transaction is applica-

ble. Otherwise, the optimal 𝜃𝑖𝑡 is always 1. Then (26) is obtained.
46

Proof of Proposition 6.

Lemma 1. The penalty function. The penalty function 𝑣(𝑤) satisfies

𝑣(𝑤) = −∫
𝛿𝐽 (𝑤, 𝑤′, 𝑚)

𝛿𝑚
𝜕𝑔(𝑤′)𝑚(𝑤′)

𝜕𝑤′ d𝑤′. (A.5)

Proof. Treat 𝐽𝑡 as 𝐽 (⋅, 𝑚𝑡), and use Itô’s Lemma, d𝐽𝑡 = ⟨ 𝛿𝐽𝛿𝑚 , d𝑚𝑡⟩ + 1
2⟨d𝑚𝑡 | 𝛿

2𝐽
𝛿𝑚2 |d𝑚𝑡⟩.

(A.5) always holds even the non-stationary states. Consider the value function.

Lemma 2. With log utility, the value function 𝐽 is separable: 𝐽 = log(𝑤)
𝜙 + 𝐹(𝑚, 𝐴), where 𝐹

satisfies ∀𝑤, 𝑤′, ∀𝑤′′, 𝛿𝐹
𝛿𝑚(𝑤, 𝑤

′′, 𝑚, 𝐴) = 𝛿𝐹
𝛿𝑚(𝑤

′, 𝑤′′, 𝑚, 𝐴) ≡ 𝐹(𝑤′′, 𝑚, 𝐴).

Proof. Consider 𝐽 (𝑤, 𝑚, 𝐴) = 𝑏 log(𝑤) + 𝐹(𝑚, 𝐴) as a trial form. Then the optimal 𝑦 =
1/𝜕𝑤𝐽 = 𝑤

𝑏 . 𝑞 =
𝜇+𝑟−𝑐+Ψ𝑛

𝜎2 𝑤 ≡ 𝑘1
𝜎2𝑤, where 𝑘1 could be a functional of𝑚 and 𝐴, but definitely

44
Proof of Proposition 6 precisely proves this in a more general (heterogeneous) setting. The general

solution can be found in Merton (1971) and Duffie (2010). Because the main results do not depend on risk-

aversion, we assume log utility for simplicity. For general utilities such as HARA, agents have extra terms

to hedge the changes of investment opportunity. The numerical approach still applies.

45
Note that 𝑥̃ reflects the trade-off threshold of switching to staking, while both the two on-chain alloca-

tions need to satisfy 𝑀𝑈𝑞 ≥ 0. 𝑥̃𝑖,𝑡 = ( 1−𝛼
𝑟𝑡−𝑐𝑡 )

1
𝛼 𝑁𝑡𝐴𝑡𝑈(𝑢𝑖,𝑡 , 𝑤𝑖,𝑡).

46
Similarly, other implications with heterogeneity are proved in Online Appendix OA3.3. In brief, the

key observation is that heterogeneity changes the proofs by entering 𝑚, while the overall variables are

integrated values over𝑚, then the monotonicity of the staking ratio precludes a great deal of concern about

uniqueness.
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does not involve 𝑤, since the endogenous variables, 𝜇 and 𝑟 , are determined by the whole

crowd rather than any atomic agent. 𝑥 = ( 1−𝛼
𝑟−𝑐 )

1
𝛼 𝑁𝐴𝑢𝑖𝑤. Substituting these optimal

controls and the derivatives of 𝐽 into the HJB equation, we obtain

𝜙𝑏 log(𝑤) + 𝜙𝐹 = log(𝑤) − log(𝑏) + 𝑓 (𝑤)
𝑏
𝑤

−
1
2
𝑔(𝑤)2

𝑏
𝑤2 + 𝜇𝐴𝐴𝜕𝐴𝐹

+
𝜕
𝜕𝑤 (𝑔(𝑤) ∫

𝛿𝐹
𝛿𝑚

(𝑤, 𝑤′, 𝑚)
𝜕𝑔(𝑤′)𝑚(𝑤′)

𝜕𝑤′ d𝑤′
) ,

(A.6)

where 𝑔(𝑤) = 𝑘21
𝜎 𝑤, 𝑓 (𝑤) =

𝑘21
𝜎2𝑤−

𝑤
𝑏 +𝛼 (

1−𝛼
𝑟−𝑐 )

1−𝛼
𝛼 𝑁𝐴𝑢𝑖𝑤 ≡ ( 𝑘

2
1
𝜎2−

1
𝑏+𝑘2𝑖)𝑤. By the property of

𝐹 , the last term can be rearranged as
𝑘1
𝜎 𝐹(𝑚, 𝐴). Since (A.6) holds for all 𝑤, the coefficient

of log(𝑤) should be zero, 𝑏 = 1
𝜙 and satisfies the supposed form of 𝑏. Then

𝜙𝐹 = log(𝜙) +
𝑘21

2𝜙𝜎2 − 1 +
𝑘2𝑖
𝜙

+ 𝜇𝐴𝐴𝜕𝐴𝐹 +
𝑘1𝐹
𝜎
, (A.7)

indicating that 𝐹 does not involve 𝑤,47 i.e., the separable trial form is indeed valid.

With the lemmas in hand, we consider the steady-state law of motion,

0 = 𝐿∗(𝑤)[𝑚] = −
𝜕
𝜕𝑤 (

̂𝑓(𝑤,𝑚)𝑚𝑡(𝑤)) +
𝜕2

𝜕𝑤2 (
1
2
𝑔2(𝑤, 𝑚)𝑚𝑡(𝑤)) , (A.8)

where
̂𝑓(𝑤,𝑚) is the average 𝑓𝑖 among different types 𝑢𝑖,𝑡 whose wealth 𝑤𝑖 equals to 𝑤:

̂𝑓(𝑤,𝑚) = 𝔼[𝑓𝑖(𝑤𝑖, 𝑚)|𝑤𝑖 = 𝑤] = (
𝑘21
𝜎2 −

1
𝑏
+ 𝔼(𝑘2𝑖))𝑤 = (

𝑘21
𝜎2 −

1
𝑏
+ 𝑘2𝑤𝛽−1)𝑤, (A.9)

where 𝑘2 = 𝛼 ( 1−𝛼
𝑟−𝑐 )

1−𝛼
𝛼 𝑁𝐴𝑢̄. Rearrange the law of motion (A.8), we obtain

(
𝑘21
𝜎2 − 𝜙)

𝜕
𝜕𝑤

[𝑤𝑚(𝑤)] + 𝑘2
𝜕
𝜕𝑤

[𝑤𝛽𝑚(𝑤)] =
𝑘21
2𝜎2

𝜕2

𝜕𝑤2 [𝑤
2𝑚(𝑤)]. (A.10)

Let ℎ(𝑤) = 𝑤2𝑚(𝑤). We obtain a 2nd-order ODE w.r.t. ℎ (let 𝑎1 = 2 − 2𝜙𝜎2
𝑘21
, 𝑎2 = 2𝑘2𝜎2

𝑘21
):

ℎ′′(𝑤) = 𝑎1
ℎ′(𝑤)𝑤 − ℎ(𝑤)

𝑤2 + 𝑎2
ℎ′(𝑤)𝑤 − (2 − 𝛽)ℎ(𝑤)

𝑤3−𝛽 . (A.11)

Solve this ODE and note𝑚 is a p.d.f. with bounded integral, we obtain ℎ and further (27).
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Online Appendices for “The Tokenomics of Staking”
OA1 Institutional Background of Staking
OA1.1 Staking Mechanisms

Blockchain-based staking in general involves two broad categories of activities: those related to pan-PoS

consensus protocols and those in higher layer DeFi applications.
48

Even on non-blockchain-based or centralized

platforms, various programs that involve escrows or crowd funds can be analyzed as a form of business layer

staking through the lens of our framework. Fundamentally, a blockchain functions to generate a relatively de-

centralized consensus record of system states to facilitate economic interactions such as value or information

exchanges (e.g., Cong and He, 2019). PoS protocols have gained popularity and momentum with major market

players such as Ethereum adopting them. Under PoS, agents stake native tokens to compete for the opportunity

to record transactions, execute smart contracts, append blocks, etc., to earn block rewards and fees. Meanwhile,

various staking programs have become popular means to encourage desirable behavior in higher layer appli-

cations, escrowing a balance of tokens under custody in a smart contract, or deploy them to enable network

economic functionalities.

Consensus generation in PoS. Fundamentally, blockchain functions to generate a relatively decentralized con-

sensus to enable economic interactions such as value or information exchanges (e.g., Cong and He, 2019). Permis-

sionless blockchains have historically relied on variants of the PoW protocol. Because of scalability and environ-

mental issues of PoW (Cong et al., 2021a; John et al., 2020), PoS protocols have gained popularity and momentum

for both permissioned and permissionless blockchains, with major market players adopting and incumbents such

as Ethereum contemplating a conversion (Irresberger et al., 2021).

Under PoS, agents who stake native tokens have the opportunity to append blocks and earn block rewards

and fees as compensation. The more one stakes, the more likely one is to be selected and compensated for

their participation (Saleh, 2021, contains more details). Note that holding a token does not necessarily mean

participating in staking. In practice, agents incur negligible physical costs (as opposed to the high entry cost of

PoW mining or directly maintaining a node in PoS). Our study includes all protocols using pan-PoS protocols,

such as Proof-of-Credit (POC) used in Nuls, which are variants of the abovemechanisms. Online Appendix OA1.2

provides more background information and examples in practice.

Staking in DeFi. Staking programs are a popular means for incentivizing desirable behavior and guarding

against misbehavior in DeFi applications. It escrows a balance of tokens under custody in a smart contract and

stakers receive rewards similar to interest payments from their tokens staked (Harvey et al., 2021). Synthetix is

an example of an open-source DeFi protocol with staking where users can create and trade derivative tokens and

gain exposure to assets like gold, bitcoin, and euros without having to actually own them. These derivative assets

are collateralized by the platform tokens (SNX) which, when locked in the contracts, enables their issuance. In

return, SNX stakers earn rewards from both newly issued tokens and small fees transactions generate.
49

Another

salient form of staking is yield farming, which allows investors to earn yield by temporarily locking tokens in a

decentralized application (dApps). Yield farming often entails shorter lock-up (some allows withdrawal at any

time), uncertain yields, and higher risks. (see, Augustin et al., 2022, for more institutional details).

Without getting bogged down with specific eligibility requirements and operational differences across vari-

ous DeFi protocols and smart contracts, DeFi staking can be characterized as simply earning rewards by collat-

eralizing the tokens for some functionalities in the network.

48
The two are not mutually exclusive. Solana, for example, uses both PoS and DeFi staking. The classification we use

follows mainstream cryptocurrency data aggregators such as CoinMarketCap.

49
DeFi staking may involve multiple tokens. For example, in MakerDAO, the profits generated from DAI can be viewed

as a yield on ETH staking, and our framework can be used to understand the price impact on ETH.

OA-1



Reward determination and slashing. In most staking programs, the total rewards used to incentivize staking

or its determination mechanism are pre-specified and announced. In PoS, the blockchain branch is randomly

selected from the whole staking pool. Then the staking reward is randomly distributed to stakeholders based on

the number of staked coins they hold as a probability weight.
50

Similarly, on DeFi platforms, stakers share the

rewards from transaction fees or predetermined emissions (minting of new tokens).

Staking reward rate can be naturally compared to interest rate or yield of other financial assets. However,

unlike deposit rates set by the banks, staking reward rate is jointly determined by the announced staking reward

and the aggregate tokens staked. Online Appendix OA1.2 details the staking programs for the tokens in our

sample. Stakers face the risk of losing the staked tokens due to possible security attacks, illegal verification,

and storage failures. To discourage the misbehavior of the validator, most projects also propose a punishment

mechanism known as slashing. A pre-defined percentage of a validator’s tokens are lost when it does not behave

consistently or as expected on the network (e.g., downtime and double signing).

Market and information. In PoS, validators compete in the amount of staking to earn rewards. To incentivize

more delegates, they develop a reward distribution plan at the node level. Potential delegates can freely choose

among these nodes or delegate through some intermediaries. Therefore, nodes engage in price competition for

delegated stakes. For DeFi platforms, staking reward rates are typically equal for participants, but some white-

listed groups may have priority in staking. Most stakable tokens are launched on mainstream cryptocurrency

exchanges. Investors can easily invest in these staking projects and trade these tokens with cryptocurrency assets

such as Bitcoin and Ethereum.

Information on staking programs, including participation rules, reward distribution plan, total staked value

(or total value locked, TVL, which includes non-native tokens), and even information of all the validators, are

open and can be easily obtained on official websites of projects. Third-party websites also specialize in collecting

real-time information on staking projects, e.g., Stakingrewards.com. In particular, the staking ratio, which captures
the total number of tokens staked as a fraction of the total number of tokens, is typically public knowledge.

OA1.2 Forms of Staking in Our Sample

PoS staking. Under PoS, agents who stake native tokens have opportunities to append blocks and earn block

rewards and fees as compensation. There are mainly two ways to participate. The first is to run a validator
node, staking pool, or masternode by holding native tokens and incurring the costs including hardware costs

and time spent on maintenance. The more one stakes, the more likely one is to be selected and compensated

for their participation(Saleh, 2021, contains more details). Note that holding a token does not necessarily mean

participating in staking. The second way is through delegation. Agents only need to delegate their tokens to an

existing node or a pool to receive a reward earned by the node/pool. This route is flexible and friendly for players

with fewer tokens and allows them to share risk (Cong et al., 2021a). In practice, agents incur negligible physical

costs (as opposed to the high entry cost of PoW mining or directly maintaining a node in PoS).

Solana is a concrete example of pan-PoS staking.
51

Solana is an open-source project that implements a new,

high performance, permissionless blockchain. It enables transactions to be ordered as they enter the network,

rather than by block, which makes Solana one of the fastest blockchains in the world and the rapidly growing

ecosystem in crypto, with thousands of projects spanning DeFi, NFTs, Web 3.0 and more. Solana uses Proof-

of-Stake (PoS) as its consensus mechanism. The performance is improved by its innovative protocol, Proof-

of-History (PoH). Solana’s Proof-of-Stake is designed to quickly confirm the current sequence of transactions

produced by the PoH generator, vote and select the next PoH generator, and punish misbehaving validators. A

50
For example, if an investor stakes 10 coins while the aggregate staked amount of this branch is 100, then the investor

has a 10% probability of appending to the branch and receiving the staking reward.

51
For references, see https://docs.solana.com, blockdaemon.com, and https://blockdaemon.com/

platform/validator-node/how-solana-staking-works/.
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block in the context of Solana is simply the term used to describe the sequence of entries that validators vote on to

achieve confirmation. Validators within Solana’s PoS consensus model are the entities responsible for confirming

if these entries are valid. SOL is the name of Solana’s native token, which can be passed to nodes in a Solana

cluster in exchange for running an on-chain program or validating its output. Stakers delegate SOL to validators

to help increase these validators’ voting weight. Such action indicates a degree of trust in the validators. Stakers

delegate to ensure validators cast honest votes and hence ensure the security of the network. The more stake

delegated to a validator, the more often this validator is chosen to write new transactions to the ledger, and then

the more rewards the validator and its delegators earn.

Staking DeFi native tokens. Incentivizing desirable behavior and guarding against misbehavior are crucial

in DeFi applications. To this end, staking programs are popular and important in practice, which applies to a

balance of tokens under custody in a smart contract. Users on DeFi platforms receive staking rewards as a form

of interest payment from their token balance staked (Harvey et al., 2021).

In practice, DeFi staking may involve different lock-up periods and multiple tokens.
52

The risks of being

slashed and losing the staked tokens are also different. Without getting bogged down with specific threshold

requirements and operational differences across various DeFi protocols and smart contracts, DeFi staking can be

characterized as simply earning rewards by collateralizing the tokens for some functionalities in the network.

From the stakers’ perspective, staking shares the spirit of certificates of deposit or risky illiquid investments.

Transaction gas fees and Rewards. We summarize the gas fee foundations of Ethereum (EIP 1559) as an

example. The major of contents are extracted from the official webpage of Ethereum and the third-party page,

blocknative.53

Gas refers to the unit thatmeasures the amount of computational effort required to execute specific operations

on the Ethereum network. Since each Ethereum transaction requires computational resources to execute, each

transaction requires a fee. Gas thus refers to the fee required to execute a transaction on Ethereum.

Every block has a base fee which acts as a reserve price. To be eligible for inclusion in a block the offered

price per gas must at least equal the base fee. The base fee is calculated independently of the current block and

is instead determined by the blocks before it - making transaction fees more predictable for users. When the

block is mined this base fee is “burned”, removing it from circulation. The base fee is calculated by a formula

that compares the size of the previous block (the amount of gas used for all the transactions) with the target size.

The base fee will increase by a maximum of 12.5% per block if the target block size is exceeded. This exponential

growth makes it economically non-viable for block size to remain high indefinitely.

In origin, miners would receive the total gas fee from any transaction included in a block. With the new

base fee getting burned, the London Upgrade introduced a priority fee (tip) to incentivize miners to include a

transaction in the block. Without tips, miners would find it economically viable to mine empty blocks, as they

would receive the same block reward. Under normal conditions, a small tip provides miners a minimal incentive

to include a transaction. For transactions that need to get preferentially executed ahead of other transactions in

the same block, a higher tip will be necessary to attempt to outbid competing transactions.

Staking rewards are the combination of gas fees and the emission of new tokens. Together with the gas fee

policies summarized above, as well as the mechanism of rewards from emission described in the main text, the

main take-away is that the reward distribution design is widely under the platform’s control, whereas the crowd

decisions and interactions provide influence under the designed structure. In practice, the staking rewards may

also involve the phenomenon of multilevel distribution, as some agents can delegate tokens to larger nodes. The

holders of the larger nodes thus need to have a process for deciding on the distribution of benefits. Therefore,

52
MakerDAO is a good example. The profits generated from DAI can be viewed as a yield on ETH staking, and our

framework can be used to understand the price impact on ETH.

53
Please see https://ethereum.org/en/developers/docs/gas/, and https://www.

blocknative.com/blog/eip-1559-fees, respectively.
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there may exist multiple staking participation methods for one token. In relevant empirical tests, we always

choose the participation method with the lowest capital threshold and risk, such as delegating, voting, etc.

Examples in practice.
We summarize representative staking programs involving tokens in our sample. Most information is accessed

from Stakingrewards.com. There is also information from official websites of corresponding tokens. Many tokens

have similar mechanisms, thus we do not repeat the description. These descriptions are excerpted in 2022. There

may be changes over time in the specific mechanisms of some programs, whereas these descriptions apply to the

time intervals covered by the data in our paper.

• The individual AION rewards depends on the Block Reward, Block Time, Daily Network Rewards and Total

Staked. Every block one validator is randomly selected to create a block, whereas 1 staked or delegated

token counts as one “lottery ticket”. The selected validator has the right to create a new block and broadcast

them to the network. TheValidator then receives the 50% of the block reward and the fees of all transactions

(network rewards) successfully included in this block, whereas the PoW Miner receives the other 50%.

• Rewards in the form of algos are granted to Algorand users for a variety of purposes. Initially, for every

block that is minted, every user in Algorand receives an amount of rewards proportional to their stake in

order to establish a large user base and distribute stake among many parties. As the network evolves, the

Algorand Foundation will introduce additional rewards in order to promote behavior that strengthens the

network, such as running nodes and proposing blocks.

• The individual BitBay rewards depends on the Block Reward, Block Time, Daily Network Rewards and

Total Staked. Every block is randomly selected whereas 1 staked coin counts as one “lottery ticket”. The

selected staker has the right to create a new block and broadcast it to the network. He then receives the

block reward and the fees of all transactions successfully included in this block.

• Dash blockchain consensus is achieved via Proof of Work + Masternodes. Investors can leverage their

crypto via operating masternodes. Miners are rewarded for securing the blockchain and masternodes are

rewarded for validating, storing and serving the blockchain to users.

• Eos has a fixed 5% annual inflation. 4% goes to a savings fund, which might distribute the funds to the

community later on. 1% goes to Block producers and Standby Block Producers. Out of the 1% that are

given to block producers, only 0.25% will go to the actual 21 producers of the blocks. The other 0.75% will

be shared among all block producers and standby block producers based on how many votes they receive

and with a minimum of 100 EOS/day.

• The individual reward of staking fantom depends on the Total Staked ratio. Transactions are packaged into

event blocks. In order for event blocks to achieve finality, event blocks are passed between validator nodes

that represent at least 2/3rds of the total validating power of the network. A validator’s total validating

power is primarily determined by the number of tokens staked and delegated to it. A validator earns

rewards each epoch for each event block signed according to it’s validating power. By delegating, investors

can increase the share of their validator proportionally to the balance of their account. They will receive

rewards accordingly and share them with investors after taking the commission.

• The effective yield for staking IDEX depends on the actual Trading Volume on IDEX Market. The higher

the trading volume on IDEX, the higher are the actual rewards. The second metric to watch is the total

amount of AURA currently staking. Fewer tokens on stake result in higher rewards.

• Every livepeer (LPT) token holder has the right to delegate their tokens to an Orchestrator node for the

right to receive both inflationary rewards in LPT and fees denominated in ETH from work completed by

that node.
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• The individual LTO rewards depends on the Network Rewards (Transaction Fees spent on the Network)

and the Total Staked. Every block one staking node operator is randomly selected to create a new block,

whereas 1 staked token counts as one “lottery ticket”. The staker receives the fees of all transactions

successfully included in this block. Staking Node Operators share the rewards with their delegators after

deducting a commission.

• NEM blockchain consensus is achieved via Proof of Importance. Investors can leverage their crypto via

harvesting. To harvest NEM coins it is recommended to run the official NEM Core wallet with an entire

copy of the blockchain on the stakers’ computer or a Virtual Private Server (VPS). The individual NEM

harvesting rewards depends on the Daily Network Rewards and Total Staked. For every block, the staker

is randomly selected whereas 1 staked coin counts as one “lottery ticket”. The selected staker has the right

to create a new block and broadcast it to the network. The staker then receives the fees of all transactions

successfully included in this block.

• Everyone who holds NEO will automatically be rewarded by GAS. GAS is produced with each new block.

In the first year, each new block generates 8 GAS, and then decreases every year until each block generates

1 GAS. This generation mechanism will be maintained until the total amount of GAS reaches 100 million

and no new GAS will be generated.

• Nuls blockchain consensus is achieved via Proof of Stake + Masternodes. Investors can leverage their

crypto via staking. The amount earned is variable based on the current blockchain metrics like the amount

of stakers (Total Staked ratio). Investors can stake Nuls into a project’s nodes and earn their token as a

reward, while the project earns Nuls as a reward. Some projects offer to stake with just 5 Nuls as the

minimum.

• Delegators in Polkadot are called Nominators. Anyone can nominate up to 16 validators, who share re-

wards if they are elected into the active validators set. The process is a single-click operation inside the

wallet. The current reward rate for validators is determined by the current Total Staked ratio. The less

DOT is being staked, the higher are the rewards.

• Qtum blockchain consensus is achieved via Proof of Stake 3.0. The individual reward depends on the Block

Reward, Block Time, Daily Network Rewards and Total Staked. Every block is randomly selected whereas

1 staked coin counts as one “lottery ticket”. The selected staker has the right to create a new block and

broadcast it to the network. The staker then receives the block reward and the fees of all transactions

successfully included in this block.

• Synthetix Network Token blockchain consensus is achieved via the Ethereum Blockchain. Investors can

leverage their crypto via staking. SNX holders can lock their SNX as collateral to stake the system. Synths

are minted into the market against the value of the locked SNX, where they can be used for a variety of

purposes including trading and remittance. All Synth trades on Synthetix Exchange generate fees that are

distributed to SNX holders, rewarding them for staking the system.

• Tezos blockchain consensus is achieved via Liquid Proof of Stake. Investors can leverage their crypto via

baking or delegating. There are a number of tokens that use a similar mechanism, including iotex, irisnet,

etc.

• Tron reward depends on the Block Rewards, Endorsement Rewards, Block Time, Daily Network Rewards

and Total Staked. Every block is randomly selected to bake a block and 32 stakers are selected to endorse

a block, whereas 1 staked coin counts as one “lottery ticket”. The selected stakers have the right to create

or endorse new block and broadcast them network. The Baker then receives the block reward and the fees

of all transactions successfully included in this block. The Endorsers receive the endorsement rewards.
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• Wanchain blockchain consensus is achieved via Galaxy Proof-of-Stake. The individual WAN rewards de-

pends on the Foundation Rewards, Daily Network Rewards and Total Staked. At the beginning of each

protocol cycle (epoch), two groups, the RNP (Random Number Proposer) group and the EL (Epoch Leader)

group, are selected from all validators. 1 staked or delegated token counts as one “lottery ticket” to be se-

lected. The two groups equally share the Foundation Rewards and Transaction Fees (Network Rewards).

The Foundation Rewards consists of 10% of the outstanding Wanchain Token Supply and are decreasing

by 13.6% each year, whereas the Network Rewards are expected to rise alongside wider network usage.

OA2 Notes on Numerical Solutions
We document the numerical approaches in Section 4.4. In brief, we connect Bilal (2023)’s idea of analytical

perturbation and the approximation using instantaneous arriving shocks, and then derive a system that solvable

by the finite difference (FD) method.

In the master equation (25), the agents do not respond to any specific shocks, but only “internalize” them by

the penalty term as well as the volatility risk of penalty. To better comprehend the trajectory of the economy

after specific shocks, we adopt the underlying simulation idea. Suppose once an agent decides on an allocation,

she cannot adjust her portfolio choice within a short time interval d𝑡, regardless of the magnitude of the shock

that realizes during this brief period. Thus, 𝑧 is presumed when solving optimization problems and enters the

wealth dynamic as well as the penalty function as an external parameter. In simpler terms, the uncertainty over

the entire future time horizon is dissected into two components as d𝑡 → 0: the part that remains unrealized,

which operates as a risk affecting agents’ retrospective evaluation, and the part that corresponds to the realized

shock 𝑧. This realized shock 𝑧 is incorporated into the optimization process as an additional external parameter

influencing wealth dynamics and the penalty structure. This inclusion is essential since, given a specific 𝑧, agents
can only hypothesize its value when solving optimization problems.

Then we show how 𝑧 enters the value function 𝐽 . Take d𝑡 → 0 and the weighted traversal of any possible

𝑧 into account, the resulting value function is proved to be an appropriate approximation of that in the initial

master equation. Recall the master equation (25) contains the derivatives w.r.t. 𝑚. Though it is conceptually not

difficult to calculate the approximation of the second-order derivative, it generates a large bracket of terms but

bring relatively unclear general insights. What we clearly know is that it comes from the Brownian uncertainty

on the distribution, i.e.,
𝜕
𝜕𝑤 [𝑔(𝑤)𝑚(𝑤)d𝑍𝑡]. Alternatively, we first approximate the master equation from the

economic perspective, i.e., consider the following scenario. At time 𝑡 and near the steady state, each agent solves

the optimization problem given the current platform productivity 𝐴 and distribution 𝑚. The difference from

the background of the above master equation is that once she determines the allocation, she cannot change her

portfolio choice in a short time d𝑡, no matter what degree the shock in this short period realizes. In other words,

the uncertainty in the whole future time dimension is divided into two parts as d𝑡 → 0: The unrealized part

performs as a risk that affects agents’ backward induction. The realized shock 𝑧 enters the optimization directly

as an extra exogenous argument, since for any given 𝑧, agents can only presuppose its value when solving

optimization problems. An implicit requirement that allows this approach to be a proper approximation is that

the generator of uncertainty is memoryless. Also, this approach shares a similar idea with Bertucci (2021), which

rigorously proves that under the situation as our model introduces, i.e., all the agents are pushed by the same

Brownian motion, it is a good approximation by introducing a transformation that is going to affect all players

in the game at random times.

Then the law of motion is

d𝑚𝑡/d𝑡 = 𝐿∗(𝑤)[𝑚] −
𝜕
𝜕𝑤

𝑔(𝑤)𝑚(𝑤)𝑧 ≡ 𝐿∗(𝑤)[𝑚] + 𝑧𝐺∗(𝑤)[𝑚], (OA.1)

where 𝐺∗(𝑤)[𝑚] = − 𝜕
𝜕𝑤 [𝑔(𝑤)𝑚(𝑤)]. In addition, by the separate form of the value function 𝐽 , we only focus on

the part that does not involve 𝐴 and denote the resulting part of the value function as the new 𝐽 for simplicity.
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Then substituting into the master equation above and calculating the penalty term, we obtain

𝜙𝐽 (𝑤,𝑚, 𝑧) =  (𝑤, 𝑚, 𝑧) + 𝐿(𝑤)[𝐽 ] + ∫
𝛿𝐽
𝛿𝑚

(𝑤, 𝑤′, 𝑚)𝐿∗(𝑤′)[𝑚]d𝑤′

+
𝜕
𝜕𝑤 [𝑔(𝑤) ∫

𝛿𝐽
𝛿𝑚

(𝑤, 𝑤′, 𝑚)
𝜕𝑔(𝑤′)𝑚(𝑤′)

𝜕𝑤′ d𝑤′
] +(𝑧)[𝐽 ],

(OA.2)

where(𝑧)[𝐽 ] = 1
2
𝜕2𝐽
𝜕𝑧2 . This term is obtained from the fact that agents also take the generation of such a shock into

account. That is, the agent not only presupposes the case of such 𝑧, but also takes into account the possibility

of such a presupposition. Note that the direct impact of 𝑧, i.e. the corresponding term in (OA.1) is offset by

the penalty 𝑣𝑧, while the penalty generates the additional term
𝜕
𝜕𝑤𝑔(𝑤)𝑣(𝑤). Also, the precise form of (𝑧)[𝐽 ] is

determined by the generator of 𝑍𝑡 . Since we have accounted for 𝜎 in 𝑔(𝑤,𝑚), the rest part is a standard Brownian
motion.

So far, we have obtained a version of value function that contains a presumed shock 𝑧. By combining all the

possible shocks, we simulate the original value function. Thus, the only thing to do is to solve 𝐽 (𝑤, 𝑚, 𝑧) in (OA.2).
On solving 𝐽 (𝑤, 𝑚, 𝑧), we follow Bilal (2023) to adopt a perturbation method near the steady state. Let 𝑣(𝑤, 𝑤′) =
𝛿𝐽
𝛿𝑚 (𝑤, 𝑤

′, 𝑚𝑆𝑆) (“SS” refers to the steady state), which can be also understood as the “deterministic” impulse value

function. Apply the similar method of analytical perturbation in Bilal (2023), we set a small distributional shock

ℎ as well as a relatively small scale to the shock 𝜖 = 𝑍̃/𝑧, 𝜖ℎ = 𝑚−𝑚𝑆𝑆
, then the first order solution to the master

equation (OA.2) reads

𝐽 (𝑤, 𝑚, 𝑧) = 𝐽 𝑆𝑆(𝑤) + 𝜖
{

∫ 𝑣(𝑤, 𝑤′)ℎ(𝑤′)d𝑤′ + 𝜔(𝑤, 𝑧)
}
+ 𝑤(||ℎ||2𝐻 2), (OA.3)

where 𝑣(𝑤, 𝑤′) refers to the deterministic part of the impulse value, whereas 𝜔(𝑤, 𝑧) is the stochastic part of the
impulse. Bilal (2023) provides the complete explanation of the above process. The difference here is that both

the deterministic and stochastic part come from the aggregated distributional shock, and correspond to the two

parts of uncertainties as we mentioned above.
54

That is, the value function 𝐽 is a linear functional of ℎ to the first
order.

The next step is then to solve the two impulse functions, 𝑣(𝑤, 𝑤′) and 𝜔(𝑤, 𝑧). For 𝑣(𝑤, 𝑤′): substituting into
the master equation, we will obtain an equation w.r.t. the impulse value function, 𝑣(𝑤, 𝑤′). Precisely, around the
steady state, the associated vector that integrates against ℎmust be zero. Then the approximate master equation

is calculated by letting the first-order coefficients of ℎ satisfy the equation that L.H.S. = R.H.S. We omit the

expansions of those terms w.r.t. ℎ but note the following observations: 𝜕𝐽 , 𝛿𝑚 , 𝜕𝐽 𝑓 , 𝜕𝐽 𝑔, 𝜕𝑚𝑔 = 0, 𝜕𝑤𝑣(𝑤, 𝑤′)
is second-order w.r.t. ℎ, and the property of adjoint operators, ∫ 𝐿(𝑤)[𝑎]𝑏(𝑤)d𝑤 = ∫ 𝑎(𝑤)𝐿∗(𝑤)[𝑏]d𝑤, and finally
obtain

𝜙𝑣(𝑤, 𝑤′) = 𝑚(𝑤, 𝑤′)[𝐽 𝑆𝑆] + (𝑤)[𝑣(⋅, 𝑤′)] + (𝑤′)[𝑣(𝑤, ⋅)] + (𝑤′)[𝑣(𝑤, ⋅)]

+ ∫ 𝑣(𝑤, 𝑤′′)
{
∗
𝑚(𝑤

′′, 𝑤′)[𝑚𝑆𝑆] + ∗
𝑦(𝑤

′′,(𝑤′′, 𝑤′, 𝑣))[𝑚𝑆𝑆]
}
d𝑤′′,

(OA.4)

and similarly, 𝜔(𝑤, 𝑧) satisfies

𝜙𝜔(𝑤, 𝑧) = 𝑧
{
 𝑆𝑆
𝑧 (𝑤, 𝑧) + 𝑧(𝑤)[𝐽 𝑆𝑆]

}
+ (𝑤)[𝜔(⋅, 𝑧)] +(𝑧)[𝜔(𝑤, ⋅)] + 𝑧∗𝑧(𝑤′′)[𝑚𝑆𝑆], (OA.5)

where  is the distributional marginal propensity to control, implying how individual controls respond to a

small distributional impulse, ∗(𝑤′)[𝑚𝑆𝑆] = − 𝜕
𝜕𝑤′ (𝑔(𝑤′)𝑚𝑆𝑆(𝑤′)), the subscripts of the operators are the Fréchet

derivatives, e.g., 𝑚(𝑤, 𝑤′)[𝐽 𝑆𝑆] = 𝛿
𝛿𝑚𝐿(𝑤, 𝑤

′)[𝐽 𝑆𝑆].

54
Note that the first-order approximation is additive in the response to a distributional impulse ℎ and the aggregate shock

𝑧. Any pairwise perturbation involving the both is second-order.

OA-7



Then, we only need to numerically solve (OA.4) and (OA.5). Note that they only contain the unknown

matrices (in numerical processes), 𝑣(𝑤, 𝑤′) and 𝜔(𝑤, 𝑧), and the terms at SS. Therefore, they are much easier

to solve. Substituting into OA.2, the value function presuming 𝑧 is solved. Then the original value function

is obtained as the weighted aggregation of the cases presuming all possible 𝑧. However, the derivation of the

impulse response for a particular sequence of shocks does not need to go this far — recall the resulting key

changes, distributional disparity ℎ. The perturbation method suggests that near the SS, the deterministic and

stochastic impulse kernel, 𝐷 and 𝑆, respectively satisfy

𝐷(𝑤, 𝑤′) = ∗
𝑚(𝑤, 𝑤

′)[𝑚𝑆𝑆] + ∗
𝑐 (𝑤𝑖,(𝑤𝑖, 𝑤𝑗 , 𝑣))[𝑚𝑆𝑆]; 𝑆(𝑤, 𝑧) = 𝑧∗𝑧(𝑤′′)[𝑚𝑆𝑆]. (OA.6)

Further, the impulse in the distribution ℎ𝑡 follows the SPDE,

dℎ𝑡(𝑤, 𝑧) = {∗(𝑤)[ℎ𝑡] +(𝑤)[ℎ𝑡] + 𝑆(𝑤, 𝑧𝑡)} d𝑡. (OA.7)

Then, given a series of realized shock {𝑧}𝑇𝑡=1 and the initial ℎ0, the discretized distributional impulse is obtained

by numerically solving the above equation.

*Supplementary Discussion on the impulse responses. Figure OA.1 visualizes the impulse value functions, as

well as the impulse response paths of unit shock. Panel A.(1)-(2) visualize the results of 𝑣(𝑤, 𝑤′) and 𝜔(𝑤, 𝑧). The
deterministic impulse value is widely negative, indicating the agents are competitive with each other. Further,

the whales (agents with large 𝑤) are virtually unaffected by the retails, while their entry has huge impact to the

retails. The only exception is the agents near the lowest threshold.
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They are less affected by any other agents,

since they have less onchain allocation. In subplot (2), for similar reasons, the retails have smaller exposure to

the realized shock 𝑧.
As discussed, the numerical solving process allows us to simulate any given arrived series of shocks. On the

other hand, standing at any period, the response is, to some extends, the combination of the continuous impacts of

historical shocks. As such, we simulate the impulse sequence of a unit shock separately, which helps understand

the relationship between continuously-arriving shocks and the continuously-moving states. Precisely, we assume

a unit negative shock at 𝑡 = 0, and zero shocks for any 𝑡 > 0. As Figure OA.1 Panel (B) shows, the initial effect is a
universal loss of money across all agents, leading to an increase in the share of retail agents and a decrease in the

proportion of wealthier agents. Consequently, the overall staking ratio experiences a decline. As the response

progresses, two driving forces come into play. Firstly, the affluent agents are compelled to further increase their

wealth through both staking and transactions, thereby reinforcing their financial positions. Secondly, the positive

adjustment of staking reward rates contributes to the staking ratio’s response dynamics. Interestingly, there is

an over-response to the staking ratio. In addition to the complex aggregation among the changing crowd, it is

also explained by the platform development: Due to the decrease in staking, the progression of the platform’s

productivity 𝐴𝑡 decelerates. As time advances, the value of 𝐴𝑡 remains lower than it would be without the

occurrence of such a shock. In comparison to the steady state, agents exhibit relatively higher preference in

staking. This propensity persists until the developmental disparity is filled.

The numerical approach can also be used for simulating the direct impulse on the distribution. It could,

for example, correspond to the cases where the economy suddenly changes by an unintended entry of external

groups, especially the whales. This is also within the scope of our framework. That is, we suppose there is an

unanticipated distributional shock ℎ and examine its influence. As Figure OA.1 Panel (C) shows, the entry of a

crowd of whales initially definitely induces a large rise in the proportion of affluent agents and an accompanying

decline in the share of retail participants. This shift triggers a substantial increase in the staking ratio. However,

the subsequent evolution of the wealth distribution exhibits a fatter tail, which aligns with Figure 3. This suggests

55
Recall (27), the distribution is similarwith Pareto distribution, inwhich theminimal𝑤 is also needed. From the economic

perspective, agents with too little wealth will be blocked by the threshold of transaction, 𝜑, and have no onchain activities.
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that the primary benefit stemming from the entry of large funds lies in its potential to stimulate platform growth.

Nevertheless, the competitive interaction among agents implies that such an entry invariably exerts impact on

the on-chain inequality.

Figure OA.1: Impulse values and response functions: Supplementary tests.
Panel A.(1)-(2) show the deterministic and stochastic impulse value functions, 𝑣(𝑤, 𝑤′) and 𝜔(𝑤, 𝑧), respectively. Panel B
shows the impulse responses of a unit negative shock at 𝑡 = 0, in which subplot (1) shows the response, i.e, the deviations

comparing with the steady state of density 𝑚(𝑤) of different 𝑤, and subplot (2) shows the response of the staking ratio.

Time unit is roughly calibrated to one-day. Similarly, Panel C shows the experiment when there is a crowd of whales near

𝑤 = 5 enters the economy.

OA3 Background and Extended Discussions
OA3.1 Mean Field Game and the Master Equation

Mean field games (MFGs), introduced in the pioneering works of Lasry and Lions (2007), offer a powerful

framework for analyzing strategic interactions in large populations when each individual agent has only a small

impact on the behavior of other players. MFG supposes that the rational agents are indistinguishable and individ-

ually have a negligible influence on the game, and that each individual strategy is influenced by some averages

of quantities depending on the states of the other agents. A very nice introduction to the theory of MFGs is sup-

plied in the notes of Cardaliaguet (2010), including theoretical results on the existence and uniqueness of classical

solutions, and also discussions on weak solutions.

MFG has a wide range of potential applications in economics. In macroeconomics, it has been applied to the

studies that connects represent agent’s optimization and the dynamics of macro interests, such as the income

distribution (Achdou et al., 2022). It also allows heterogeneous settings, such as the heterogeneous-agent model

(Krusell and Smith, 1998). Literatures also attempt to model financial problems using MFG. Brunnermeier and

Sannikov (2016) compare the historical evolutions of macroeconomic and finance models, arguing that properly

framed, the analysis of continuous time stochastic models should provide a unifying thread for these subfields of

economics which so far, developed in parallel.
56

To this end, the authors introduce models of the economy com-

prising households maximizing consumption like in classical macroeconomic growth models, as well as investors

trading in financial markets. Some applications have been discussed, including trade crowding (Cardaliaguet and

Lehalle, 2018) and crypto mining (Li et al., 2019).

In many interesting situations in financial studies, it is important to allow for systematic risks (or system-

atic/common shocks). Such applications call for a more general framework in theory. Fortunately, the MFG

56
This is also reviewed by Carmona (2020).
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system can be written in the most general case in terms of a so-called “Master Equation” (Cardaliaguet et al.,

2019). The master equation is an equation on the space of measures; i.e. it is an equation that is set in infinite-

dimensional space. The logic why the problem with aggregate uncertainty becomes infinite-dimensional is that

the cross-sectional distribution across agents becomes a state variable in agents’ dynamic programming prob-

lems and that distribution is an infinite-dimensional object.
57

The master equation is first introduced by Lions

(2011). The most related research advances include the proof of the existence and uniqueness of a classical solu-

tion to the master equation (Cardaliaguet et al., 2019), monotonous solutions in several specific cases of common

shocks (Bertucci, 2021), the case without idiosyncratic but with Brownian-type common shock (Cardaliaguet and

Souganidis, 2020), and the corresponding weak solutions (Cardaliaguet and Souganidis, 2021).

The relationship between MFGs and the master equation. There are two lines for understanding the re-

lationship between the two: The first one is in line with the development of the theory, whereas the second is

relatively smoother from the perspective of applications in economics.

Consider the first logic. A MFG system is enough to handling situations where heterogeneous players solve

optimal decisions even with idiosyncratic shocks and the crowd evolves dynamically. Although they can also be

rearranged in the master equation form, the couple of PDEs shows clearly the respective dynamics of 𝐽 and 𝑚,
and fits mathematical tools for forward-backward PDEs. Therefore, the MFG system is usually described by the

HJB equation together with the law of motion (FP equation). However, when the shock is not idiosyncratic but

universal, it directly adds uncertainty to the distribution. Thus the system of PDEs both becomes stochastic as

shown in (24). Even worse, the appearance of the extra “penalty” term makes the respective dynamics unclear

in the separate PDEs. Therefore, the convenience of the coupled-PDEs form no longer exists. To this end, the

master equation is presented as a more generalized representation that applicable to aggregate shocks, while at

the cost of the value equation needing to be defined over infinite dimensions.

The second logic is more in line with economic research. Many theoretical frameworks consider the repre-

sentative agent who solves optimal choices under system states with shocks. The distribution of the crowd 𝑚𝑡

could be one of the system states and enters the value function as an argument. From the formal perspective, we

still totally differentiate the value function to obtain the “HJB equation”. The thing is that 𝑚𝑡 is a function itself

and d𝑚𝑡 is actually the law of motion. Ignoring the technical details for the moment, we notice that the total

differential involves the law of motion, and the resulting new “HJB equation” is essentially (at least formally) the

master equation.

The two understanding logics also make slight differences in the derivations of the master equation. The

total differential approach seems natural while faces with more rigor considerations, whilst the former aims to

rearrange the PDEs and find the solution to the MFG system. The master equation is finally the equation that

characterize the solution.

OA3.2 Derivation of the Master Equation

Relevant definitions and requirements. In the main text, we mentioned the notations,
𝛿𝐽
𝛿𝑚 and

𝛿2𝐽
𝛿𝑚2 , i.e., the

first and second Fréchet derivatives applied in infinite dimension w.r.t. the density 𝑚. They appear to have extra

arguments, i.e.,

𝛿𝐽
𝛿𝑚

=
𝛿𝐽
𝛿𝑚

(𝑤, 𝑤′, 𝑚),
𝛿2𝐽
𝛿𝑚2 =

𝛿2𝐽
𝛿𝑚2 (𝑤, 𝑤

′, 𝑤′′, 𝑚). (OA.8)

One can roughly compare them with Jacobian and Hessian in the finite-dimensional case respectively. To gain

rigorous requirements of the derivatives in a more generalized way, we introduce the Monge-Kantorovich dis-

57
This is also reviewed in the online Appendix of Achdou et al. (2022).
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tance first. The set (ℝ) of measures on ℝ is endowed with the Monge-Kantorovich distance,

𝐝(𝑚,𝑚′) = sup
Ξ

∫
ℝ
Ξ(𝑦)d(𝑚 − 𝑚′)(𝑦), (OA.9)

where the sup term is taken over all Lipschitz continuous maps Ξ ∶ ℝ ↦ ℝ with a Lipschitz constant bound by

1.58 Then the formal definitions are provided below, which also follow Cardaliaguet et al. (2019).

Definition 1. We say that 𝐽 ∶ (ℝ) → ℝ is 1, if there is a continuous map 𝛿𝐽
𝛿𝑚 ∶ (ℝ) ×ℝ → ℝ such that, for any

𝑚,𝑚′ ∈ (ℝ),

lim
𝑠→0+

𝐽 ((1 − 𝑠)𝑚 + 𝑠𝑚′) − 𝐽 (𝑚)
𝑠

= ∫
ℝ

𝛿𝐽
𝛿𝑚

(𝑚, 𝑦)d(𝑚′ − 𝑚)(𝑦). (OA.10)

Definition 2. We say that 𝐽 ∶ (ℝ) → ℝ is 2, if for a fixed 𝑦 ∈ ℝ, the map 𝑚 ↦ 𝛿𝐽
𝛿𝑚 (𝑚, 𝑦) is 

1. Moreover, denote
its derivative as 𝛿2𝐽

𝛿𝑚2 ∶ (ℝ) × ℝ × ℝ → ℝ. It satisfies

𝛿𝐽
𝛿𝑚

(𝑚′, 𝑦) −
𝛿𝐽
𝛿𝑚

(𝑚, 𝑦) = ∫
1

0
∫
ℝ

𝛿2𝐽
𝛿𝑚2(

(1 − 𝑠)𝑚 + 𝑠𝑚′, 𝑦, 𝑦′
)
d(𝑚′ − 𝑚)𝑦′d𝑠. (OA.11)

*Derivation. We adopt the second logic mentioned in Appendix OA3.1, which shares the similar idea with Bilal

(2023). The key observation is to apply the Itô’s Lemma to the value function 𝐽𝑡 and especially note the time-

dependence of 𝑚𝑡 . As the time-dependence of 𝑤𝑡 and 𝐴𝑡 have been accounted in the HJB equation, the rest

time-dependence could be replaced by the dependence on the distribution 𝑚.

d𝐽𝑡 = ⟨
𝛿𝐽
𝛿𝑚

, d𝑚𝑡⟩ +
1
2
⟨d𝑚𝑡 |

𝛿2𝐽
𝛿𝑚2 |d𝑚𝑡⟩, (OA.12)

where the inner product is defined in the appropriate functional space, ⟨𝑓 (𝑥), 𝑔(𝑥)⟩ = ∫ 𝑓 (𝑥)𝑔(𝑥)d𝑥 . ⟨ℎ|𝑓 (𝑥, 𝑥′)|𝑔⟩ =
⟨⟨𝑓 (𝑥, 𝑥′), ℎ(𝑥)⟩, 𝑔(𝑥′)⟩. Substituting into the HJB equation, we obtain

𝜙𝐽 (𝑤,𝑚, 𝐴)d𝑡 =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

 (𝑤, 𝑚) + 𝐿(𝑤)[𝐽 ] + 𝜇𝐴𝐴
𝜕𝐽
𝜕𝐴

+
𝜕
𝜕𝑤

𝑔(𝑤)𝑣(𝑤)

+ ∫
𝛿𝐽
𝛿𝑚

(𝑤, 𝑤′, 𝑚)𝐿∗(𝑤′)[𝑚]d𝑤′

+
1
2 ∫ ∫

𝛿2𝐽
𝛿𝑚2 (𝑤, 𝑤

′, 𝑤′′, 𝑚)
𝜕𝑔(𝑤′)𝑚(𝑤′)

𝜕𝑤′
𝜕𝑔(𝑤′′)𝑚(𝑤′′)

𝜕𝑤′′ d𝑤′d𝑤′′

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

d𝑡

− (𝑣(𝑤) + ∫
𝛿𝐽 (𝑤, 𝑤′, 𝑚)

𝛿𝑚
𝜕𝑔(𝑤′)𝑚(𝑤′)

𝜕𝑤′ d𝑤′
)d𝑍𝑡 .

(OA.13)

By the definition of the penalty, 𝑣 guarantees that 𝐽 is adapted with respect to the filtration generated by

the shock, i.e., the same idea as Lemma 1, 𝑣 lets the diffusion term zero. Substituting into (OA.13), the master

equation (25) is derived.

*Linking with the derivation process in literature. As mentioned in Section 4, a more standard and rigorous way

to derive the master equation in MFG theory papers, e.g., as Cardaliaguet et al. (2019) does, is to make a change

of variable, 𝐽 (𝑤) = 𝐽 (𝑤 + 𝑔(𝑤)𝑍𝑡), 𝑚̃(𝑤) = 𝑚(𝑤+𝑔(𝑤)𝑍𝑡),59 implying that 𝑚̃ is the conditional law of the motion

58
As the online Appendix of Achdou et al. (2022) also discusses, in the theoretical literatures, the space is often specified

as the n-dimensional torus 𝕋𝑛
rather than ℝ𝑛

. The only reason is to sidestep the discussion of boundary conditions in the

space dimension.

59
As Cardaliaguet et al. (2019) illustrates, the formally equivalent but more rigorous definition of 𝑚̃ is to let it be a

push-forward of 𝑚𝑡 by the shift 𝑤 ↦ 𝑤 − 𝑔(𝑤)𝑍𝑡 . This definition is completely licit. 𝑚𝑡 reads as a conditional measure

given the aggregate shock. Therefore, since conditioning consists of freezing the shock 𝑍𝑡 , such a shift is considered as a

“deterministic” mapping.
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of the wealth process 𝑤𝑡 − 𝑔(𝑤𝑡)𝑍𝑡 . When 𝑍𝑡 is relatively small, there is an approximation:

d(𝑤 − 𝑔(𝑤)𝑍𝑡) = [𝑓 (𝑤) − 𝑍𝑡𝑔′(𝑤)d𝑤]d𝑡 ≈ 𝑓 (𝑤)d𝑡.

Then 𝑚̃𝑡 satisfies:

d𝑚̃𝑡 = −
𝜕
𝜕𝑤 (𝑓 (𝑤, 𝑚̃)𝑚̃𝑡(𝑤)) d𝑡, (OA.14)

where 𝑓 (𝑤) = 𝑓 (𝑤 + 𝑔(𝑤)𝑍𝑡), and the tilde scripts below indicates similar meanings w.r.t. different functional

without specific instructions. The HJB equation similarly becomes

𝜙𝐽𝑡d𝑡 − d𝐽𝑡 = [̃ (𝑤, 𝑚̃) + 𝑓 (𝑤, 𝑚̃) + 𝜇𝐴𝐴
𝜕𝐽𝑡
𝜕𝐴] d𝑡 + 𝑣̃d𝑍𝑡 = [̃ (𝑤, 𝑚̃) + 𝑓 (𝑤, 𝑚̃) + 𝜇𝐴𝐴

𝜕𝐽𝑡
𝜕𝐴] d𝑡 + d𝑀̃𝑡 , (OA.15)

where 𝑣̃𝑡(𝑤) = 𝑔̃(𝑤)𝜕𝑤𝐽 + 𝑣𝑡(𝑤+𝑔(𝑤)𝑍𝑡). Denote the realization of shocks generated by (𝑍𝑡)𝑡≥0 as an information

set (𝑡)𝑡≥0. Then (𝑀̃𝑡(𝑤))𝑡∈[0,𝑇 ] is an (𝑡∈[0,𝑇 ])martingale. (24), the boundary conditions 𝑚̃0 = 𝑚0, and 𝐽∞ bounded,

jointly construct the standard expression of the MFG with aggregate shocks.

*Discussion on the solution to the master equation. The classical solution to the second order master equation is,

naturally, a map 𝐽 (𝑤, 𝑚, 𝐴) ∶ ℝ×(ℝ)×ℝ ↦ ℝ, which satisfies all the requirements in the relevant definition part

in this section, and satisfies the master equation. The definition of the weak solution introduced by Cardaliaguet

and Souganidis (2021) focuses on the master equation with no idiosyncratic shock, i.e., the case in our paper.
60

The relationship between the weak solution and the classical solution is that if 𝐽 ∗ is a weak solution, and 𝐽 , 𝜕𝐽
𝜕𝑤 ,

𝛿𝐽
𝛿𝑚 ,

𝜕2𝐽
𝜕𝑤2 ,

𝛿2𝐽
𝛿𝑚2 and

𝜕
𝜕𝑤

𝛿
𝛿𝑚 𝐽 are continuous in 𝑤 and 𝑚. Then 𝐽 ∗ is a weak solution when the classical solution 𝐽 ∗ ∗

can be expressed as 𝐽 ∗ combining with a continuous function of 𝑚, 𝑐∗(𝑚), i.e.,

𝐽 ∗(𝑤, 𝑚, 𝐴) = 𝐽 ∗∗(𝑤, 𝑚, 𝐴) + 𝑐∗(𝑚). (OA.16)

It is because the definition of the weak solution actually characteristics
𝜕𝐽
𝜕𝑤 and not 𝐽 . Under proper assumptions,

the existence and uniqueness of the weak solution have been proved in literature.

OA3.3 Implications Under Heterogeneity

Consider the implications, i.e., the propositions in Section 3, under heterogeneity. Similar with the homoge-

neous case, the aggregate equilibrium value of tradable tokens is

∫
𝑖
𝑥∗𝑖 d𝑖 = (

1 − 𝛼
𝑟𝑡 − 𝑐𝑡)

1
𝛼

𝑁𝑡𝐴𝑡 ∫
𝑊̃
𝑈̄𝑡(𝑤𝑡)𝑚(𝑤𝑡)d𝑤𝑡 ≡ (

1 − 𝛼
𝑟𝑡 − 𝑐𝑡)

1
𝛼

𝑁𝑡𝐴𝑡𝑀1𝑡 , (OA.17)

where 𝑈̄𝑡 = 𝔼[𝑈(𝑢𝑖,𝑡 , 𝑤𝑡)|𝑤𝑡] is a function of 𝑤𝑡 , arg𝑤{𝑈̄ (𝑤) > 𝑈0} = 𝑊̃ ⊂ 𝑊 . Then Θ∗ = 1−( 1−𝛼𝑟−𝑐 )
1
𝛼 𝑁𝐴𝑀1

𝑞∗ = Θ∗(𝑟),
where 𝑟 fits the fixed point problem (11). Then we can see that the rest of proof are the same as Propostion 2

but only replace 𝑈̄ with 𝑀1. It is with no extra difficult to prove (17) under heterogeneity. Further, note that the

additional terms in (25) does not enter the optimization, also the optimal 𝑞∗ is not involved in extra terms. The

derivation of pricing DE then still starts from the market clearing condition (further settings in Section 3.2 are

60
The solution is solved by the Hilbert space approach introduced by Lions (2011), the detailed notion of the weak solution

is provided in Cardaliaguet and Souganidis (2021). Here we no longer repeat existing work.
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adopted):

0 = 𝜇 + 𝑟(Θ) − 𝑐 +
𝜕Ψ
𝜕𝑛

+ 𝑃𝑄1𝜎2,

0 = (1 − 𝛼) ∫
𝑊̂ (

𝑁𝐴𝑈̄(𝑤)
𝑞(𝑤) )

𝛼 𝜕𝑤𝐽
𝜕𝑤𝑤𝐽

𝑚(𝑤)d𝑤 + (𝜇 +
𝜕Ψ
𝜕𝑛

) ∫
𝑊̂

𝜕𝑤𝐽
𝜕𝑤𝑤𝐽

𝑚(𝑤)d𝑤 + 𝑃𝑄2𝜎2,
(OA.18)

where 𝑄1 + 𝑄2 = 𝑄, 𝑊̂ = 𝑊 ⧵ 𝑊̃ . The second equation refers to the aggregation of agents with zero staking.

Denote the two integrals as 𝑀2 = 𝑀2(𝐴; 𝑚) and 𝑀3 = 𝑀3(𝐴; 𝑚), respectively, and sum up the two equations, we

obtain

0 = (𝜇 + Ψ𝑛)(1 + 𝑀3(𝐴)) + 𝑟(Θ) − 𝑐 + (1 − 𝛼)𝑀2(𝐴) + 𝑃𝑄/𝑆𝜎2. (OA.19)

Then, apply Itô’s Lemma to 𝑃𝑡 and substitute the resulting (𝜇, 𝜎) into the above equation, the pricing PDE is

obtained and is similar with (20) but only involves𝑀𝑠 , 𝑠 = 1, 2, 3 (𝑀3 entersΘ). The rest process is all similar with

the baseline. Finally, 𝑉 (𝐴) still satisfies an ODE. Further, 𝑀2 and 𝑀3 enters the “flow” term of the PDE, whereas

𝑀1 is independent of 𝐴. Therefore, they do not qualitatively affect the relationship between the drift and the

staking ratio.

To generate an intuitive understanding, we consider two specific cases. First, when all the agents have “extra”

wealth to invest in staking, then 𝑊̂ = ∅ and𝑀2 = 𝑀3 = 0, then (OA.19) is in the same form as (18). Second, if the

transaction need is also linear in wealth, e.g., 𝑈(𝑢𝑖,𝑡 , 𝑤𝑖,𝑡) = 𝑢𝑖,𝑡𝑤𝑖,𝑡 , then it is not difficult to show that for agents

with wealth 𝑤𝑖,𝑡 ∈ 𝑊̂ , 𝑞(𝑤𝑖,𝑡) = 𝑥(𝑤𝑖,𝑡) = 𝑐0𝑤𝑖,𝑡 , where 𝑐0 > 0 is independent of 𝑤, and 𝜕𝑤 (
𝜕𝑤𝐽
𝜕𝑤𝑤𝐽 ) = 0. Denote

∫𝑊̂ 𝔼(𝑢𝛼𝑖,𝑡 |𝑤)𝑚(𝑤)d𝑤 = 𝑀̂2, ∫𝑊̂ 𝑚(𝑤)d𝑤 = 𝑀̂3, then the summation of the two equations in (OA.18) yields

0 = (𝜇 + Ψ𝑛)(1 + 𝑀̂3) + 𝑟(Θ) − 𝑐 + 𝑐1(1 − 𝛼)(𝑁𝐴)𝛼𝑀̂2 + 𝑃𝑄/𝑆𝜎2. (OA.20)

Finally, the violation of UIP is directly obtained rearranging agents’ optimal control and the aggregation

across populations, and even without the assumption of log utilities. For agents with wealth 𝑤 ∈ 𝑊̂ , they do

not participate in staking and thus their optimal control problems do not involve 𝑟 , i.e. their marginal excess

return is the price appreciation plus the marginal transaction convenience. For agents with wealth 𝑤 ∈ 𝑊̃ ,

𝜆𝑡 = − 𝜕Ψ
𝜕𝑛 + 𝑞∗𝑡 𝜎2𝐼 , which is completely in the same form as the baseline. As an aggregation, the system excess

return of staking is

𝜆𝑡 = −Ψ𝑛 + 𝜎2 ∫
𝑊̃
𝑞∗(𝑤)𝐼 (𝑤)𝑚(𝑤)d𝑤, (OA.21)

where 𝐼 (𝑤) = 𝜕𝑤𝑤𝐽
𝜕𝑤𝐽 (𝑤) > 0, 𝑞∗(𝑤) ≥ 0, −Ψ𝑛 is the marginal convenience of numéraire and is positive.

OA3.4 Discussion on the Properties of Stationary Distribution

To generate a better understanding of the stationary 𝑚(𝑤) (6), we consider the case when 𝛽 → 1, i.e., the
transaction needs tends to be linear in wealth.

𝑤𝛽−1
𝛽−1 → log(𝑤) and thus

𝑚(𝑤) → 𝑚̄(𝑤) = 𝑐0
1

𝑤(𝜙−𝑘2)
=

[(𝜙 − 𝑘2) − 1]𝑤[(𝜙−𝑘2)−1]

𝑤(𝜙−𝑘2)
, (OA.22)

where the upper bar ⋅̄ indicates the case at the limit. 𝑚̄(𝑤) is a Pareto distribution with the tail parameter (𝜙 −
𝑘2) − 1.

According to the properties of the tail parameter, when (𝜙 − 𝑘2) ≤ 1, there is no stationary situation.

Considering the economic meaning of 𝑘2 and  , it corresponds to the situations that the benefits from on-chain

activities or price appreciation are so large that the whole crowd continues to earn money. When 0 < (𝜙−𝑘2) −
1 ≤ 1, the stationary distribution has infinite expectation, implying that the wealthier earn more from beneficial
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on-chain activities and price appreciation. When (𝜙 − 𝑘2) − 1 > 1, the distribution has a finite expectation. The

general case can be seen as a slight transformation of the Pareto distribution, which could roughly have similar

different situations that corresponding to different on-chain convenience and price fluctuations.

On the other hand, the Pareto case can be easily solved by substituting 𝛽 → 1 into (A.9). Then it indicates

that in expectation among all the types, the wealth corresponding to transaction benefits changes linearly. Then

by letting ℎ = 𝑚/𝑤2
, we obtain an ODE, 0 = 𝑎2𝑤2ℎ′′(𝑤) − 𝑎1𝑤ℎ′(𝑤) + 𝑎1ℎ(𝑤), which finally results in a Pareto

p.d.f. Since it is widely known that when the wealth of all people changes linearly, the resulting distribution by

the law of motion follows the Pareto distribution, the above property also shows the consistency of the form of

the general case. Also, it is worth pointing out that the general distribution has no contradiction with existing

studies. Here, each agent’s wealth still changes linearly. However, the slope varies among the crowd, which

is affected by the user type 𝑢𝑖,𝑡 , whereas the randomness of 𝑢𝑖,𝑡 is not independent on wealth. This cause the

aggregation among populations to perform a slight difference from Pareto distribution.

OA3.5 Extended Discussion on the Feedback Effect

In the beginning of our setup, we introduce the feedback effect, which captures the “ideal” efforts of staking

in incentivizing participation of the consensus or increasing the security level, etc., and thus enters the growth

dynamic of platform productivity. The main relevant interest is how does the feedback effect influence token

pricing. In Section 3, we have obtained the general positive relationship between staking ratio and expected price

drift, which are both functions of the platform productivity (and some additional static arguments). Interestingly,

the positive relationship exists no matter whether there is a feedback effect, but leads to different magnitudes of

impact. Such a comparison is meaningful, since the feedback effect is not necessarily present in every stakable

project. Also, it is somewhat difficult to verify its existence and size in practice. Then, the comparison shows

general implications of that holds despite the existence or absence of feedback effects.

Further, the different magnitudes of impact are explained by two forces, in which the feedback force is that

higher staking ratio leads to a higher drift of platform productivity, and then enters the price drift according

to Itô’s Lemma. Knowing such an extra benefit, agents will be slightly tilted towards staking in the on-chain

trade-off. Thus, we see from Figure 1 that the equilibrium staking ratio is different under the same platform

productivity. Figure OA.2 (A) shows such a variation more clearly. On the other hand as Subplot (B) shows, the

aggregate on-chain wealth naturally increases with platform productivity, which is a corollary of the positive

drift. The higher staking ratio is associated with higher drift, implying that there is more wealth allocated in as

the platform grows.

The above two findings are also meaningful for discussing the feedback effect. However, it may rely on more

assumptions or relatively narrow parameter choices. For the staking ratio, the setup of agents should not be too

simplified to allow them to be able to anticipate the feedback effect, i.e. the growing platform, on themselves. If

the utility is logarithmic and the transaction need is linear, then there would be no incentive to hedge against the

changing investment opportunities presented by the dynamics of 𝐴, also they would be too myopia to see the

benefits of future 𝐴 growth. This setup would result in two overlapping curves for the numerical simulation of

Subplot (A). As for the impact on the aggregate allocation, it generally holds that 𝑉 increases with 𝐴, and when

𝐴 is sufficiently large, the allocated wealth with feedback effects is larger, shown in Subplot (B). In periods where

A is small, i.e., generally the initial phase of the platform, however, we observe in numerical simulations that

platforms with feedback effects may instead have relatively small total wealth. This echoes the similar logic with

the first force, i.e., there is a seesaw effect between already allocated wealth and potentially entering wealth. This

is also comprehensively discussed in Cong et al. (2021b). The more in-depth discussion is however beyond the

main focus of the present paper.

Overall, when staking is truly involved in building the platform rather than a purely speculative choice, with

agents realizing that the platform development is beneficial to them, this feedback effect appears to work, and
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Figure OA.2: Platform productivity, staking ratio and aggregate on-chain wealth.
This plot shows how do the staking ratio and the aggregate on-chain wealth endogenously vary under different levels of

platform productivity. The x-axis is the log productivity, ln 𝐴. Subplot (A) and (B) show the corresponding curves of staking

ratio and log on-chain wealth ln 𝑉 , respectively. The blue lines show the situations with feedback effects, whereas the

orange dashed line are the situations without feedback.

brings a greater influx of on-chain wealth to the platform, especially for well-developed platforms.

In addition, there are some different way to model the feedback effect. For example, since the growth of

platforms may be accompanied by a broadening of usage scenarios, this effect can enter the differences between

on-chain and off-chain convenience. It is worth pointing out that although we do some comparison the presence

and absence of the feedback, however, our primary focus is still on how the on-chain actions are shaped in

different platform states when there is such an effect.

OA3.6 Robustness in Sub-samples: Bulls and Bears

Table OA.1 A common concern related to pricing factors is the different predictability in bulls and bears.

Fortunately, our data set includes a complete bull and bear market cycle. Overall speaking, the cryptocurrency

market was roughly in a bull market in 2020 and 2021, and entered into a bear market in the end of 2021. A

more precise and simple way to classify market bulls and bears refers to Lunde and Timmermann (2004) with

the corresponding amplitude thresholds set to 35% (bulls) and 25% (bears). We use Bitcoin price as the indicator

of the market, which is a common approach in practical investments. Also, as Ethereum is playing an increas-

ingly important role, especially with its significant place in the staking economy, we alternatively use Ethereum

price as the indicator for robustness. Figure OA.3 visualizes the segmentation of bulls and bears during the

whole in-sample periods. We then regress the main empirical specification in Table 4 on sub-samples of bulls

and bears. Columns (1)-(8) of Table OA.1 reports the regression results. In general, the estimated coefficients

of StakingRatio𝑖,𝑡−1 are all positive across bulls and bears that divided by different indicators, as well as different

horizons (daily and weekly). This suggests that the implication that staking ratio positively predicts price appre-

ciation generally holds in bulls and bears. It is worth noting that, however, the estimated value and significance

are lower in bears.

OA3.7 Robustness in Subsamples: PoS Tokens and DeFi Tokens

As mentioned in the introduction, our model evolve both base layer pan-PoS staking mechanisms and higher

layer DeFi stakable tokens. We model the common features and introduce several implications. In the empirical

analysis, we use a sample containing the tokens from both the two layers. To empirically illustrate that these
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Figure OA.3: Identification of bull and bear markets.
Grey background denotes detected bear periods. In Subplot (A) and (B), we use the price of Bitcoin and Ethereum as in-

dices, respectively. The identification algorithm refers to Lunde and Timmermann (2004) with the corresponding amplitude

thresholds set to 35% (bulls) and 25% (bears).

implications are common for both the pan-PoS and DeFi tokens, we divide our sample into two subsets based on

the category of tokens, and repeat the main tests of Table 4.

Columns (9)-(12) of Table OA.1 reports the results of these robustness tests. We regress pan-PoS and DeFi

sub-samples on both daily and the weekly data sets. The dependent is log price change 𝑟price𝑖,𝑡 on the staking

ratio in the previous week. The estimated coefficients of the staking ratio are both positive and consist with our

main empirical result, which suggest that the staking ratio predicts price appreciation. The daily data shows

both significant estimations, whereas in the weekly data, the statistical power is lower. This also consists with

the main regression in Table 4. Also, it could be partly explained by the small sample size since the raw weekly

sample set is further divided into two subsamples.
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Table OA.1: Robustness test for Table 4: Staking ratio and token prices.
This table presents the robustness test on the analysis of how the staking ratio predicts token price appreciation. The regression model is the same as the one used in

Column (2) of Table 4, in which the main independent is the staking ratio of the previous period, StakingRatio𝑖,𝑡−1, and the dependent 𝑟price𝑖,𝑡 is the log price change.

The difference is that we replicate the test on subsets of bulls, bears, PoS tokens, and DeFi tokens. The bulls and bears are detected based on Lunde and Timmermann

(2004)’s algorithm. Due to the lack of a recognized index for the cryptocurrency market, we refer to the common approach used in practice, i.e. using the Bitcoin price

as a market indicator. We also repeat with Ethereum as an indicator for robustness. The detected bulls and bears are visualized in Figure OA.3. The subsets of pan-PoS

and DeFi tokens are sorted based on tokens’ nature. We also do the test in different horizons and with fixed effects to show the robustness of the results. Standard errors

clustered in both token-specific and time dimensions are reported in parentheses.
∗∗∗

,
∗∗
,
∗
indicate statistical significance at the 1%, 5% and 10% respectively.

Dependent: 𝑟price𝑖,𝑡
Bull-Bear PoS-DeFi

Daily 7-Day
Daily 7-Day

Bitcoin as Indicator Ethereum as Indicator Bitcoin as Indicator Ethereum as Indicator

Sub-sample: Bull Bear Bull Bear Bull Bear Bull Bear pan-PoS DeFi pan-PoS DeFi

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

StakingRatio𝑖,𝑡−1 0.040
∗∗∗

0.010 0.025
∗∗

0.018 0.290
∗∗∗

0.017 0.135 0.124 0.028
∗∗

0.019
∗

0.143 0.167

(0.009) (0.012) (0.011) (0.012) (0.098) (0.094) (0.091) (0.109) (0.012) (0.010) (0.107) (0.097)

𝛽𝑖,𝑡 -0.002 0.000 0.004 -0.011
∗∗

-0.051 -0.016 0.034 -0.169
∗

-0.003 -0.002 -0.016 -0.060

(0.003) (0.004) (0.003) (0.005) (0.043) (0.025) (0.021) (0.082) (0.003) (0.003) (0.031) (0.039)

log(Cap)𝑖,𝑡−1 -0.006
∗∗∗

-0.006
∗∗∗

-0.004
∗∗∗

-0.009
∗∗∗

-0.044
∗∗∗

-0.050
∗∗∗

-0.032
∗∗∗

-0.069
∗∗∗

-0.004
∗∗∗

-0.010
∗∗∗

-0.033
∗∗∗

-0.044
∗

(0.002) (0.002) (0.001) (0.003) (0.012) (0.016) (0.008) (0.020) (0.001) (0.002) (0.009) (0.023)

𝑟price𝑖,𝑡−1 0.085
∗

-0.055 0.019 0.044 -0.116
∗∗

-0.004 -0.053 -0.195 0.066 0.098
∗∗

0.002 -0.112
∗∗

(0.049) (0.098) (0.027) (0.130) (0.045) (0.075) (0.039) (0.125) (0.046) (0.040) (0.044) (0.052)

𝛥Network𝑖,𝑡−1 0.203
∗∗∗

0.353
∗

0.198
∗∗∗

0.412
∗∗

0.524 -0.284 0.421 -0.107 0.158
∗∗∗

0.259
∗∗

0.324 0.649
∗∗

(0.062) (0.178) (0.065) (0.190) (0.314) (0.332) (0.262) (0.357) (0.047) (0.111) (0.343) (0.290)

a𝑖,𝑡−1 0.053 0.151 0.052
∗

0.114 0.448
∗

0.224 0.230 0.253 0.049 0.940
∗∗∗

0.276 1.145

(0.035) (0.116) (0.027) (0.121) (0.245) (0.771) (0.198) (0.895) (0.044) (0.227) (0.317) (2.280)

Whale𝑖,𝑡−1 -0.018 0.006 -0.011 -0.011 -0.130 -0.107 -0.094 -0.141 -0.008 0.004 -0.073 -0.022

(0.012) (0.022) (0.013) (0.016) (0.120) (0.139) (0.096) (0.125) (0.006) (0.024) (0.042) (0.193)

NotLaunched𝑖,𝑡 0.031
∗∗∗

0.001 0.021
∗∗∗

0.016 0.286
∗∗∗

0.075
∗∗∗

0.151
∗∗∗

0.270 0.006 0.142
∗∗

(0.007) (0.005) (0.005) (0.014) (0.071) (0.025) (0.043) (0.168) (0.007) (0.055)

𝑌 0𝑖,𝑡 0.007
∗

0.007 0.005 0.012 0.078
∗∗

0.046 0.038 0.115 0.010
∗

0.007
∗

0.099
∗∗

0.079
∗∗

(0.004) (0.006) (0.003) (0.008) (0.027) (0.049) (0.025) (0.070) (0.004) (0.004) (0.044) (0.031)

Token FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 5,692 4,299 6,204 3,787 795 639 897 537 5,529 6,173 793 885

R
2

0.382 0.577 0.406 0.529 0.477 0.546 0.535 0.496 0.579 0.547 0.576 0.548

O
A
-
1
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OA3.8 Staking Ratio and Returns

The predictability of price appreciation suggests that high staking ratio tokens should bring excess returns

over the low ones. We test it by creating a long-short strategy, that is, sort the tokens by their staking ratio by the

end of previous period, equal-weighted long the top 50% and short the bottom. The allocation is adjusted every

week. Figure OA.4 and Table OA.2 document that the portfolio provides relatively stable positive cumulative

returns with a Sharpe ratio of 0.865. To show that this is not another manifestation of the size effect, we test

the same sorted strategy within the large-cap and small-cap token groups, respectively. The implication remains

qualitatively robust. Table OA.2 suggests that the large-cap group performs weaker. It is partly because the

staking ratio of these tokens are relatively low in general, and thus with smaller differences among each other.

The corresponding effect is therefore minor.
61
Considering the limitations on shorting in practice, we also test the

long-only strategies, i.e., borrow US dollars and equal-weighted long top (bottom) 50% tokens sorted by staking

ratio. The top group outperforms the bottom group, and also the full-sample benchmark.
62

Figure OA.4: Cumulative returns of staking ratio sorted portfolios.
This figure corresponds to Hypothesis. Panel A shows the long-short portfolio cumulative return. Panel B shows the long-

only strategies. The portfolios are constructed as Section 6.2 describes.

OA3.9 Additional discussion on UIP and Crypto Carry

UIP with in-sample tokens as local currencies. Table OA.3 repeats the specification of Table 5, implying that

the UIP is generally violated within the token market, rather than only comparing with mainstream cryptocur-

rencies or fiat moneys.

Summary statics of crypto carry. Table OA.4 summarizes the annualized carry and excess return of all tokens

in our sample. Sample means and standard deviations are reported. We also include the US Dollar as one of the

assets for which the carry and excess return are, by definition, equal to zero.

Crypto carry trade: cumulative returns. Wevisualize the cumulative returns ofmentioned strategies in Figure

OA3.9. Panel (a) shows the long-short strategies. The red curve in Figure plots the cumulative return of such a

carry trade strategy. It shows an overall increase and large cumulative returns. Especially, in the cryptocurrency

market where price volatility is huge, such a strategy performs a relatively smooth growth, implying the carry

premia always exists. The gray line shows the performance of the same carry portfolio, but without staking. That

is, for long tokens, we do not stake them, and for short assets, we also do not compensate for the staking reward

61
We also use Bitcoin as base asset

62
We repeat this test using bitcoin denomination to cancel out the crypto market trend, the main results in Panel A

remains robust.
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Table OA.2: Sorted Portfolio performance by staking ratio.
This table reports the statistics of portfolio performance. The upper panel reports the results of the long-short carry strategy,

including long top 50% high staking tokens and short bottom 50% across the full sample, i.e., corresponding to Figure

OA.4, and same strategies but within top 50% large-cap and small-cap groups, respectively. The lower panel reports equal-

weighted long strategies, including the full-sample benchmark, long top 50% high staking ratio tokens, and long bottom

50%. The portfolios are rebalanced each week. For each strategy, the annualized mean, standard deviations, skewness,

kurtosis, maximum drawdown (MDD) and Sharpe ratio are reported.

Strategy Mean St.dev. Skewness Kurtosis MDD Sharpe Ratio

(Annual, %) (Annual, %) (%) (Annual)

Long-short Strategy ():
Full Sample 36.081 41.731 2.273 27.582 41.135 0.865
Within Large-Cap Group 18.575 56.857 5.881 104.942 70.057 0.327
Within Small-Cap Group 40.052 62.720 0.588 5.177 40.065 0.639

Long Strategy:
EW All assets 15.577 78.244 −1.576 7.672 92.934 0.199
EW High-Staking Ratio 22.873 80.737 −1.161 5.042 93.013 0.283
EW Low-Staking Ratio −13.207 79.823 −1.724 9.547 96.115 −0.165

rate. The strategy also exhibits increasing cumulative returns, which implies that the carry strategy earns excess

returns not only from carry (staking reward) but also from price appreciation. Moreover, the blue line reports the

performance of the same carry portfolio, but is rebalanced every month. It exhibits fewer returns than 1W-carry

trade. There are two potential explanations. To compare with the benchmark of the equal weighted long strategy,

also consider the potential short-selling restrictions, we test the performance of the long-only strategies as Panel

(b) shows. Since the market fluctuations are not hedged, all the strategies are volatile and move in co-trends.

However, the strategy that go long top 50% tokens with high carry still provide a relatively better performance

with a larger Sharpe ratio as Table 6 reports in the main text.
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Table OA.3: UIP violation: in-sample local currencies.
This table tests (H3a), i.e., the panel regression results of UIP test. In each row, we use a different asset as local currency

and report the estimated coefficients of 𝛽 with different data horizons. Estimated coefficients of 𝛽 and the corresponding

robust standard errors clustered by tokens are reported.

Local Horizon: 7-day Horizon: 30-day Local Horizon: 7-day Horizon: 30-day

Currency Coef., 𝛽 Std. Err. 𝑅2 Coef., 𝛽 Std. Err. 𝑅2 Currency Coef., 𝛽 Std. Err. 𝑅2 Coef., 𝛽 Std. Err. 𝑅2

Currency & mainstream cryptocurrencies.
US Dollar −1.02 (0.044) 0.33 −1.12 (0.176) 0.11 Ethereum −1.04 (0.033) 0.37 −1.09 (0.126) 0.12
Bitcoin −1.02 (0.034) 0.37 −1.08 (0.134) 0.11

In-sample Tokens.
1inch −0.92 (0.039) 0.54 −0.72 (0.159) 0.22 kyber −1.03 (0.024) 0.25 −1.01 (0.086) 0.14
aave −1.03 (0.029) 0.32 −1.14 (0.119) 0.13 livepeer −0.92 (0.013) 0.51 −0.52 (0.053) 0.24
aion −0.90 (0.102) 0.43 −0.24 (0.604) 0.22 lto −0.95 (0.129) 0.44 −0.16 (0.331) 0.25
algorand −1.00 (0.014) 0.50 −1.12 (0.132) 0.13 matic −1.06 (0.021) 0.37 −1.12 (0.086) 0.14
ark −1.00 (0.053) 0.52 −0.90 (0.196) 0.30 mina −1.06 (0.026) 0.30 −0.39 (0.224) 0.10
avalanche −1.13 (0.049) 0.31 −1.34 (0.195) 0.13 mirror −0.99 (0.008) 0.67 −0.88 (0.034) 0.32
band −1.01 (0.031) 0.32 −1.05 (0.128) 0.11 near −1.10 (0.033) 0.32 −1.42 (0.161) 0.14
bifi −1.01 (0.067) 0.34 −0.80 (0.308) 0.16 nem −1.07 (0.039) 0.58 −1.29 (0.330) 0.34
binance-sc −0.99 (0.019) 0.36 −1.00 (0.081) 0.12 neo −0.86 (0.053) 0.53 −0.47 (0.289) 0.26
bitbay −0.83 (0.068) 0.17 −0.40 (0.790) 0.07 nuls −0.98 (0.077) 0.49 −1.30 (0.602) 0.17
cardano −1.01 (0.027) 0.33 −1.02 (0.134) 0.10 oasis −1.04 (0.034) 0.29 −1.12 (0.135) 0.12
cosmos −1.06 (0.035) 0.37 −1.17 (0.139) 0.13 olympus −1.00 (0.010) 0.83 −1.12 (0.034) 0.49
cronos −1.03 (0.040) 0.29 −1.07 (0.172) 0.22 osmosis −0.91 (0.028) 0.41 −0.48 (0.106) 0.25
curve −1.05 (0.028) 0.33 −1.15 (0.120) 0.13 pancakeswap −1.13 (0.018) 0.74 −1.44 (0.070) 0.51
dash −0.88 (0.096) 0.42 −0.56 (0.343) 0.24 peakdefi −1.02 (0.027) 0.54 −1.03 (0.102) 0.25
decred −1.03 (0.034) 0.37 −1.05 (0.123) 0.11 polkadot −1.05 (0.031) 0.35 −1.69 (0.275) 0.08
dfinity −0.98 (0.019) 0.29 −0.84 (0.120) 0.17 qtum −0.87 (0.036) 0.57 −0.56 (0.156) 0.30
dodo −0.91 (0.027) 0.33 −0.57 (0.149) 0.14 secret −1.13 (0.030) 0.32 −1.68 (0.180) 0.14
dydx −0.91 (0.050) 0.27 −0.77 (0.122) 0.29 smartcash −0.90 (0.070) 0.45 −0.51 (0.403) 0.25
elrond −1.06 (0.028) 0.33 −1.19 (0.126) 0.14 snx −1.05 (0.018) 0.61 −1.20 (0.086) 0.31
eos −1.10 (0.033) 0.50 −1.36 (0.142) 0.23 solana −1.09 (0.052) 0.32 −1.17 (0.182) 0.12
eth2.0 −1.04 (0.014) 0.42 −1.25 (0.059) 0.17 stafi −1.01 (0.030) 0.31 −1.10 (0.158) 0.12
fantom −0.89 (0.013) 0.47 −0.48 (0.065) 0.10 stake-dao −0.40 (0.087) 0.30 2.15 (0.323) 0.25
flow −1.04 (0.027) 0.27 −1.03 (0.102) 0.12 sushi −1.15 (0.085) 0.44 −1.16 (0.117) 0.15
harmony −1.07 (0.032) 0.30 −1.31 (0.134) 0.12 terra −2.10 (0.423) 0.05 −4.52 (1.686) 0.05
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Table OA.4: Excess return and carry.

Token Excess Return Carry Token Excess Return Carry

(%, Annual) (%, Annual) (%, Annual) (%, Annual)

Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev.

0x 0.42 0.30 6.75 20.62 kusama 12.97 1.93 16.61 25.75
1inch 2.94 6.49 1.46 17.05 kyber 1.32 3.53 1.88 17.67
aave 3.83 0.98 6.21 21.56 livepeer 62.04 29.54 63.61 49.84
aion 6.25 3.01 8.86 18.61 lto 6.70 1.01 12.19 17.18
algorand 7.20 11.72 7.81 19.22 matic 17.78 14.01 25.23 40.64
ark 8.09 0.52 9.52 17.02 mina 10.32 2.81 9.60 20.97
avalanche 8.43 2.74 13.31 35.40 mirror 39.15 37.41 34.85 42.27
band 10.88 3.10 13.62 27.93 near 10.13 2.85 13.30 23.35
bifi 7.95 3.43 11.76 26.02 nem −1.35 0.51 −1.59 14.28
binance-sc 8.02 6.38 9.05 15.10 neo 0.92 0.97 2.71 14.94
bitbay 1.13 0.98 10.62 63.06 nuls 8.31 0.56 10.67 16.96
cardano 4.39 2.77 6.52 17.95 oasis 11.80 4.55 12.95 26.77
celo 6.08 0.13 6.07 4.95 olympus 49.79 41.90 37.95 48.49
cosmos 9.82 2.35 11.97 18.55 osmosis 35.90 17.56 30.03 20.48
cronos 10.15 2.67 6.25 13.11 pancakeswap 74.76 26.66 78.13 51.65
curve 1.12 2.83 1.45 19.34 peakdefi 43.88 16.92 43.26 32.91
dash 5.20 0.73 7.28 26.50 polkadot 11.56 1.68 13.14 17.63
decred 5.58 1.71 6.66 14.32 qtum 4.73 1.31 6.30 14.07
dfinity 7.68 4.78 3.87 15.34 secret 24.47 3.95 27.70 28.47
dodo 56.63 10.73 50.54 22.66 smartcash 1.63 0.36 3.64 15.35
dydx 10.66 2.76 8.53 19.03 snx 21.96 23.54 26.42 37.33
elrond 14.24 7.45 19.18 32.93 solana 5.94 3.82 8.94 24.75
eos 10.69 12.06 11.02 18.81 stafi 18.76 4.02 19.91 27.21
eth2.0 8.61 10.82 11.45 18.44 stake-dao 22.23 8.32 21.49 19.43
fantom 27.83 23.95 37.98 47.03 sushi 10.51 10.12 8.85 20.06
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harmony 8.58 2.89 12.42 27.40 tezos 4.56 2.11 5.52 16.99
icon 16.42 2.80 19.99 23.99 tron 2.81 1.94 4.36 13.99
idex 8.05 8.85 15.12 78.53 wanchain 7.39 0.26 9.44 16.86
injective 3.87 0.58 2.16 13.91 waves 3.84 1.62 6.21 22.75
iotex 8.86 3.14 11.27 21.23 wax 1.56 2.64 3.34 19.81
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US Dollar 0.00 0.00 0.00 0.00
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(a) Long-short strategies. (b) Long strategies.

Figure OA.5: Cumulative returns of carry strategies.
This figure corresponds to Hypothesis (H3b) and shows the cumulative returns of the carry-trade strategies. Panel (a) shows

the long-short strategies. The red curve shows the cumulative return of main long-short carry strategies. The construction

of the strategy is described in Section 6.3 and 𝑋 = 50. The choice of 𝑋 does not affect the main qualitative properties.

As comparisons, the gray curve corresponds to the strategy without earning or compensating staking rewards, and the

blue curve shows the strategy that rebalanced every month. Panel (b) shows the long-only strategies. The gray curve

corresponds to the equal-weighted benchmark, i.e., borrow US dollar and long all the tokens with equal weight. The red

curve shows the result of the top 50% EW strategy, that is, borrow US dollar and go long top 50% high carry tokens with

equal weight. The blue curve shows the result of the lowest 50% EW strategy, i.e., borrow US dollar and go long the 50%

tokens with the lowest carry with equal weight. The order of the tokens is evaluated every week.
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