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Will arbitrage capital flow into markets experiencing shocks, mitigating adverse effects
on price efficiency? Not necessarily. In a dynamic model with privately informed capital-
constrained arbitrageurs, price efficiency plays a dual role, determining both the profitability
of new arbitrage and the ability to close existing positions profitably. An adverse shock to
efficiency lengthens arbitrage duration, effectively reducing the amount of arbitrage capital
available for new positions. If this falls below a critical mass, arbitrage capital flows out,
amplifying the impact on price efficiency. This creates endogenous regimes: temporary
shocks can trigger “hysteresis,” a persistent shift in price efficiency. (JEL G12, G14, D82,
D83, D84)
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Traditional finance theory derives rational prices for assets based on traders’
incentive to profit from any mispricing. This arbitrage pricing mechanism may
break down when traders are capital-constrained, which could arise for various
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reasons.1 The shortage of arbitrage capital could be temporary, since there
may be surplus capital in other markets that could flow to exploit arbitrage
opportunities in one market, but this reallocation might happen slowly (e.g.,
Duffie 2010). In other words, mispricing may still persist even with plenty
of capital around because capital does not flow to the right markets. So the
economics of slow-moving capital is a priority for research, which we seek
to address in this paper by endogenizing the rate of flow of arbitrage capital.
With enough capital deployed, privately informed arbitrageurs (as in Grossman
and Stiglitz [1980] and Kyle [1985]) will eventually push market prices toward
fundamental value; in other words, information will be revealed. But if capital is
limited and arbitrageurs need to decide where to deploy it, what is the underlying
economics of how quickly they will flow into markets experiencing shocks,
mitigating adverse effects on price efficiency? Or, are there reasons why this
might fail to happen?

To answer these questions, we study an infinite horizon model with two
classes of assets: long term and short term. Some traders (“arbitrageurs”) have
private information about assets, but limited capital. The trading model is a
competitive noisy rational expectations equilibrium (REE) model: arbitrageurs
interact with noise traders and with liquidity providers who have unlimited
capital but lack this information (“market makers”).

The presence of market makers makes prices semistrong efficient; however,
in equilibrium prices may or may not reflect the arbitrageurs’ information. In
the discussion that follows, it should be understood that prices are semistrong
efficient. We say “efficient” (or equivalently “informative”) to refer to efficiency
with respect to the arbitrageurs’ private information.

Each arbitrageur must choose whether to trade a long-term asset or a short-
term asset (they can buy or short-sell the asset depending on their information).
If they trade a short-term asset, they receive a liquidating dividend the next
period, so for an arbitrageur, who knows the dividend, the value gained from
the trade just depends on the price. In contrast, long-term assets liquidate with
a fixed probability each period, so an arbitrageur with a position in a long-
term asset also cares about how long they need to hold the position—in line
with a common saying among professional traders: “buy when the market is
inefficient, sell when the market is efficient.” If they need to hold a position
for longer, they cannot redeploy their capital. A position pays off if either the
long-term asset liquidates or the price reveals the liquidation value (as a result
of the trading process).

We call the mass of arbitrageurs taking a new position in both the long- and
short-term markets the “active capital.” For a capital-constrained arbitrageur to
invest in a new position, they must close out the existing position. Unless

1 By arbitrage, we mean a trade that exploits price inefficiencies for profits whether based on public or private
information (e.g., Dow and Gorton 1994; Dow and Han 2018). In this paper, we use the terms “informed
investors” and “arbitrageurs” interchangeably.
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the new position is more profitable, the arbitrageur will be “locked-in” to
the existing position in another asset until the price of that asset reverts
closer to the fundamental value. Reversion to fundamental value can happen
when subsequent trades by other privately informed arbitrageurs reveal the
information. Once price reveals the information, the new, correct price is
supported by the valuation of uninformed traders. Therefore arbitrage capital
is no longer required to support the price.

We study how financial markets respond to shocks. Our model is fully
dynamic in the sense that the possibility of shocks is anticipated by agents.
For tractability, shocks are represented as changes to the market-wide intensity
of noise trading (realizations of individual asset values and noise trader demand
in individual assets are not shocks to the economy because they average out in
aggregate). An increase in noise trading intensity has a similar effect on price
efficiency as a reduction in arbitrage capital: the immediate impact of both is
to make prices less informative.

The amount of active capital is the endogenous state variable, and, in
equilibrium, price efficiency of long-term assets is increasing in active capital.
Given an initial level of active capital, we show that the model follows a unique
equilibrium path that is a function of the realization of the shocks. However,
the model may have two risky steady states.2 In one risky steady state, active
capital is low, so long-term assets have less informative prices. An arbitrageur
who enters this market can likely trade mispriced assets, but, offsetting this,
the position will probably need to be held for a long time before the arbitrageur
obtains the asset value. Because arbitrage positions are held for longer, active
capital is indeed lower. In the other risky steady state, active capital is higher,
so prices of long-term assets are more informative: an arbitrageur in this market
is less likely to be able to trade mispriced assets, but, offsetting this, a position
will quickly deliver the underlying asset value. Because positions are not held
for long, active capital is indeed higher.

So, price efficiency in our model has a dual role. It affects both the profitability
of new positions that arbitrageurs can take (“buy when the market is inefficient”)
and their ability to close their positions profitably (“sell when the market is
efficient”). The effect on the profitability of new positions, which we call the
“entry effect,” is well known from previous literature. The effect on the ability
to unlock capital by closing existing positions, which we call the “exit effect,”
is more complex and explains why arbitrageurs might amplify the impact of a
shock.

To see this, consider an adverse shock to efficiency in the long-term market.
This lengthens arbitrage duration, reducing the amount of arbitrage capital
that remains available for new positions and making the market less attractive
to arbitrageurs. So long as the amount of active arbitrage capital stays above a

2 A risky steady state is defined to be a state to which the state variables would converge in the absence of further
shocks.
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critical mass, the entry effect dominates and arbitrage capital flows in, gradually
restoring the original level of price efficiency. But if the amount of active
arbitrage capital falls below the critical mass, the exit effect dominates and
arbitrage capital flows out: the reduction in efficiency becomes self-reinforcing,
setting the market on a path toward the less efficient risky steady state. It
may remain trapped there for a long time. Thus, temporary shocks can trigger
“hysteresis,” a persistent shift to a different price efficiency regime.3

Active arbitrage capital can fall below the critical mass in two ways. Either
a given adverse shock persists for a long enough time or, for a given shock,
the initial amount of active arbitrage capital is low enough. Either way, once it
moves to a new regime, the market will stay there until a long enough sequence
of favorable shocks.

In our model, trading volume is monotonic in price efficiency. Reduction
in efficiency goes hand in hand with low trading volume. This reduction in
trading volume can be viewed as a kind of illiquidity. While long-term assets
are stuck in the less efficient regime, there is an increase in the amount of
arbitrage capital allocated to short-term assets. This is reminiscent of “flight to
liquidity” following financial crises.

Turning to the empirical implications of our analysis, we propose a model-
based measure of active capital. Using this measure, we provide testable
implications of our theory.

Methodologically, our model combines features from the literature on asset
pricing with limits to arbitrage and the literature on asset pricing with imperfect
information (noisy REE). This combination yields our hysteresis result.

On the one hand, in models with public information (as in most of the limits
to arbitrage literature), there is no role for active capital because the marginal
buyers are arbitrageurs. In noisy REE models, however, uninformed investors
are marginal buyers. Therefore, the revelation of private information effectively
multiplies informed capital by allowing uninformed investors to learn from
informed arbitrageurs. These informed arbitrageurs are thereby released to be
active elsewhere.

On the other hand, the question of unlocking arbitrage capital does not arise
in the noisy REE literature, as it mostly features either static models or dynamic
models with unconstrained informed arbitrageurs. Extensions of the standard
REE framework have been limited because linearity, which enables tractability,
is difficult to maintain. Imposing position limits for arbitrageurs makes demands
inherently nonlinear. Nevertheless, our framework allows the characterization
of the dynamics of a stationary noisy REE with capital constraints.

Unlike static models, in which sensitivity to shocks is modeled using
comparative statics or multiple equilibria, in our model it is not the case that

3 A regime is the domain of attraction of a risky steady state.
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all agents could somehow decide to flip to another regime just by coordinating
their beliefs. Transition between regimes is a feature of the equilibrium.

Our results help to elucidate the long-term response of the financial system
to shocks. In a crisis, the capital and the risk-bearing capacity of financial
intermediaries are reduced. This means that their ability to take positions falls,
relative to the noise in the system. This can cause a period of prolonged low
volume and prices that are dislocated from fundamentals.

The paper is organized as follows. In Section 1, we discuss related literature.
In Section 2, we describe the model. In Section 3, we solve for the equilibrium of
the model. In Section 4, we study the model’s implications for price efficiency
and capital flow dynamics. In Section 5, we discuss the empirical and policy
implications of our model. In Section 6, we conclude.

1. Literature Review

There is a significant literature on the limits to arbitrage, studying how limited
capital affects prices. Specifically, in Allen and Gale (1994) agents prefer to
keep only a limited amount of capital available in liquid assets, in Shleifer and
Vishny (1997) arbitrageurs’ capital is a function of past performance, and in
Gromb and Vayanos (2002) arbitrageur capital needs to cover their maximum
losses. Thus, in each case there is a limit on the total amount of arbitrage
capital that can be deployed to correct mispricing. In a setting with multiple
assets, a shock in one market tends to create a spillover effect where shocks are
transferred to other markets through the channel of wealth effects (e.g., Kyle
and Xiong 2001; Kondor and Vayanos 2019) or collateral constraints (e.g.,
Brunnermeier and Pedersen 2009; Gromb and Vayanos 2018).

A common theme in this literature is that arbitrageurs’ ability to eliminate
mispricing depends on their total amount of capital, which in turn is influenced
by price movements, giving rise to amplification. In this literature, all agents can
see that assets are mispriced, but it takes time to deploy capital in response. In
Kondor (2009), the mispricing wedge varies across time because arbitrageurs
allocate their limited capital across uncertain future arbitrage opportunities. In
Gromb and Vayanos (2018), there is a phase with an immediate increase in the
spread where arbitrageurs decrease their positions (thus, causing a contagion
effect), followed by a recovery phase.

The above papers rely on limited capital as the main driver of price
dislocation. A number of papers focus on other frictions (alone or in
combination with limited capital). In Duffie and Strulovici (2012), the speed
of capital flow is governed by the imbalance of capital as well as the level
of intermediary competition across markets. In Buss and Dumas (2019) and
Rostek and Weretka (2015), trading frictions, in the form of trading fees in the
former paper and traders’ price impact in the latter, make investors reluctant to
trade, leading to slow recovery of prices from shocks.
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In contrast to the limits to arbitrage literature, our model takes a noisy REE
approach. An important difference with most of the literature is that REE is
based on private, not public, information. Our model highlights the role of active
arbitrage capital (as opposed to total arbitrage capital) and features different
regimes with endogenous thresholds for the state variable.

Dow and Gorton (1994) study a dynamic noisy REE model of a single market
where the cost of carry interacts with short trading horizons of arbitrageurs to
break down price efficiency. As in our model, trade on private information relies
on informed traders in the future to push price closer to fundamental value. In
our model, however, future availability of informed arbitrageurs is endogenous
because price efficiency decides the speed at which arbitrage capital is released.
This effect plays a key role in generating our hysteresis result and allows us to
study how capital moves between markets.

In previous literature, several papers using a noisy REE approach show that
feedback between price efficiency and capital availability can lead to multiple
equilibria or highly sensitive comparative statics (e.g., Yuan 2005; Goldstein,
Li, and Yang 2014; Cespa and Foucault 2014; Dow and Han 2018). For
example, in Dow and Han (2018), a small increase of informed capital facilitates
movement of uninformed capital and induces a large increase in liquidity. Our
paper differs from all these papers in two major ways. First, the feedback
channel between active capital and price efficiency in our paper is intertemporal.
Second, our dynamic model has a unique equilibrium but multiple efficiency
regimes.4

2. Setup

We consider an infinite horizon discrete time economy with a continuum of
long-lived agents. All agents have risk-neutral preferences with a discount
factor of β. The risk-free rate of the economy is exogenously given by
rf =1/β−1.

We now set out our assumptions on financial assets, participants, and timing
of events. We discuss the role of our assumptions and modeling choices in
Appendix A.

2.1 Financial Assets
There are two classes of risky securities: long-term assets, traded in market L,
and short-term assets, traded in market S. We assume that within each market
there is a continuum of securities, each of which is a claim to a single random
liquidation value. An asset in market L has a random maturity; if it has not
liquidated in a previous period, it pays its liquidation value with probability

4 The literature studying dynamic information regimes such as Fajgelbaum, Schaal, and Taschereau-Dumouchel
(2017) and Kurlat (2018) also features multiple information regimes that arise endogenously through intertem-
poral links between economic activity and information externalities.
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q >0 in each period. On the other hand, an asset in market S has a one-period
maturity; it simply pays its liquidation value in the period after issuance. At
maturity, any asset i in market h∈{L,S} pays vi , which is either good (vi =V G

h )
or bad (vi =V B

h ) with equal probability where V G
h >V B

h for all h∈{L,S}. We
further assume that

βq

1−β(1−q)
V k

L =βV k
S , for all k∈{G,B}, (1)

where the LHS and the RHS are the present value of payoff of an asset with
quality k in markets L and S, respectively. We also assume that asset payoffs
are independent across assets and over time.

As discussed later (in Section 3.2), equilibrium asset prices either reveal their
fundamental value completely or not at all. For tractability, we assume that the
mass of unrevealed assets is fixed to one unit in each market at any point of
time. That is, each period new assets are issued to replace those that have either
just realized payoffs or become fully revealed.

2.2 Participants
There is a unit mass of capital-constrained arbitrageurs who trade to generate
speculative profits. We denote the set of arbitrageurs by A and index each
arbitrageur by a∈A. Each arbitrageur can generate a private signal about the
payoff of one asset of their own choosing in each period at no cost. The private
signal perfectly predicts the liquidation value of the asset. For tractability, we
assume a simple form of capital constraint under which, at any point in time,
each arbitrageur can hold only one risky position of one unit (either long or
short) of unrevealed assets. We denote by xa

i (t)∈{−1,0,1} the market order of
arbitrageur a for asset i in period t . Once an arbitrageur has acquired a position
in a risky asset, they can hold it until it liquidates or its value is revealed, and
can then open a new position. They also have the option to close out a position
early (before it has realized profits), and open another position the next period.

There is a continuum of competitive market makers who set prices to clear
the market. There are also noise traders who trade for exogenous reasons such
as liquidity needs. In each period, arbitrageurs and noise traders submit market
orders to the market makers. Noise traders submit an aggregate order flow of
ζi(t) for each asset i in period t . We denote by Xi(t) the aggregate order flow
for each asset i in period t :

Xi(t)≡
∫

a∈A
xa

i (t)da+ζi(t). (2)

We assume that ζi(t) follows an independent uniform distribution on
[−zh(t),zh(t)]. The magnitude of zh(t) captures the intensity of noise trading
in market h in period t . We assume that zS(t) is a constant zS whereas zL(t)
follows a Markov process with N states z1

L,z2
L,...,zN

L whose transition matrix
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between states is given by

Ω =

⎡
⎢⎣

ω11 ... ω1N

...
. . .

...

ωN1 ... ωNN

⎤
⎥⎦. (3)

All agents in the model understand the Markov process governing changes
in zL.

The realization of zL(t) is publicly observable to all the agents in the
economy. Note that it is the only exogenous shock to the economy in our
model at the aggregate level. We further assume that zn

L +zS >1 for any n;
this assumption prevents the price for every asset from being fully revealing.
Finally, we assume that all the realizations of noise trading intensity and asset
payoffs are jointly independent.

2.3 Timing of events
The timing of events in each period is as follows. At the beginning of each
period t , asset payoffs realize, and they are distributed among claim holders.
Next, new assets are issued as described above, and noise trading intensity zL(t)
realizes. After these events, arbitrageurs with capital to invest (i.e., those who
do not already hold positions) select one of the two markets, collect private
information about an asset in that market, and then trade on their information,
either buying or selling short depending on their information. Arbitrageurs who
already hold positions decide whether to close out their positions. Arbitrageurs’
orders (either to acquire new positions or liquidate their existing positions) are
submitted to market makers together with noise traders’ orders ζi(t) for each
asset i. At the end of the period, market makers post asset prices and trades are
finalized.

3. Equilibrium

3.1 Active arbitrage capital
In each period t , an arbitrageur is in either of two situations: “active” or “locked-
in.” An active arbitrageur does not have an existing position in an unrevealed
asset, and thus has capital available for new investment. A locked-in arbitrageur
already has a position in an unrevealed asset, and thus does not have capital
available for new investment until this position is closed out (we call it locked-
in because although they have the option to close out early, arbitrageurs choose
not to in equilibrium, as will be shown in Lemma 2). We denote the mass of
active arbitrageurs by ξ (t) and the mass of locked-in arbitrageurs by 1−ξ (t).

Each active arbitrageur chooses to hold a new position in either market L or
S. We denote the proportion of those choosing to trade assets in market L by
δ(t) (so 1−δ(t) is the proportion of those choosing to trade assets in market
S). Each locked-in arbitrageur chooses whether to hold on to the position one
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more period or to close it out in the current period. We denote the proportion of
those choosing to close out early by η(t) (so 1−η(t) is the proportion of those
choosing to hold on to the position).

We define the vector of state variables to be

θ (t)≡ (ξ (t),zL(t)), (4)

which is a pair of the current level of active capital and the realization of noise
trading intensity.

3.2 Asset prices
Asset prices are set by the market makers given the aggregate order flows
from informed arbitrageurs and noise traders. As in Kyle (1985), risk-neutral
market makers set the price equal to the expected discounted liquidation value
conditional on available information:

Pi(t)=E
[
βτi vi

∣∣F(t)
]
, (5)

where τi is the (random) maturity of asset i and F(t) is the information set of
market makers in period t , which includes the history of aggregate order flows
of all assets and the state variables up to period t .

Given this price formation process, an asset’s price becomes more
informative over time, reflecting market makers’ learning from trading:

Lemma 1. Suppose that in period t asset i is unrevealed prior to trading. If
there are μi(t) arbitrageurs who submit an order to buy (sell) one unit if asset i

is of good (bad) quality, and zi(t) is the noise trading intensity for asset i, then

Pi(t)=

⎧⎨
⎩

P B if −μi(t)−zi(t)≤Xi(t)<μi(t)−zi(t)
P 0 if μi(t)−zi(t)≤Xi(t)≤−μi(t)+zi(t)
P G if −μi(t)+zi(t)<Xi(t)≤μi(t)+zi(t),

(6)

where

P k ≡ βq

1−β(1−q)
V k

L =βV k
S , for all k∈{G,B} (7)

is the fully revealing price,

P 0 ≡ P G +P B

2
(8)

is the nonrevealing price, and

λi(t)=
μi(t)

zi(t)
(9)

is the probability of information revelation for asset i in period t .
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Proof. See Appendix B. �

Lemma 1 implies that in our model prices start out uninformative, and
may later jump straight to being fully revealing (but can never be partially
revealing).5

The largest possible realization for the order flow Xi(t) when arbitrageurs
are selling the asset is −μi(t)+zi(t), which is obtained when noise traders
buy zi(t). So if Xi(t) is larger than −μi(t)+zi(t), then it can only result from
arbitrageurs buying the asset, so it reveals that the asset is good. Similarly, if the
order flow is smaller than μi(t)−zi(t), then it can only result from arbitrageurs
selling the asset, so it reveals that the asset is bad. But if the order flow takes an
intermediate value, then it could have resulted from either arbitrageurs buying
and noise traders selling, or vice versa. Because noise trading is uniformly
distributed, any level of the order flow is equally likely regardless of whether
arbitrageurs are buying or selling, so it is nonrevealing.

As we explain in the next subsection, we focus on equilibria in which
knowledge of the current state θ (t) (as defined in Equation (4)) is sufficient
to infer the mass of informed arbitrageurs active in each asset. As a result,
the pair (θ (t),Xi(t)) is a sufficient statistic for F(t) in Equation (5) for any
unrevealed asset.

For convenience, we call the probability of information revelation λi(t) the
“price efficiency” of asset i henceforth. As shown later in the paper, λi(t)
plays a dual role in capturing the degree of mispricing as well as the expected
investment duration of asset i.6

3.3 Law of motion
We focus on stationary market-wise symmetric rational expectations equilibria.
Market-wise symmetry means that price efficiency λi(t) is equal to λL(t) for
any asset i in market L and is equal to λS(t) for any asset i in market S, in
each period t . Notice that, with a continuum of assets, λh(t) is the fraction
of assets in market h∈{L,S} whose value is revealed by the trading process.
Stationarity means that δ(t), η(t), λL(t), and λS(t) are time-invariant functions
of the state variables θ (t). In the rest of the paper, we omit time index on state
variables for notational clarity and use the prime notation to denote the value in
the subsequent period. For example, ξ ′ denotes the value of ξ in the subsequent
period.

5 As previously noted, the presence of market makers makes prices semistrong efficient (Equation (5)), so
statements concerning “efficient” (or equivalently “informative”) prices refer to efficiency with respect to the
arbitrageurs’ private information.

6 Note that λi (t) is not the same as price impact (or “Kyle’s Lambda” in the literature). In our model, individual
arbitrageurs do not have a price impact because they are infinitesimal. Noise traders or arbitrageurs in aggregate
have a price impact.
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The law of motion of the mass of active arbitrageurs is given by

ξ ′ =(1−δ(θ ))ξ +(δ(θ )ξ +1−ξ )(q +(1−q)λL(θ ))+(1−ξ )η(θ )(1−q)(1−λL(θ )).
(10)

The RHS is the sum of three terms. The first term is the mass of arbitrageurs
invested in market S in the current period; this mass becomes entirely active in
the subsequent period as the assets are short-lived. The second and third terms
are the mass of arbitrageurs invested in market L in the current period (i.e., δ(θ )ξ
new arbitrageurs from the current period and 1−ξ arbitrageurs locked-in from
the previous period) that become available for new investment in the subsequent
period. This happens if the asset pays off, if the market price fully reveals the
asset value, or if locked-in arbitrageurs close out the position early (it turns out
they choose not to do this in equilibrium). Overall, a fraction q +(1−q)λL(θ )
of the arbitrageurs invested in market L in the current period becomes free
for new investment in the subsequent period because of an asset paying off
or information revelation through prices. A fraction η(θ )(1−q)(1−λL(θ )) of
locked-in arbitrageurs from the previous period becomes active the next period
because of the decision to close out early.

3.4 Dynamic arbitrage
Given the current state θ , we denote by JL(θ ) and JS(θ ) the value of investing
in a new position in market L and market S, respectively. Because any active
arbitrageur can choose between the two markets, the value of being active given
θ equals

Ja(θ )=max(JL(θ ),JS(θ )). (11)

Associated with these value functions is a capital allocation function δ(θ )
for active arbitrageurs such that

δ(θ )∈
⎧⎨
⎩

{0}, if JL(θ )<JS(θ );
{1}, if JL(θ )>JS(θ );
[0,1], otherwise,

(12)

where capital allocation δ(θ ) strikes the balance between the value of investing
in market L and market S if JL(θ )=JS(θ ).

Some arbitrageurs are currently locked-in in market L; we denote by Jl(θ )
the associated value function given θ . We can obtain JL(θ ) and JS(θ ), whose
detailed derivations are relegated to Appendix B, as follows:

JS(θ )=−(λS(θ )P G +(1−λS(θ ))P 0)+β
[
V G

S +E[Ja(θ ′)|θ ]
]
; (13)

JL(θ )=−(λL(θ )P G +(1−λL(θ ))P 0)+βU (θ ), (14)

where
U (θ )≡qV G

L +(1−q)λL(θ )P G +(1−(1−λL(θ ))(1−q))E[Ja(θ ′)|θ ]

+(1−λL(θ ))(1−q)E[Jl(θ
′)|θ ].

(15)

Equations (13)–(15) show expected profits for an arbitrageur with good news
who takes a long position; in a market-wise symmetric equilibrium, this is
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the same as the expected profits for an arbitrageur with bad news taking a
short position because good and bad qualities are equiprobable (i.e., P G−P0 =
P0 −P B).

Equation (13) shows the expression for expected profits from buying a short-
term asset. With probability λS(θ ), the orders reveal the information and the
price is fully informative. With probability 1−λS(θ ), the arbitrageur is able to
buy the asset at the unrevealed price. The next period, the arbitrageur obtains
the liquidation value of the asset plus the continuation value E[Ja(θ ′)|θ ] of
becoming active again in the following period.

Similarly, Equation (14) shows that the expression for expected profits from
buying a long-term asset consists of the expected discounted value next period,
minus the expected price paid for the asset. The value the next period U (θ )
in Equation (15) reflects the possibility that an asset will liquidate and yield
V G

L (probability q), or the position pays off at price P G because it is already
fully revealed in the current period (probability (1−q)λL(θ )). In both cases,
the arbitrageur will then become active again in the following period, obtaining
payoff E[Ja(θ ′)|θ ]. Alternatively, the position will continue to be held for at
least another period, yielding value E[Jl(θ ′)|θ ].

Because any locked-in arbitrageur can choose between exiting the position
or staying with it, the value function of a locked-in arbitrageur given θ equals

Jl(θ )=max(JE(θ ),JH (θ )), (16)

where JE(θ ) is the value of exiting the position and becoming active in the
next period, and JH (θ ) is the value of holding the position for at least one more
period:

JE(θ )=λL(θ )P G +(1−λL(θ ))P 0 +βE[Ja(θ ′)|θ ]; (17)

JH (θ )=βU (θ ). (18)

Equation (17) shows that an early liquidating arbitrageur is able to sell
the asset at the revealed price with probability λL(θ ) or sells the asset at the
unrevealed price with probability 1−λL(θ ). The arbitrageur will then become
active again in the following period, obtaining payoff E[Ja(θ ′)|θ ]. Equation (18)
shows that an arbitrageur holding the position for one more period obtains the
same value as an arbitrageur entering a new position in an unrevealed long-term
asset but, in contrast to Equation (14), without incurring the initial cost.

Similarly as in δ(θ ), associated withJl(θ ) is an exit functionη(θ ) for locked-in
arbitrageurs such that

η(θ )∈
⎧⎨
⎩

{0}, if JE(θ )<JH (θ );
{1}, if JE(θ )>JH (θ );
[0,1], otherwise.

(19)

2868

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/34/6/2857/5910559 by LU

ISS G
uido C

arli user on 25 M
ay 2021



[11:18 7/5/2021 RFS-OP-REVF200120.tex] Page: 2869 2857–2909

Hysteresis in Price Efficiency and Slow Moving Capital

3.5 Stationary equilibrium
We define stationary equilibrium in a standard manner.7

Definition 1. A stationary equilibrium is a collection of value functions Ja ,
Jl , JL, JS , JE , JH , capital allocation function δ, exit function η, price efficiency
functions λL,λS , law of motion for the mass of active arbitrageurs ξ such that

1. Ja , Jl , JL, JS , JE , JH , δ, η satisfy Equations (11)–(19).

2. λL and λS correspond to the probability that prices, which are determined
by Equation (5), reveal true asset values in markets L and S, respectively.

3. The law of motion for ξ satisfies Equation (10).

We focus on interior equilibria in the sense that JL(θ )=JS(θ ), so that active
arbitrageurs are indifferent between investing in markets L and S.

Lemma 2. In an interior equilibrium, η(θ )=0; it is never optimal to close out
the existing position early, that is, JH (θ )>JE(θ ).

Proof. See Appendix B. �
The intuition for Lemma 2 is as follows: at any point in time an asset’s price

either reflects full information or no information. If information is unrevealed,
trading on that information has the same profitability as trading on information
on any other asset. An arbitrageur could close a position before the information
is revealed and redeploy the capital the next trading round into another position
in another asset, but would end up holding a new position with at best the same
profitability one period later. Consequently, locked-in arbitrageurs stay inactive
until either the asset pays off, which occurs with exogenous probability q, or the
price fully reveals the asset value, which occurs with endogenous probability
λL(θ ).8

Therefore price efficiency in our model has a dual role. On the one hand,
it affects the profitability of new positions that arbitrageurs open, since it is
more profitable to enter a position in an inefficient market (“entry effect”). On
the other hand, it also affects their ability to close their positions profitably in
the long-term market (“exit effect”). As will be shown later in the paper, the
exit effect means that increased price efficiency is reinforced in two ways, first
by releasing locked-in capital, and second by inducing arbitrageurs to allocate
more capital to the long-term market.

We can now characterize price efficiency in financial markets as follows:

7 As is standard, the equilibrium is called “stationary” because all equilibrium functions are time invariant; however,
in general the endogenous variables will change over time. Note that “stationary” is not the same as the “steady
states” that we describe in Section 4.1.

8 The role of the assumptions in deriving this result is discussed in Appendix A.
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Lemma 3. In an interior equilibrium, the probability of information
revelation in market L equals

λL(θ )=
δ(θ )ξ

zL

, (20)

and the probability of information revelation in market S equals

λS(θ )=
(1−δ(θ ))ξ

zS

. (21)

Proof. See Appendix B. �

As Lemma 3 shows, for a fixed capital allocation δ, equilibrium price
efficiency in market h∈{L,S} increases in the amount of informed arbitrage
capital ξ (more active capital makes order flow more informative) and decreases
in the intensity of noise trading zL (more noise makes order flow less
informative). Of course, capital allocation δ(θ ) is a function of the state θ ,
so the overall dependency of price efficiency on active capital ξ and noise
trading intensity zL can only be determined in equilibrium.

Proposition 1. Under the conditions stated in Appendix C, there exists a
unique interior stationary equilibrium. In equilibrium, price efficiency in the
long-term marketλL(θ ) is monotone increasing in active capital ξ and monotone
decreasing in noise trading intensity zL.

Proof. See Appendix C. �

The proof of Proposition 1 shows that the technical conditions provided
in Appendix C ensure the contraction property of the equilibrium mapping,
implying the unique existence of interior stationary equilibrium. Consequently,
there exists a unique path of active capital given the initial level of active capital
and the sequence of shocks to noise trading intensity.

Proposition 1 also shows that equilibrium price efficiency in market L

increases in ξ and decreases in zL even when δ is endogenized. Active
arbitrageurs deploy their capital across markets in response to changes in ξ

and zL. This reaction by the arbitrageurs may either exacerbate or mitigate the
initial direct change in price efficiency in market L, but even in the latter case
does not completely offset it.

4. Main Results

Our model can display efficiency hysteresis; in other words, a transitory shock
can move the system to a different level of efficiency. Due to the stochastic
nature of our model, the level of price efficiency is constantly changing in
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response to the random arrival of shocks that change noise trading intensity.
Along a sample path where noise intensity happens to be unchanged, the level
of efficiency will converge to a “risky steady state” value.9 Hysteresis is a
consequence of having multiple risky steady states. To aid intuition, we initially
describe the steady states for a nonstochastic version of the model without
shocks to noise trading intensity; we then revert to studying the stochastic
model later in this section.

4.1 Steady state analysis
We start by considering the special case of the model under the assumption that
noise trading intensity zL is fixed at a constant level; that is, the Markov process
is degenerate (N =1). Then, the state variable is just the current level of active
capital (Equation (4)). An equilibrium maps the current period’s state variable
ξ to the next period’s state variable ξ ′, and a steady state is a fixed point of that
mapping.

For notational convenience, we use an asterisk notation to denote the values
in steady state. For example, ξ ∗ denotes the steady-state-level mass of active
arbitrageurs. At the steady state, the values of investing in new positions in
market S and market L in Equations (13) and (14) admit simple closed-form
solutions. Using Equation (7) together with the definitions of JS and JL in
Section 3.4 and Lemma 2, we can solve for J ∗

S and J ∗
L as follows:

J ∗
S =

(P G−P 0)(1−λ∗
S)

1−β
. (22)

J ∗
L =

(P G−P 0)(1−λ∗
L)[1−β(1−q)(1−λ∗

L)]

1−β
. (23)

The RHS in Equations (22) and (23) is the present value (discounted at the
discount factor β) of future per-period expected profits of investing in market
S and market L, respectively. These expressions illustrate the dual role of
price efficiency in our model. On the one hand, price efficiency determines the
profitability of investment opportunities: higher λ∗

L (and also λ∗
S) decreases the

probability of acquiring a new position at nonrevealing prices, thereby reducing
an arbitrageurs’ per-period expected profit. This is the standard effect of price
efficiency on speculative profits (the entry effect).

On the other hand, price efficiency determines the maturity of investment
opportunities in long-term assets: higher λ∗

L increases the likelihood of
profitably closing out a position earlier, thereby increasing arbitrageur’s per-
period expected profit. This effect is captured in Equation (23) by the term
1−β(1−q)(1−λ∗

L), which reflects the per-period probability (1−q)(1−λ∗
L)

of remaining locked in a trade in market L, weighted by the discount factor

9 See Coeurdacier, Rey, and Winant (2011) for the definition of risky steady state and a discussion.

2871

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/34/6/2857/5910559 by LU

ISS G
uido C

arli user on 25 M
ay 2021



[11:18 7/5/2021 RFS-OP-REVF200120.tex] Page: 2872 2857–2909

The Review of Financial Studies / v 34 n 6 2021

β. This is the exit effect of price efficiency on speculative profits; with higher
λ∗

L, an arbitrageur waits less before the arbitrageur’s private information is
incorporated in the price, and hence can cash in sooner at full value.

Equating the value functions in Equations (22) and (23) yields the following
relationship between λS and λL if the arbitrageurs are indifferent between
entering market S and market L:

λ∗
S −λ∗

L =β(1−q)(1−λ∗
L)2. (24)

The LHS of Equation (24) is the difference in probabilities of trading at a
fully revealing price in market S over market L. By trading in market L, an
arbitrageur gives up the certainty of being able to retrade in the next period;
for arbitrageurs to be indifferent between the two markets, assets in market L

must compensate this opportunity cost with a higher probability of trading at a
nonrevealing price in the current period.10

We can now derive the arbitrageurs’ indifference condition in terms of δ and
ξ by substituting Equations (20) and (21) into Equation (24):

zS −(1−δ∗)ξ ∗

zS

=

(
zL−δ∗ξ ∗

zL

)[
1−β(1−q)

(
zL−δ∗ξ ∗

zL

)]
. (IC)

For a fixed δ∗, a decrease in active arbitrage capital ξ ∗ decreases price efficiency
in both markets. This increases speculative profits in both markets through the
entry effect, but the exit effect makes market L less attractive. Hence, δ∗ must
adjust to restore arbitrageurs’ indifference condition across markets.11

As well as the indifference condition (IC) curve described above, we can
obtain the following capital movement (CM) curve from the law of motion for
active arbitrage capital in Equation (10) together with Equation (20) for λ∗

L:

ξ ∗ =(1−δ∗)ξ ∗ +(δ∗ξ ∗ +1−ξ ∗)

(
q +(1−q)

δ∗ξ ∗

zL

)
. (CM)

Note from Equation (CM) that an increase in the fraction of active
arbitrageurs that invest in market L has two opposing effects. Clearly, as δ∗
increases, more arbitrageurs enter market L, where they will become locked-
in. This tends to reduce the steady state value for active capital ξ ∗. But the exit

10 This trade-off between immediate profits and holding period durations is a standard feature in dynamic trading
models with multiple assets. The implication that long-term assets have a bigger mispricing wedge is noted in
Shleifer and Vishny (1990), Equation (6). Their model has fixed investment durations. Also, in Dow and Gorton
(1994) long-term assets are more mispriced than short-term assets, for similar reasons.

11 δ must increase (decrease) if the relative profitability of trading in market L is decreasing (increasing) in δ.
Differentiating Equation (IC) yields that δ must increase if

λ∗
L >1− 1

2β(1−q)

(
1+

zL

zS

)
. (25)

A sufficient condition for Equation (25) to hold is q ≥1− 1
2β

(
1+

zL
zS

)
, which is satisfied in our numerical

examples.
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effect works in the other direction; an increase in δ∗ improves price efficiency
in market L, which increases the rate at which arbitrage capital is released from
this market. This tends to increase ξ ∗. The exit effect is dominated for δ∗ small,
in which case ξ ∗ decreases in δ∗. However, the exit effect may dominate for δ∗
large.12 Intuitively, when there are more arbitrageurs in market L (and getting
locked-in), increasing the rate at which locked-in capital is released has a bigger
effect.

An interior steady state is found at the intersection of the IC curve and the
CM curve. We can show the following results about steady states under the
same conditions for Proposition 1:

Proposition 2. (i) There are either one or two stable steady states. (ii) There
exist constants 0<q <q̄ <1 and 0<β <β̄ <1 such that the steady state is
unique if q >q̄ and/or if β <β, and there are multiple steady states if q <q and

β >β̄ and 1> 3
4zS +zL.

Proof. See Appendix D. �

Figure 1 illustrates the steady-state values for ξ ∗ and δ∗ determined by the
intersection of the IC and CM curves for different values of the exogenous
parameter zL (the noise trading intensity in the long-term market). The steady
state is unique in panels A and B, whereas there are three steady states in
panel C, of which two are stable and one (for intermediate values of ξ ∗ and
δ∗) is unstable. Panel D illustrates the regions of values of zL where there is
uniqueness or multiplicity.

The multiplicity of steady states depends on the relative positions and
curvatures of the IC and CM curves, which are linked to the exit effect.
To see this, consider the limit as q →1, which corresponds to turning the
long-term market L into a short-term market. The IC curve approaches a
horizontal line, and the CM curve approaches a vertical line.13 Therefore, the
multiplicity disappears in the limit. On the other hand, the multiplicity may
return as the exit effect is more pronounced. When the long-term assets liquidate
infrequently (q low), arbitrageurs rely mainly on information revelation to exit
their positions. This creates a feedback effect between price efficiency and
active capital: an increase in price efficiency makes the long-term asset more
attractive to arbitrageurs through shorter investment duration and releases more
active capital from locked-in arbitrageurs. This self-reinforcing nature of price
efficiency leads to multiple steady states.

Propositions 1 and 2 imply the following comparison across steady states:

12 For example, see panels A–C of Figure 1. The bottom part of the CM curve is where the exit effect is dominated
(when δ∗ is small), and the top part is where the exit effect dominates (when δ∗ is large).

13 The limit of the IC curve is δ∗ =zL/(zS +zL), and the limit of the CM curve is ξ∗ =1.
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Figure 1
Steady states (nonstochastic model)
Parameter values common across all panels: q = .01,zS = .475,β = .95. The value for zL in the unique steady state
in panel A is zL = .6 and in panel B is zL = .7; in the multiple steady states in panel C: zL = .65.

Corollary 1. With multiple steady states, a steady state with a larger amount
of active capital features higher levels of price efficiency and trading volume
in market L (and lower levels of price efficiency and trading volume in market
S) compared to a steady state with a smaller amount of active capital.

Proof. See Appendix D. �

Corollary 1 shows that, since trading volume is monotone increasing in price
efficiency in our model, a larger amount of active capital, which increases price
efficiency, is also associated with higher trading volume. The corollary also
shows the opposite comparison across steady states for market S. Intuitively,
with a smaller amount of active capital, market L is less efficient and holding
periods of arbitrage positions are longer in this market, which leads more
arbitrageurs to invest in market S. This “flight-to-liquidity” pushes up price
efficiency and trading volume in market S compared to a steady state with a
larger amount of active capital.
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4.2 Analysis of the stochastic model
In this subsection, we return to analysis of the system in the general case with
stochastic shocks. In our numerical illustrations, we will consider the case where
one level of noise trading intensity is more likely than the others, and we refer to
this as the “normal” level and to any deviation to another level of noise trading
intensity as a “shock.” A price efficiency regime is the region associated with
the risky steady state to which the state variables would converge in the absence
of further shocks. The system displays hysteresis because a regime shift can
occur in which shocks cause the economy to enter the region of attraction to a
different risky steady state.

To shed light on the response to a shock to noise trading intensity in market
L, we obtain arbitrageurs’ indifference condition, which is the dynamic version
of Equation (24):

Lemma 4. In an interior equilibrium, price efficiency satisfies

1−λS(θ )=(1−λL(θ ))(1−β(1−q)(1−E[λL(θ ′)|θ ])). (26)

Proof. See Appendix B. �

Suppose that zL increases. To aid intuition, assume δ(θ ) does not react to this
shock, and consider the effect on both sides of Equation (26). By Equation (21),
the LHS of Equation (26) is unaffected, while the RHS is affected via two
channels. By Equation (20), λL(θ ) drops, making investment in market L more
attractive (the entry effect). But, by Equation (10), lower λL(θ ) implies that
ξ ′ also drops because current locked-in capital is released at a lower rate,
thereby decreasing λL(θ ′) and implying that market L is more inefficient in
the subsequent period. This leads to a longer investment duration, making
investment in market L less attractive (the exit effect).

The reaction of capital allocation δ(θ ) to the shock depends on the relative
strength of the entry and exit effects on the attractiveness of market L. δ(θ )
increases if the entry effect is stronger, thereby mitigating the initial effect of
the shock on price efficiency in market L. On the other hand, δ(θ ) decreases if
the exit effect is stronger. In this case, a larger fraction of active arbitrageurs
chooses market S, thus exacerbating the direct effect of the shock.

Figure 2 illustrates regimes and dynamics of the mass of active capital ξ .
Panel A plots the transition curves for ξ , which map the current state θ =(ξ,zL)
into the next period’s active capital ξ ′, that is,

ξ ′ =(1−δ(θ ))ξ +(δ(θ )ξ +1−ξ )

(
q +(1−q)

δ(θ )ξ

zL

)
. (27)

An intersection with the 45-degree line is a fixed point of the transition curve
such that ξ ′ =ξ . The intermediate (solid) curve displays three fixed points
corresponding to risky steady states, with the lowest and the highest being
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Time

A B

Figure 2
Regimes and evolution of the mass of active capital (ξ ) (stochastic model)

A, Transition curves for ξ for each of three possible values of zL ∈{zlow
L

,znormal
L

,z
high
L

}; circles correspond to

stable fixed points in the transition curve for zL =znormal
L

. B, Evolutionary paths of ξ under various initial values

and fixing zL =znormal
L

.

stable and the middle one unstable. The middle fixed point corresponds to the
threshold value of ξ , which separates the two regimes for ξ .

Panel B of Figure 2 illustrates these regions of attraction by plotting the
evolution, as implied by the intermediate curve in panel A, of the mass of active
capital for different initial values. The value of ξ converges to the highest risky
steady state for initial values of ξ above the threshold value (and, similarly, to
the lowest risky steady state for initial values below the threshold value.) Hence,
if the value of active capital ξ is close to a risky steady state, it converges back
to it after experiencing a small deviation due to shocks. However, the threshold
value represents a critical mass for ξ . Once ξ crosses the threshold value, then
it triggers a regime shift: ξ is set on a trajectory toward a different risky steady
state value.

Such a regime shift is further illustrated in panel A of Figure 2. The arrows
show the effects of shocks to zL from its normal level starting from the
risky steady state with high efficiency (and a large mass of active capital).
A temporary increase in zL pushes ξ downwards, but ξ reverts in subsequent
periods if zL goes back to its normal state. However, the figure illustrates that if
the higher level of noise trading persists for more periods (three periods for the
parameters in the figure), then ξ crosses the threshold value. After this happens,
ξ is set on a downward trajectory toward the risky steady state characterized
by low efficiency even if noise trading intensity zL reverts to its normal state.
The mass of active capital ξ cannot go back to the original high level until
a sequence of favorable shocks to zL arrives that pushes ξ back above the
critical threshold; this puts the dynamics of active capital back on the upward
trajectory. Our numerical simulation in the next subsection shows an example
of such transitions across price efficiency regimes.
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Figure 3
Transitional dynamics for a temporary shock under different shock durations
A short-duration shock (duration of eight periods, solid line) and a long-duration shock (duration of 13 periods,
dashed line) are given at t =0. Parameter values: q = .01,zL ∈{.6,.65,.7},zS = .475,β = .95. Transition probabilities
are given by ω11 = .46,ω12 = .54,ω13 =0,ω21 = .12,ω22 = .76,ω23 = .12,ω31 =0,ω32 = .5,ω33 = .5, where states 1,
2, and 3 correspond to low, normal, and high levels of zL, respectively.

4.3 Response to shocks
In this subsection, we provide some numerical examples of dynamic responses
to stochastic shocks to noise trading intensity to illustrate the interaction
between price efficiency and active capital. In the numerical examples, we
consider a temporary deviation of zL from its normal level to a higher level,
after which zL reverts to its normal level. Our examples illustrate how temporary
shocks can create long-lasting effects in both markets by causing hysteresis in
price efficiency.

Figure 3 shows responses to shocks to zL with two different durations. The
shock staring at t =0 leads to an immediate drop in price efficiency in market
L and therefore a decrease in ξ starting from the subsequent period. In cases
of both short- and long-duration shocks, arbitrageurs react by flowing out of
market L (i.e., δ decreases) as they anticipate lower efficiency and a higher
opportunity cost of being locked in this market going forward. Therefore,
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market L suffers further decreases in price efficiency, thereby triggering further
decreases in ξ until the shock is removed. In the case of a short-duration
shock, price efficiency is gradually restored once the shock is removed. This
replenishes active capital and the economy converges back to the initial risky
steady state. By contrast, the response to a longer-duration shock, which drags
the level of active capital below the critical threshold, has different dynamics
due to hysteresis. Instead of reverting back, the flow of arbitrageurs out of
market L and into market S persists after the shock is removed. This “flight-to-
liquidity” continues as the economy transitions from the high-efficiency regime
to the low-efficiency regime that features low values for δ and ξ .14

Figure 4 shows the responses to shocks to zL at two different initial levels of
active capital ξ (but with an identical duration of shocks). As in Figure 3, active
capital and price efficiency in market L decrease as a result of the shocks and the
ensuing capital flow out of market L. But the resilience of the market depends
on the current level of active capital. Intuitively, a reduction in price efficiency
in market L has a stronger effect when the mass of locked-in arbitrageurs is
relatively high (equivalently, when active capital ξ is relatively low). As shown
in Panel A, when the initial level of active capital is high relative to the critical
threshold, the market is resilient and the level of ξ reverts back to its level
in the risky steady state with high information efficiency. On the other hand,
with a relatively small initial amount of active capital, the market is fragile; the
outflow of arbitrageurs from market L persists after the shock is removed as
active capital crosses the critical threshold and the economy transitions to the
low-efficiency regime.

With the market experiencing the low-efficiency regime in both examples
(as illustrated in Figures 3 and 4), price efficiency in market L deteriorates
unambiguously in the aftermath of the shock because of two effects: (i) the
reduction in ξ , which is the stock of active capital, and (ii) the reduction in δ,
which is the flow of active capital to market L. On the other hand, these two
effects move in opposite directions in the case of market S. The shock in market
L leads to contagion to market S by reducing the level of active capital ξ , but
also leads to flight-to-liquidity by increasing the capital flow 1−δ to market
S. Therefore, the direction of change in λS depends on the magnitude of the
two effects. In these numerical examples (dashed lines in panel D in Figures 3
and 4), the flow effect (increase in 1−δ) dominates the level effect (decrease in
ξ ), thus, increasing price efficiency in market S instead of decreasing it. This
illustrates Corollary 1.

Along the equilibrium path, the market can move in and out of the low-
efficiency regime. We illustrate this in Figure 5, which shows a simulation
of the stochastic model. The occurrence of temporary shocks does not have
persistent effects in the first portion of the simulation. It is only when shocks

14 We call this flight-to-liquidity because capital is flowing to the short-term asset. We discuss this further in
Section 5.
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Figure 4
Transitional dynamics for a temporary shock under different levels of the initial active capital
A short-duration shock (duration of six periods) is given at t =0 with a higher active capital level (initial value
of ξ = .73, solid line) and a lower active capital level (initial value of ξ = .56, dashed line). Parameter values:
q = .01,zL ∈{.6,.65,.7},zS = .475,β = .95. Transition probabilities are given by ω11 = .46,ω12 = .54,ω13 =0,ω21 =
.12,ω22 = .76,ω23 = .12,ω31 =0,ω32 = .5,ω33 = .5, where states 1,2, and 3 correspond to low, normal, and high
levels of zL, respectively.

occur for several consecutive periods (around t =150 in the figure) that there
is a sustained flight-to-liquidity and the economy enters a different regime.
In the figure, the initial high-efficiency regime for market L (white area) is
followed by a low-efficiency regime (shaded area) after the occurrence of a
sequence of shocks in which noise trading intensity in market L increases. The
economy is therefore trapped in this regime for many periods even though noise
trading intensity has long since reverted to its normal level. It takes a sequence
of opposite shocks where noise trading intensity falls below its normal level
for the economy to revert to the high-efficiency regime for market L. Along
the transition, capital flows to market L, thereby improving price efficiency in
this market. As a result, locked-in capital is released at a faster rate, further
increasing price efficiency.

2879

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/34/6/2857/5910559 by LU

ISS G
uido C

arli user on 25 M
ay 2021



[11:18 7/5/2021 RFS-OP-REVF200120.tex] Page: 2880 2857–2909

The Review of Financial Studies / v 34 n 6 2021

A B

C D

Figure 5
Simulation
Parameter values: q = .01,zL ∈{.6,.65,.7},zS = .475,β = .95. Transition probabilities are given by ω11 = .46,ω12 =
.54,ω13 =0,ω21 = .12,ω22 = .76,ω23 = .12,ω31 =0,ω32 = .5,ω33 = .5, where states 1,2, and 3 correspond to low,
normal, and high levels of zL, respectively.

5. Discussion

5.1 Empirical proxy for active capital
In our model, the mass of active capital is the key state variable that determines
price efficiency and market resilience to shocks (Figure 4). The measurement
of active capital itself may be empirically challenging, but our model suggests
that the cross-sectional difference in price efficiency can be used as a proxy for
the level of active capital.15

15 Building a direct measure of active capital, which is the difference between total capital and locked-in capital, is
challenging because one has to find measures for both total capital and locked-in capital. One possibility is to use
the available capital of financial institutions (such as primary dealers’ market equity capital ratio, as in He, Kelly,
and Manela [2017]) as a proxy for active capital. Another possibility is to measure portfolio turnover (active
capital) and identify long-term portfolios (locked-in capital). For example, one could use transaction data (von
Beschwitz, Schmidt, and Lunghi 2019) or regulatory disclosure such as 13F filings (Koijen and Yogo 2019) to
estimate long-term holdings and portfolio turnover. A further challenge of using these alternative measures for our
purposes is that they only measure changes in the availability of capital and not changes in investment opportunities
(i.e., the degree of mispricing). Therefore, our suggested measure based on cross-sectional differences in price
efficiency seems the most practical choice for testing predictions of our model.
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In equilibrium, the cross-sectional difference in efficiency today is related
to the expectation of efficiency in the future. To see this, we can use recursive
substitution and Equation (26) to obtain the following equation:

λS,t −λL,t =E

⎡
⎣ ∞∑

τ=1

βτ (1−q)τ
τ−1∏
j=0

(
1−λL,t+j

)(
1−λS,t+τ

)⎤⎦, (28)

where λh,t is price efficiency in market h at time t . The LHS of Equation (28)
captures the difference in mispricing across markets in the current period,
and the RHS captures the opportunity cost arising from future inefficiency
in market L, which is the expected loss in future speculative profits because of
locked-in capital. Equation (28) has the following cross-sectional and dynamic
implications. First, there should be larger mispricing for long-term assets than
for short-term assets. Second, a large difference in mispricing between long-
term and short-term assets predicts slower convergence of price to fundamental
in the future in the long-term market.

As an empirically implementable measure, we propose the standard deviation
of price efficiency across assets, which does not require us to identify the cash
flow duration of assets:

Dt ≡Stdev(λi,t )=

√√√√ N∑
i=1

1

N

(
λi,t −

∑N
i=1λi,t

N

)2

, (29)

where λi,t is the price efficiency measure for asset i at time t and N is the
number assets. The idea behind this measure is that price efficiency is more
dispersed across assets when there is less active capital, since in our model
Dt is proportional to the difference in price efficiency between short-term and
long-term assets:

Dt =

√∫
i

1

m

(
λi,t −

∫
i
λi,t di

m

)2

di =
λS,t −λL,t

2
, (30)

where m≡∫
i
di is the total mass of traded assets. By Corollary 1, the difference

in price efficiency λS,t −λL,t is inversely related to active capital. Therefore, the
dispersion in efficiency Dt can serve as an empirical proxy for active capital.
Note that it is an inverse measure: dispersion in price efficiency is higher with
less active capital.

There are various empirical price efficiency/mispricing measures in
the literature. For example, there are measures based on anomalies in
terms of standard factor models (e.g., Stambaugh and Yuan 2017; von
Beschwitz, Schmidt, and Lunghi 2019), index future basis (e.g., Roll,
Schwartz, and Subrahmanyam 2007), nonrandom walk component in price
(e.g., Hasbrouck 1993), price delay (e.g., Hou and Moskowitz 2005;
Saffi and Sigurdsson 2011), return predictability from order imbalances
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(e.g., Chordia, Roll, and Subrahmanyam 2005), price deviation from valuation
models (e.g., Doukas, Kim, and Pantzalis 2010), and violations of parities (e.g.,
Rosenthal and Young 1990; Lee, Shleifer, and Thaler 1991).

These tests refer to mispricing with respect to public information. Our
model is a model of private information, but the boundary between public and
private information is blurred. Implementing a textbook arbitrage often requires
specialized knowledge. For example, a standard formula relates convertible
bond values to the underlying stock and bond, but implementing it requires
checking the covenants, having specialized knowledge about volatility, and
executing the trade cheaply. It is likely that only a few traders have this
knowledge. The same logic applies to any option.

In the following subsections, we offer our interpretations of empirical
phenomena based on our results. We also provide some testable empirical
predictions based on our theory using these proxies for active capital.

5.2 Slow-moving capital
There are several well-known episodes of crises such as the 1987 stock market
crash, the 1998 Long-Term Capital Management crisis, and the subprime
mortgage crisis of 2007–2009. These episodes are often characterized by a
delayed recovery of price efficiency in the aftermath (e.g., Mitchell, Pedersen,
and Pulvino 2007; Coval and Stafford 2007). Existing literature often explains
those crises as a result of shock amplifications that impair capital itself.16

In our model, a crisis can happen even in the absence of any reduction in
arbitrage capital itself—what matters is a reduction in active arbitrage capital.
Our simulations illustrate that all it takes to create a full-blown crisis is merely
a transient shock that causes arbitrage capital to get redeployed more slowly;
this can trigger a change in regime and have a long-lasting impact. At the core
of this argument lies the multiplicity of risky steady states; a sufficiently large
shock can disturb the system enough to put the state variable (active capital) on
another path. This mechanism allows us to give a distinctive prediction that the
market may be shifted toward low liquidity as a result of shocks. This prediction
matches empirical observations of long periods of inefficiency in the market.

Our results in Section 4.2 show that the level of active capital endogenously
follows a two-state regime-switching process in which the regime is determined
by the level of active capital (see Panel B of Figure 2). Furthermore, in our model
the probability of switching to a different regime depends on the level of active
capital. For example, Figure 4 shows that a switch from high- to low-price
efficiency regime as a result of shocks is less likely to occur for higher levels
of active capital. (Similarly, a switch from low to high efficiency is less likely
for lower levels of active capital.) Because the dispersion in price efficiency
Dt is an empirical proxy for the mass of active capital ξt , it should follow

16 For example, capital becomes increasingly less available through the channel of tightened collateral (e.g., Gromb
and Vayanos 2002) or margin constraints (e.g., Brunnermeier and Pedersen 2009).
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similar dynamics as ξt . This hypothesis can be tested with regime-switching
analysis (e.g., Hamilton 1989; Ang and Bekaert 2002; Watanabe and Watanabe
2008) and in particular with regime-switching models featuring time-varying

transition probabilities, as in Diebold, Lee, and Weinbach (1994).

Empirical prediction 1. (Price efficiency regimes) The dispersion of price
efficiency Dt follows a two-state regime-switching process with time-varying
transition probabilities that depend on the level of Dt .

Our results suggest that price efficiency is generally low for long-term assets
compared to short-term assets. Given this result, we can consider using average
price efficiency of an asset as a proxy for its payoff duration. For example, we
can sort assets into different groups (such as deciles) based on the average of
an empirical measure of price efficiency. In a regime with a smaller amount of
active capital, long-term assets (or assets with low average efficiency) would
suffer a longer period of price inefficiency than short-term assets.

Empirical prediction 2. (Slow-moving capital) A higher level of dispersion in
price efficiency Dt predicts slower convergence to fundamentals for long-term
assets (or low-average-efficiency assets.)

Furthermore, our model suggests increased price efficiency for short-term
assets in a regime with low price efficiency.

Empirical prediction 3. (Flight to liquidity) A higher level of dispersion in
price efficiency Dt predicts faster convergence to fundamentals for short-term
assets (or high-average-price-efficiency assets.)

Upon the arrival of a shock, arbitrageurs may optimally choose to invest
in the short-term (more liquid) market. Therefore, capital tends to flow out of
the long-term market, and this response becomes particularly persistent and
magnified if it involves a regime shift. These predictions are broadly consistent
with several patterns identified in the empirical literature in various markets.
Acharya, Amihud, and Bharath (2013) document the existence of liquid and
illiquid regimes for corporate bonds. In particular, they find that flight to
liquidity happens in conjunction with the illiquid regime, during which prices
of investment-grade bonds rise while prices of speculative-grade bonds fall.17

5.3 Welfare and policy implications
Our model may switch between efficient and inefficient regimes for long-term
assets. In the literature, price inefficiency and associated notions of illiquidity
are typically considered (formally or informally) to be welfare-reducing.

Prices that more accurately reflect information can be used to guide
investment or other long-term decisions such as investment decisions, so

17 Beber, Brandt, and Kavajecz (2007) and Ben-Rephael (2017) provide further evidence of flight to liquidity in
the Euro-area bond market and in the U.S. stock market, respectively.
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long-term information is socially valuable.18 On the other hand, short-term
information is likely determined by decisions that have already been made,
and is therefore not socially valuable. A classic example would be predicting
quarterly earnings shortly before their announcement.

This is in line with the discussion of “foreknowledge” versus “discovery” in
Hirshleifer (1971). Foreknowledge is finding out something that will become
known anyway. He argues that foreknowledge has low social value. Discovery
means finding out something that will not otherwise become known. If we fix
a given time horizon, discovery relates to information that will not otherwise
become known within that time horizon, such as the values of long-term assets
in our model. Foreknowledge relates to information about short-term assets,
because their values will become known anyway during the next period.

Hence, we can consider the efficiency of the long-term market as our welfare
criterion. We can compare the two regimes, for parameter values where the
model displays hysteresis, as illustrated in Figure 1. In one regime, the long-
term asset has plentiful arbitrage capital and is efficient. Hence this regime is
welfare-superior to the regime with low capital in the long-term market, judged
by the efficiency of the market for the long-term asset. Sometimes the drop in
efficiency in the long-term market is accompanied by a rise in efficiency in the
short-term market (see our discussion of Figure 5), but it still seems reasonable
to use efficiency in the long-term market to judge welfare. As noted previously,
information is likely to be more useful for guiding long-term decisions. In
addition, our simulations all show that a regime with much larger efficiency
in the long-term market has only slightly lower efficiency in the short-term
market. Thus, even if information had equal value in both markets, the switch
to the “better" regime in the long-term market has only small costs in the short-
term market because of diminishing returns: the short-term market is already
more efficient than the long-term market (Lemma 4).

6. Conclusion

In this paper, we have presented a dynamic stationary model of capital-
constrained informed trading with short-term and long-term assets. Price
efficiency plays a dual role in our model; the mispricing wedge not only
determines the profitability of new investment but also determines the speed at
which engaged arbitrage capital is released. This creates a feedback channel
between active capital and price inefficiency. There is a critical mass of active

18 There is a literature modelling asset price formation when the prices of the assets are themselves affected by
those decisions (e.g., Dow and Gorton 1994; Dow and Rahi 2003; Edmans, Goldstein, and Jiang 2015; Dow,
Goldstein, and Guembel 2017). However, asset prices may of course also guide other decisions even when the
asset prices are not affected by the decisions. Price efficiency has implications for both allocative efficiency and
risk sharing. The implications for risk sharing can go either way. Risk sharing is not the focus of our paper (for a
comprehensive analysis, see Dow and Rahi [2000]). Also, we do not consider the distribution of wealth between
informed and uninformed traders since this is outside the scope of standard welfare economics.
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capital separating different regimes. Active arbitrage capital falls below the
critical mass either if an adverse shock persists for long enough or if for a given
shock there is a sufficiently low initial level of active arbitrage capital. It may
take a long time to revert to an efficient regime from an inefficient regime;
it requires a sequence of beneficial shocks strong enough to push the mass
of active capital back above the critical mass. Our results shed light on why
capital moves slowly, how fast it moves, and which directions it moves. The
results provide empirical implications on cross-sectional and dynamic patterns
of price efficiency.

Our analysis has policy implications for government intervention following
crises such as the 2009 financial crisis or the COVID-19 crisis. A key
implication is that a market’s ability to recover from a shock is determined by the
level of active capital (rather than the total stock of capital) in the market. That is,
it is difficult for the market to recover once it transitions to the inefficient regime
even when the stock of capital itself is plentiful. This could be helped by policies
such as easing capital requirements in banks, or providing cheap financing to
financial intermediaries (such as the ECB’s “liquidity support” to the banking
system). Furthermore, the observable measures we have suggested such as
the cross-sectional dispersion in price efficiency could serve as indicators for
decision-making regarding market interventions. A possible extension of our
approach could be to study optimal policies using a policy rule that is within
the model.

Appendix A. Discussion of Assumptions and Modeling Choices

In this section, we provide further clarity on the role of our main assumptions.

A.1 Financial Assets
The assumption of a continuum of assets simplifies the analysis by reducing the number of state
variables. This is because the law of large numbers eliminates the randomness in payoffs as well as
the randomness in the revelation of fundamentals at the aggregate level (e.g., Guerrieri and Shimer
2014).

The assumption that good and bad qualities are equiprobable simplifies the analysis by making
profits from long and short positions symmetric (see Section 3.4, where we present arbitrageurs’
value functions).

Equation (1) has the intuitive interpretation that the present values are equalized, as mentioned
in the text. Equation (1) is simply a normalization of payoffs. If we drop this assumption, we just
have an extra parameter in the model, the ratio (V G

L −V B
L )/(V G

S −V B
S ), which does not affect our

results qualitatively. For expositional convenience, we keep Equation (1).
In our model, the mass of unrevealed assets in the long-term market is assumed equal to

one in each period. If we assume, instead, that unrevealed assets that become fully revealed are
not immediately replaced, the model requires an additional state variable, which is the mass of
unrevealed assets, and is considerably more complex to analyze.

A.2 Shocks
We want to study how our model responds to shocks. In practical terms, one of the most important
shocks to study is a shock to arbitrage capital. However, in our model, this locus for the shock would
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increase modeling complexity for two reasons. First, total capital would become an additional state
variable. Second, a shock to active capital can influence inferences and create asymmetries between
the long- and short-term markets. Intuitively, a shock that reduces the amount of capital is similar
to a shock that increases the amount of noise. This is because in each market efficiency equals
the ratio of active arbitrage capital that is deployed in that market to noise trading intensity in that
market (Lemma 3).

A.3 Capital Constraint
For tractability, our model features exogenous position limits for arbitrageurs (xa

i (t)∈{−1,0,1}).
This assumption has been used in the literature (e.g., Gârleanu and Pedersen 2003; Chamley 2007;
Goldstein and Guembel 2008; Goldstein, Ozdenoren, and Yuan 2013; Edmans, Goldstein, and
Jiang 2015).

Endogenizing position limits would not change our results qualitatively. For example, we can
consider an endogenous financial constraint similar to that of Dow and Han (2018) by assuming
that arbitrageurs have one unit of their own capital, receive a noisy signal on the payoff (instead
of a perfect signal), and collateralize their positions with riskless loans from outside financiers.
In that case, the position limit becomes xa

i (t)∈{−m,0,m}, where m is the present value of the
maximum loss from the position. This means that the mass of arbitrageurs’ total and active capital
in our model simply needs to be changed by a proportion of m.

A.4 Price Formation and Noise Trading
The assumption that noise trading is uniformly distributed with finite support simplifies the price
history to be either fully revealing or nonrevealing. This feature of the price process simplifies
arbitrageurs’ equilibrium strategies (Lemma 2) and preserves analytical tractability. Several papers
in the literature make similar assumptions on noise trade to yield equilibrium prices that are either
fully revealing or nonrevealing (e.g., Dow and Gorton 1994; Makinen and Ohl 2015).

We remark that whereas each asset price can only jump from nonrevealing to fully revealing,
price efficiency at the market level is a continuous variable. This is because, with a continuum of
assets, λh(θ ) is the fraction of assets in market h whose value is revealed by the trading process.
This is a measure of price efficiency in market h, and λh(θ ) is a continuous function of the state θ .19

The hysteresis result in our paper depends on arbitrageurs’ response to changes in price efficiency
at the market level, and not on the discrete nature of the equilibrium price process for individual
assets.

We have assumed that noise trading and asset payoffs are independent across assets. This
assumption implies that there is no cross-asset learning in this model. Similarly, because noise
trading is independent over time and there is no partial revelation, an unrevealed asset’s past order
flows are uninformative. Therefore, market makers do not learn anything about the payoff of an
unrevealed asset using other assets’ order flows or past order flows.

A.5 Early Liquidation
In our model, arbitragers never close out an existing position early (Lemma 2). In reality,
arbitrageurs may redeploy their capital by closing positions before prices have completely
converged (e.g., von Beschwitz, Schmidt, and Lunghi 2019). They face a complex dynamic
optimization problem reflecting the facts that prices may converge gradually and that different
trades have different expected profits per unit of capital. This channel is not open in our model,
which allows us to maintain tractability.

We have assumed that arbitragers who close out a position early can open a new position in
the next period. Even if arbitrageurs are allowed to open a new risky position simultaneously with

19 More technically, λh(θ ) is Lipschitz continuous; see the proof of Proposition 1 in Appendix C.
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closing another one, early liquidation does not dominate staying with the existing position. To see
this, notice that with this alternative assumption the payoff Ja(θ ) would replace βE[Ja(θ ′)|θ ] in
Equation (17), and therefore the RHS of Equation (B11) (see the proof of Lemma 2) would be
equal to zero. Furthermore, introducing an arbitrarily small transaction or information acquisition
cost would make early liquidation suboptimal.

Appendix B. Proofs for Section 3

B.1 Derivation of the Value Functions in Section 3.4
We first derive JS . Because good and bad qualities are equally likely, the continuation value of an
active arbitrageur making new investment in market S is given by

JS (θ )=
1

2
JS (θ;G)+

1

2
JS (θ;B), (B1)

where JS (θ;k) conditions on the quality of the chosen asset being k∈{G,B}. We have:

JS (θ;G)=−(λSP G +(1−λS )P 0)+β
[
V G

S +E[Ja(θ ′)|θ ]
]
;

JS (θ;B)=(λSP B +(1−λS )P 0)+β
[
−V B

S +E[Ja(θ ′)|θ ]
]
.

Because −(λSP G +(1−λS )P 0)+βV G
S =(λSP B +(1−λS )P 0)−βV B

S , it is immediate that
JS (θ;G)=JS (θ;B); thus, we find that JS (θ ) in Equation (B1) is equivalent to the one in
Equation (13).

We turn to the derivation ofJL. In a similar fashion, the continuation value of an active arbitrageur
making new investment in market L is given by

JL(θ )=
1

2
JL(θ;G)+

1

2
JL(θ;B), (B2)

where

JL(θ;G)=−(λLP G +(1−λL)P 0)+βU (θ;G);

JL(θ;B)=(λLP B +(1−λL)P 0)+βU (θ;B),
(B3)

and

U (θ;G)≡qV G
L +(1−q)λLP G +(1−(1−λL)(1−q))E[Ja(θ ′)|θ ]

+(1−λL)(1−q)E[Jl (θ
′;G)|θ ];

U (θ;B)≡−qV B
L −(1−q)λLP B +(1−(1−λL)(1−q))E[Ja(θ ′)|θ ]

+(1−λL)(1−q)E[Jl (θ
′;B)|θ ].

(B4)

We define Jl (θ;k) to be the continuation value of a locked-in arbitrageur holding an asset with
quality k in market L. Because a locked-in arbitrageur can either liquidate or keep holding onto
his existing position, we have

Jl (θ;k)=max(JE (θ;k),JH (θ;k)), (B5)

where

JE (θ;G)=λLP G +(1−λL)P 0 +βE[Ja(θ ′)|θ ];

JE (θ;B)=−λLP B −(1−λL)P 0 +βE[Ja(θ ′)|θ ];
JH (θ;k)=βU (θ;k).
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It is immediate that JE (θ;G)=JE (θ;B)+2P 0. Now, we conjecture that

U (θ;G)=U (θ;B)+
2P 0

β
. (B6)

Then, Equation (B6) implies that JH (θ;G)=JH (θ;B)+2P 0; therefore, using Equation (B5) we
have

Jl (θ;G)=Jl (θ;B)+2P 0. (B7)

Equations (B4) and (B7) imply that

U (θ;G)−U (θ;B)=q(V G
L +V B

L )+2(1−q)P 0. (B8)

Because P 0 = βq
1−β(1−q)

(
V G
L

+V B
L

2

)
, Equation (B8) implies that U (θ;G)=U (θ;B)+ 2P 0

β
, which

proves that the initial conjecture in Equation (B6) is indeed true.
Finally, Equation (B3) implies that JL(θ;G)−JL(θ;B)=−2P 0 +β[U (θ;G)−U (θ;B)], which

in turn implies that JL(θ;G)=JL(θ;B) due to Equation (B6). Therefore, we conclude that JL(θ )
in Equation (B2) is equivalent to the one in Equation (14). �
Proof of Lemma 1. Let Xa

i be the aggregate order flow of arbitrageurs for asset i. Suppose
that there are μi mass of arbitrageurs investing in asset i and zi is noise trading intensity for
asset i. Because arbitrageurs are risk-neutral and informed, their aggregate order flow is given by
Xa

i =μi if vi =V G
h , and Xa

i =−μi otherwise. Suppose that the market makers have an initial prior
belief of Pr(vi =V G

h )=pi in the beginning of the period, and also observe the aggregate order
flow Xi =Xa

i +ζi . Bayes’ theorem implies that the market makers’ posterior belief that vi =V G
h is

given by

p̂i (Xi )=
pif

i
X(Xi |G)

pif
i
X(Xi |G)+(1−pi )f i

X(Xi |B)
, (B9)

where f i
X(·|G) and f i

X(·|B) are the distribution of Xi given vi =V G
h and vi =V B

h , respectively.
Because ζi follows a uniform distribution on the interval [−zi ,zi ] and is independent across

periods, the market makers know that Xi follows a uniform distribution either on the interval [μi −
zi ,μi +zi ] if vi =V G

h , or on the interval [−μi −zi ,−μi +zi ] otherwise. Therefore, Equation (B9)
implies

p̂i (Xi )=

⎧⎨
⎩

0 if −μi −zi ≤Xi <μi −zi

pi if μi −zi ≤Xi ≤−μi +zi

1 if −μi +zi <Xi ≤μi +zi .

This shows that either the order flow fully reveals the asset’s liquidation value, that is, p̂i (Xi )∈{0,1},
or the order flow realization is uninformative, that is, p̂i (Xi )=pi . Hence, for an unrevealed asset
the history of past order flows is irrelevant; because good and bad realizations are equally likely,
pi = 1

2 in every period as long as the asset quality has not been revealed.
Therefore, the probability of revealing the true value of vi is given by

λi =Pr(p̂i (Xi )=0 or p̂i (Xi )=1)

=Pr(−μi −zi ≤Xi <μi −zi )+Pr(−μi +zi <Xi ≤μi +zi )=
μi

2zi

+
μi

2zi

=
μi

zi

.

�
Proof of Lemma 2. We can rewrite the value of holding the existing position JH (θ ) in Equation (18)
using Equations (11) and (14) as

JH (θ )=λL(θ )P G +(1−λL(θ ))P 0 +Ja(θ ). (B10)

Subtracting Equation (17) from Equation (B10) yields

JH (θ )−JE (θ )=Ja(θ )−βE[Ja(θ ′)|θ ], (B11)

where the RHS represents the opportunity cost from being out of the market for one period as a result
of premature liquidation of the position. By Equations (11) and (13), this opportunity cost equals
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−(λS (θ )P G +(1−λS (θ ))P 0)+βV G
S , which is strictly positive, where λS (θ )P G +(1−λS (θ ))P 0 is

the expected cost paid to invest in a new position in market S, and βV G
S is the present value of its

payoff. �

Proof of Lemma 3. In a market-wise symmetric equilibrium, all the future λi ’s are equalized
across assets in each market. Then, Equations (14) and (13) imply that the continuation value of
arbitrageurs making new investment is identical across all assets except for the expected cost of
acquiring the position in the current period, which is determined by current period λi ’s. If current
period λi ’s are equalized across assets in each market for all asset i in market h, then arbitrageurs
are indifferent among all the unrevealed assets in market h. Therefore, it is optimal to randomize
across all the unrevealed assets with uniform probability. This equilibrium strategy gives μi =δξ

for market L, and μi =(1−δ)ξ for market S. Therefore, we have

λL =min

(
δξ

zL

,1

)
, λS =min

(
(1−δ)ξ

zS

,1

)
. (B12)

Equation (26) implies that λL =1 if and only if λS =1. However, it is impossible to have λL =λS =1
because zL +zS >1 by assumption. Therefore, we have λL <1 and λS <1, which together with
Equation (B12) implies the desired results in Equations (20) and (21). �

Proof of Lemma 4. Using P G =βqV G
L /(1−β(1−q)), we can represent Equation (14) as

JL(θ )=
(
P G −P 0

)
(1−λL)+β(1−λL)(1−q)

(
E[Jl (θ

′)|θ ]−P G −E[Ja(θ ′)|θ ]
)

+βE[Ja(θ ′)|θ ].

Because Jl (θ )=JH (θ ) and Ja(θ )=JL(θ ) in an interior equilibrium, the above equation together
with Equation (B10) implies

JL(θ ) =
(
P G −P 0

)
(1−λL)

[
1−β(1−q)

(
1−E[λL(θ ′)|θ ]

)]
+βE[Ja(θ ′)|θ ]. (B13)

Similarly, using P G =βV G
S , we can represent Equation (13) as

JS (θ )=
(
P G −P 0

)
(1−λS )+βE[Ja(θ ′)|θ ]. (B14)

Because JS (θ )=JL(θ ) in an interior equilibrium, equating Equations (B13) and (B14) yields

(1−λS )=(1−λL)
[
1−β(1−q)

(
1−E[λL(θ ′)|θ ]

)]
,

which in turn implies the desired result in Equation (26). �

Appendix C. Proof of Proposition 1

In this section, we prove existence and uniqueness of stationary equilibrium of our model by
using the contraction property of equilibrium mapping for price efficiency in the class of Lipschitz
continuous functions.20

20 See Fajgelbaum, Schaal, and Taschereau-Dumouchel (2017) for a similar method of proof of existence and
uniqueness of stationary equilibrium of a different class of models. There are also other papers (e.g., Follmer,
Horst, and Kirman (2005), Acharya and Viswanathan (2011)) that use a related approach.
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C.1 Notation
Here we introduce some notations used in the appendices. We let Z≡{z1

L,z2
L,...,zN

L

}
be the set

of possible values for noise trading intensity in market L, and let z̄L ≡max
{
z1
L,z2

L,...,zN
L

}
and

zL ≡min
{
z1
L,z2

L,...,zN
L

}
. Let M be a constant such that M

∣∣zn
L −zm

L

∣∣≥ z̄L−zL for all n,m. We
denote ω

(
zn
L

∣∣zm
L

)≡ωmn for the transition probability from state m to n. We also let

α≡ max
z′
L

,zn
L

,zm
L

∈Z

∣∣ω( z′
L

∣∣zm
L

)−ω
(
z′
L

∣∣zn
L

)∣∣.
Note that α =0 in case noise trading intensity process zL is independently and identically distributed,
in which case ω

(
z′
L

∣∣zm
L

)−ω
(
z′
L

∣∣zn
L

)
=0 for all zn

L,zm
L ,z′

L ∈Z.

We let 
≡
[
ξ,1

]
be the interval of possible values for ξ where the lower bound ξ =

max
{

1− z̄L
1−√

q

1+
√

q
,0
}

is derived in Lemma E.6. We also let B (
×Z) be the set of bounded,

continuous functions λ : (ξ,zL)∈
×Z→R with the sup-norm ‖λ‖=supξ∈
,zL∈Z |λ(ξ,zL)|.
We can reformulate the indifference condition JL (θ )=JS (θ ) in terms of λL. Let λ : (ξ,zL)∈


×Z→R be the level of price efficiency in market L given the state variable θ =(ξ,zL). Using
Equations (20) and (21) to substitute out λS in Equation (26) and rearranging, we obtain the
following functional equation, which should be satisfied in an interior equilibrium:

λ(ξ,zL)=A(zL)ξ −B(zL)(1−λ(ξ,zL))

⎛
⎜⎝1−

∑
z′
L

∈Z

ω
(
z′
L

∣∣zL

)
λ(C(ξ,zL),z′

L)

⎞
⎟⎠, (C1)

where

A(zL)≡ 1

zS +zL

;

B(zL)≡ β(1−q)zS

zS +zL

;

C(ξ,zL)≡q +(1−q)ξ +(1−q)(1−ξ −zL)λ(ξ,zL)+(1−q)zL[λ(ξ,zL)]2

=1−(1−q)(1−λ(ξ,zL))(1−ξ +zLλ(ξ,zL)).

(C2)

Note that ξ ′ =C(ξ,zL) follows from the law of motion in Equation (10) and the definition for λL

in Equation (20).

C.2 Definitions and Assumptions
Here we introduce some assumptions needed to ensure the existence and uniqueness of stationary
equilibrium of our model, and also introduce other definitions related to those assumptions.

Definition C.2. Define the functions f,g : (u,zL)∈ [0,1]×Z→R and � :zL ∈Z→R as follows:

f (u,zL)≡max
{

1−q,(1−q)(zLu−1),
(

1−ξ
)
u,
(

1−ξ
)
u+(1−q)(1−zLu)

}
,

and
g(u,zL)≡max{f (u,zL),(1−q)zLu},

and

�(zL)≡
⎧⎨
⎩

zL
4

(
1+ z̄L

zL

1−√
q

1+
√

q

)2
, if z̄L

1−√
q

1+
√

q
≤zL;

z̄L
1−√

q

1+
√

q
, otherwise.
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Definition C.3. Define the constant values

λ̄a ≡ 1

β (1−q)2zS

;

λ̄b (zL)≡
1−β(1−q)+ zL

zS
+

√(
1−β(1−q)+ zL

zS

)2
+

4β(1−q)
(

1−ξ
)

zS

2β(1−q)
(

1−ξ
) ;

λ̄c (zL)≡
1−β(1−q)(2−q)+ zL

zS
+

√(
1−β(1−q)(2−q)+ zL

zS

)2
+4β(1−q)2 zL

zS

2β(1−q)2zL

.

Definition C.4. Let λ̃ξ ,λ̂ξ ,λ
∗
ξ be the constant values

λ̃ξ ≡min

{
λ̄a, min

zL∈Z
λ̄b (zL), min

zL∈Z
λ̄c (zL)

}
; (C3)

λ̂ξ ≡
1+
√

1+ 4z̄L

β(1−q)2zS

2z̄L

, (C4)

and

λ∗
ξ ≡ min

zL∈Z

1/B(zL)−2

(1−q)�(zL)
. (C5)

Let �ξ be the set

�ξ ≡
{

λξ ∈R
+
∣∣λξ ≥ max

zL∈Z
A(zL)

+B(zL)
[
1+f

(
λξ ,zL

)]
λξ ,λξ <λ̃ξ ,λξ ≤ λ̂ξ ,λξ <λ∗

ξ

}
,

and also let λ̄ξ be its infimum
λ̄ξ ≡ inf�ξ .

Assumption C.1. Parameters are chosen such that �ξ is nonempty.

Assumption C.2. Parameters are chosen such that 1>β (1−q)zS + z̄L
1−√

q

1+
√

q
.

Definition C.5. Let λ̄γ be the constant value

λ̄γ ≡
1− z̄L

1−√
q

1+
√

q
−β (1−q)zS

(zS + z̄L)β (1−q)zSαM
.

Let �z be the set

�z ≡
{

λz ∈R
+
∣∣λz

≥ max
zn
L

,zm
L

∈Z,n �=m
A(zn

L)A(zm
L )+B(zn

L)
[
λz (1+αM)+g

(
λz,z

n
L

)
λ̄ξ

]
,λz ≤ λ̄γ

}
,

and let λ̄z be its infimum
λ̄z ≡ inf�z.
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Assumption C.3. Parameters are chosen such that �z is nonempty and

λ̄ξ ≤min

⎧⎨
⎩ 1−αM

(1−q)z̄L
2
√

q

1+
√

q

,

1

(1−q)z̄L
2
√

q

1+
√

q

(
1

(zS + z̄L)λ̄z

−αM

)
,

1

β (1−q)2zS (zS + z̄L)λ̄z

⎫⎬
⎭.

It is easy to verify that Assumptions C.1, C.2, and C.3 can be jointly satisfied. For example,
consider the case when q is large enough, or zS is small enough, or β is small enough, and when
α is small enough.

From Equation (C1) we define the following mapping:

Definition C.6. Let T :λ∈B (
×Z)→B (
×Z) be the mapping

T λ(ξ,zL)≡max

⎧⎪⎨
⎪⎩0,A(zL)ξ −B(zL)(1−λ(ξ,zL))

×
⎛
⎜⎝1−

∑
z′
L

∈Z

ω
(
z′
L

∣∣zL

)
λ(C(ξ,zL),z′

L)

⎞
⎟⎠
⎫⎪⎬
⎪⎭.

Definition C.7. Let S ⊂B (
×Z) be the set of functions λ : (ξ,zL)∈
×Z→R that are bounded
below by zero and above by one, and Lipschitz continuous of modulus λ̄ξ in ξ .

Note that if T has a strictly positive fixed point in S, such a fixed point satisfies Equation (C1) by
construction.

Definition C.8. Let F0 ⊂S be the subset of functions in S that are monotone increasing in ξ .

We define that λ is decreasing in zL if λ(ξ,zn
L)−λ(ξ,zm

L )≤0 for all ξ ∈
 and zn
L,zm

L ∈Z such
that zn

L >zm
L , and also define that the rate of change in zL is bounded by some constant κ if for all

zn
L,zm

L ∈Z we have
sup
ξ∈


∣∣λ(ξ,zn
L)−λ(ξ,zm

L )
∣∣≤κ

∣∣zn
L −zm

L

∣∣.
Definition C.9. Let F1 ⊂F0 be the subset of functions in F0 that are decreasing in zL with the
rate of change bounded by λ̄z.

C.3 Proof of Proposition 1
Recall that λ denotes an element of the set of bounded continuous functions B (
×Z), whereas
λL denotes the equilibrium price efficiency function in market L, which is a fixed point of the
mapping T defined in Definition C.6. Now, we restate Proposition 1 with the full details:

Proposition 1. Under Assumptions C.1 and C.2, there exists a unique interior stationary
equilibrium. In equilibrium, price efficiency in the long-term market λL is monotone increasing in
active capital ξ . Under the additional Assumption C.3, λL is monotone decreasing in noise trading
intensity zL.
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Proof. The proof is divided in seven steps. First, we prove that in an interior equilibrium, price
efficiency in the long-term market λL must be monotone increasing in active capital ξ . Second, we
show that T maps F0 into F0. Third, we prove that F0 with the metric induced by the sup-norm
is a complete metric space. Fourth, we prove that T is a contraction on F0. By the contraction
mapping theorem (see, e.g., Theorem 3.2 in Stokey and Lucas [1996]), T has a unique fixed point
in F0. We denote this fixed point λL. Fifth, we show that under Assumption C.2, λL is strictly
positive and therefore satisfies Equation (C1); since λL is in F0, then it is increasing in ξ . Sixth,
we show that under Assumption C.3, λL is decreasing in zL. Seventh, we show that all equilibrium
functions in Definition 1 can be uniquely recovered given λL.

Step 1: Equilibrium λL is increasing in ξ .
Lemma E.8 shows that in an interior stationary equilibrium, price efficiency in the long-term market
λL must be increasing in active capital ξ . Therefore, we can confine the search for an equilibrium
among functions in F0.

Step 2: T maps F0 into F0.
Let λ∈F0. Then, λ is bounded between zero and one by assumption. Because B(zL)>0 and
A(zL)∈ (0,1), then it is immediate from Definition C.6 that T λ is bounded between zero and one.
Lemma E.9 shows that under Assumption C.1, T λ is Lipschitz continuous of modulus λ̄ξ in ξ for
every λ∈F0. Lemma E.10 shows that under Assumption C.1, T λ is monotone increasing in ξ for
every λ∈F0.

Step 3: F0 with metric induced by the sup-norm is a complete metric space.
F0 with metric induced by the sup-norm is a metric space. We must show it is complete. For this,
take a Cauchy sequence {λn} of functions in F0. Because F0 is a subset of B (
×Z) and B (
×Z)
is complete (see, e.g., Theorem 3.1 in Stokey and Lucas [1996]), {λn} converges to an element λ∗ in
B (
×Z). We must show λ∗ is in F0. Because each λn is bounded between zero and one, so is the
limit. Hence, λ∗ is bounded between zero and one. Next, we show λ∗ is monotone increasing in ξ.

Take ξ2 >ξ1 and ε>0, and let n0 be such that |λ∗ (ξ1,zL)−λn (ξ1,zL)|,|λ∗ (ξ2,zL)−λn (ξ2,zL)|<
ε/2 for all n≥n0. Then,

λn (ξ2,zL)−λ∗ (ξ2,zL) ≤ ε/2;
−(λn (ξ1,zL)−λ∗ (ξ1,zL)

) ≤ ε/2,

and therefore
0≤λn (ξ2,zL)−λn (ξ1,zL)≤ε+λ∗ (ξ2,zL)−λ∗ (ξ1,zL).

Because ε can be taken to be arbitrarily small, then it must be 0≤λ∗ (ξ2,zL)−λ∗ (ξ1,zL).
Finally, we have

∣∣λ∗ (ξ1,zL)−λ∗ (ξ2,zL)
∣∣= lim

n→∞|λn (ξ1,zL)−λn (ξ2,zL)|.

Because each term in the RHS is bounded by λ̄ξ |ξ1 −ξ2| by assumption, so is the limit. Hence, λ∗
is Lipschitz continuous with modulus λ̄ξ .

Step 4: T is a contraction mapping on F0.

Lemma E.11 shows that under Assumption C.1, the mapping T is a contraction on F0. Then, Steps
2–4 and the Contraction Mapping Theorem imply that T has a unique fixed point in F0.

Step 5: λL is strictly positive.
It is immediate to verify that Assumption C.2 together with Lemma E.6 implies that A(zL)ξ −
B(zL)>0, and therefore T λ>0 for all λ∈F0 and all (ξ,zL)∈
×Z. Because λL is a fixed
point of the T mapping, λL must be a strictly positive function and it satisfies Equation (C1) by
construction.
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Step 6: λL is decreasing in zL.
By Steps 2–4, F0 with metric induced by the sup-norm is a complete metric space and T :F0 →F0

is a contraction mapping with fixed-point λL. Since F1 is a closed subset of F0 and Lemmas E.12
and E.13 imply that, under Assumptions C.1 to C.3, T maps F1 into F1, then λL ∈F1 (see Corollary
1 in Stokey and Lucas [1996]). By construction, this is decreasing in noise trading intensity zL.

Step 7: There exists a unique interior stationary equilibrium.
The previous steps prove that in an interior equilibrium there exists a unique functionλL that satisfies
Equation (C1). By Lemma 3, given λL we can uniquely recover the capital allocation function δ as
well as market S price efficiency λS . In an in interior equilibrium Ja (θ )=JS (θ ), so Equation (13)
gives a functional equation for JS . Consider the mapping TS :J ∈B (
×Z)→B (
×Z) given by

TSJ (ξ,zL)=−(λS (ξ,zL)P G +(1−λS (ξ,zL))P 0)

+β

⎡
⎢⎣V G

S +
∑

z′
L

∈Z

ω
(
z′
L

∣∣zL

)
J (C(ξ,zL),z′

L)

⎤
⎥⎦.

It is immediate that TS satisfies Blackwell’s sufficient conditions for a contraction on B (
×Z).
Hence, given λS , TS has a unique fixed point JS ∈B (
×Z) satisfying Equation (13). Furthermore,
in an interior equilibrium Ja (θ )=JL (θ ) and Jl (θ )=JH (θ ), and therefore Equations (14) and (18)
give two functional equations for JL and JH . Given λL and Ja , the same argument as above shows
that Equations (14) and (18) have a unique solution. This uniquely pins down Ja , Jl , JL, JS , JE ,
JH in an interior equilibrium and concludes the proof. �

Appendix D. Proof of Proposition 2

Lemma D.5. When zL
zS

+1≥2β(1−q), the IC curve implicitly defines δ as an increasing function

of ξ .

Proof. Write the IC curve as F (δ,ξ )=0, where

F (δ,ξ )=
zS −(1−δ)ξ

zS

−
(

zL −δξ

zL

)[
1−β(1−q)

(
zL −δξ

zL

)]
.

We wish to show that ∂F (δ,ξ )
∂δ

>0 and ∂F (δ,ξ )
∂ξ

<0. We have:

∂F (δ,ξ )

∂ξ
=− (1−δ)

zS

+
δ

zL

−2
δ

zL

β(1−q)

(
zL −δξ

zL

)
=

1

ξ
(λL −λS −2λLβ(1−q)(1−λL)).

Because F (δ,ξ )=0 requires λL <λS , then ∂F (δ,ξ )
∂ξ

<0. Furthermore,

∂F (δ,ξ)

∂δ
=

ξ

zS

+
ξ

zL

−2
ξ

zL

β(1−q)

(
zL −δξ

zL

)
=

ξ

zL

(
zL

zS

+1−2β(1−q)(1−λL)

)
.

Clearly, ∂F (δ,ξ )
∂δ

>0 if zL
zS

+1−2β(1−q)≥0. �
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Proof of Proposition 2. Part (i): Since zL is constant, we denote Jj (θ )=Jj (ξ ) for j =L,S,f .
Using Equations (11)–(18) we can write, in steady state,

JL(ξ ) ≤ (P G −P 0)(1−λL)[1−β(1−q)(1−λL)]+βJa(ξ ); (D1)

JL(ξ ) ≥ (P G −P 0)(1−λL)[1−β(1−q)(1−λL)]+βJL(ξ ). (D2)

Suppose that Equation (IC) is not satisfied. Then, it is one of the two cases: either everyone
chooses market L or everyone chooses market S. In the former case, δ =1 and therefore λS =0
and λL ∈ (0,1]. By Equation (12), δ =1 is an equilibrium only if (JL(ξ )−JS (ξ ))

∣∣
λS=0 ≥0. Using

Equation (D1), we find

(JL(ξ )−JS (ξ ))
∣∣
λS=0 ≤−

(
P G −P 0

)[
λL +(1−λL)2β(1−q)

]
<0,

a contradiction.
In the latter case, we have δ =0 and therefore ξ =1, λL =0, and λS ∈ (0,1]. By Equation (12),

δ =0 is an equilibrium only if (JS (1)−JL(1))
∣∣
λL=0 ≥0. Using Equation (D2) and JS (1)=(P G −

P 0)(1−λS )/(1−β), we find

(JS (1)−JL(1))
∣∣
λL=0 ≤ P G −P 0

1−β

[
β(1−q)−min

{
1,

1

zS

}]
<0,

where the last inequality follows by β (1−q)zS <1, which is implied by Assumption C.2. We
conclude that there is no steady state in which δ∈{0,1}.

Next, we proceed to show that there exist either one or three interior steady states. We define
ξ̂ ≡δξ as the net mass of arbitrageurs who are investing in the long-term market at time t . Likewise,
we define δ̂≡δξ +1−ξ as the total mass of investors who are investing in the long-term market
at time t . Instead of the original problem stated in terms of δ and ξ , we can solve an equivalent
problem in terms of δ̂ and ξ̂ . Using the definition of ξ̂ and δ̂, we find

ξ = ξ̂ +1− δ̂, δ =
ξ̂

ξ̂ +1− δ̂
, λL =

ξ̂

zL

, λS =
1− δ̂

zS

. (D3)

Using Equation (D3), Equation (CM) can be represented as

δ̂ =
ξ̂

q +(1−q) ξ̂
zL

. (D4)

Likewise, Equation (IC) can be represented as

1− δ̂

zS

− ξ̂

zL

=β(1−q)

(
1− ξ̂

zL

)2

. (D5)

By substituting Equation (D4) into Equation (D5), we obtain

Q(ξ̂ )≡a0 +a1ξ̂ +a2 ξ̂
2 +a3ξ̂

3 =0,

where Q is a third-degree polynomial with coefficients

a0 ≡ q (zL)3 (1−(1−q)zSβ);
a1 ≡ −(zL)2 (zL +qzS −(1−q)(1+(3q−1)zSβ));
a2 ≡ −zLzS (1−q)(1+(3q−2)β);
a3 ≡ −(1−q)2zSβ.

Since β (1−q)zS <1, then a0 >0 for all q >0 and therefore Q(0)>0. Using the fact that zL +
zS >1, we can verify that Q(min{1,zL})<0, which implies that Q has either one or three real roots
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in the open interval of (0,min{1,zL}). Each of these roots is an interior steady-state equilibrium in
which δ∈ (0,1).

Next, we turn to the proof of stability. Proposition 1 implies as a special case that there exists a
unique equilibrium price efficiency function λL : [ξ,1]→R satisfying Definition C.6 at the given

level of zL. For notational convenience, we define Ĉ(ξ )≡C(ξ,zL) as the transition equation
Equation (C2) over the interval [ξ,1]. A solution for the equation ξ = Ĉ(ξ ) is a steady state, and the
previous result shows that there can be at most three such solutions on the interval [ξ,1]. We call

them ξ s ,ξm, and ξ l in the order of size. Lemma E.6 implies that Ĉ(ξ )≥ξ . Because B(zL)>0 and
A(zL)∈ (0,1), it is immediate from Definition C.6 that λL is strictly less than one, and therefore
Ĉ(1)<1. Because Ĉ is continuous and Ĉ(ξ )≥ξ and Ĉ(1)<1, Ĉ crosses the 45-degree line from

above in [ξ,1] at the largest steady state ξ l , so ξ l is a risky steady state. Likewise, Ĉ crosses the
45-degree line from above in [ξ,1] at the smallest steady state ξ s , implying that ξ s is also a risky

steady state. Therefore, if Ĉ crosses the 45-degree line three times in [ξ,1], then it must cross from
below at ξm, implying that ξm is an unstable point.

Part (ii): For q =1, we have that a2 =a3 =0, so Q has a unique root equal to x∗ =zL/(zL +zS ). For
β =0, we have that a0 >0,a2 <0,a3 =0, which implies that Q has at most one root in the [0,1]
interval. For q =0, we have that a0 =0 and Q has three roots x1,x2,x3 equal to

x1 = 0;

x2 =
zL

2β

(
2β−1−

√
1+

4β

zS

(1−zL −zS )

)
;

x3 =
zL

2β

(
2β−1+

√
1+

4β

zS

(1−zL −zS )

)
.

If 1> 3
4 zS +zL, then x2,x3 are real. It is immediate to see that 0<x2 <x3 <1 for β sufficiently

close to one. The claim in the proposition follows by continuity of the coefficients a0,a1,a2,a3 in
q and β and by continuous dependence of the roots of a polynomial on its coefficients. �

Proof of Corollary 1. Denote with ξ s , ξ l two steady-state values of active capital such that ξ l >ξs .
Proposition 1 implies as a special case that the price efficiency function λL

(
ξ l
)
>λL (ξ s ). Using

Equation (10) together with Equations (20) and (21) for λ∗
L and λ∗

S , we can express Equation (CM)
as follows:

zLλ∗
L =(1−zSλ∗

S )
(
q +(1−q)λ∗

L

)
. (D6)

Implicit differentiation of Equation (D6) shows that λ∗
S is decreasing in λ∗

L along the CM curve.
Because in any steady-state equilibrium the pair (λ∗

L,λ∗
S ) must satisfy Equation (D6) and λL

(
ξ l
)
>

λL (ξ s ), the reverse inequality must hold for λ∗
S across steady states.

Trading volume for asset i is defined in the standard way as the expectation of the absolute
value of the order flow, E [|Xi |]. Letting μi and zi denote the mass of arbitrageurs and noise
trading intensity in asset i, we have:

2E [|Xi |] = E [|μi +ζi |]+E [|−μi +ζi |]

=
∫ zi

−z

|μi +ζi | 1

2zi

dζi +
∫ zi

−z

|−μi +ζi | 1

2zi

dζi

=
zi

2

(
1+λ2

i

)
.

We conclude that trading volume in market h is monotonically increasing in λh. �
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Appendix E. Auxiliary Lemmas

Lemma E.6. ξ is bounded from below by

ξ =max

{
1− z̄L

1−√
q

1+
√

q
,0

}
.

Proof. Let ξ =q +ε be such that C(ξ,zL)≥ξ for all ξ ≥ξ and zL ∈Z. It is sufficient that, for all
λ∈ [0,1] and zL ∈Z,

1−(1−q)(1−λ)(1−(q +ε)+zLλ)≥q +ε,

or equivalently,

ε≤ (1−q)
(1−(1−λ)(1−q +zLλ))

1−(1−q)(1−λ)
.

Notice that the RHS is convex in λ and minimized at λ=
√

q

1+
√

q
, so

min
λ,zL∈Z

q +(1−q)
(1−(1−λ)(1−q +zLλ))

1−(1−q)(1−λ)
= min

zL∈Z
1−zL

1−√
q

1+
√

q
. �

Lemma E.7. We have

|(1−λ(ξ1,zL))(C(ξ2,zL)−C(ξ1,zL))|≤f
(
λ̄ξ ,zL

)|ξ2 −ξ1|,

where the function f is from Definition C.2.

Proof. We first obtain

C(ξ2,zL)−C(ξ1,zL)

=(1−q)

⎡
⎣(ξ2 −ξ1)+(1−q)(1−zL)(λ(ξ2,zL)−λ(ξ1,zL))

−(ξ2 −ξ1)λ(ξ2,zL)−ξ1(λ(ξ2,zL)−λ(ξ1,zL))
+zL

(
λ(ξ2,zL)2 −λ(ξ1,zL)2

)
⎤
⎦

=(1−q)

[
(1−λ(ξ2,zL))(ξ2 −ξ1)+

(λ(ξ2,zL)−λ(ξ1,zL))(1−ξ1 −zL (1−λ(ξ1,zL)−λ(ξ2,zL)))

]
.

The Lipschitz continuity and monotonicity of λ in ξ imply that there exists a value λξ ∈ [0,λ̄
ξ

]
such that

λ(ξ2,zL)−λ(ξ1,zL)=λξ (ξ2 −ξ1), (E1)

and therefore

C(ξ2,zL)−C(ξ1,zL)

=(1−q)

[
(1−λ(ξ2,zL))

+λξ (1−ξ1 −zL (1−λ(ξ1,zL)−λ(ξ2,zL)))

]
(ξ2 −ξ1)

=(1−q)

[
(1−λ(ξ2,zL))

(
1−λξ zL

)
+λξ (1−ξ1 +zLλ(ξ1,zL))

]
(ξ2 −ξ1).
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Hence, we can write

(1−λ(ξ1,zL))(C(ξ2,zL)−C(ξ1,zL))

=

[
(1−q)(1−λ(ξ1,zL))(1−λ(ξ2,zL))

(
1−λξ zL

)
+λξ (1−q)(1−λ(ξ1,zL))(1−ξ1 +zLλ(ξ1,zL))

]
(ξ2 −ξ1)

=
[
(1−q)(1−λ(ξ1,zL))(1−λ(ξ2,zL))

(
1−λξ zL

)
+λξ (1−C(ξ1,zL))

]
(ξ2 −ξ1),

(E2)

where in the second line we make use of Equation (C2). Using the fact that λξ ∈ [0,λ̄ξ ] and
λ(ξ,zL)∈ [0,1] and C(ξ1,zL)∈ [ξ,1], it is easy to verify that

|(1−q)(1−λ(ξ1,zL))(1−λ(ξ2,zL))
(
1−λξ zL

)
+λξ (1−C(ξ1,zL))|

≤max
{

(1−q),(1−q)
(
zLλ̄ξ −1

)
,
(

1−ξ
)
λ̄ξ ,

(
1−ξ

)
λ̄ξ +(1−q)

(
1−zLλ̄ξ

)}

=f
(
λ̄ξ ,zL

)
. �

Lemma E.8. If λ∈S is an interior fixed point of the mapping T in Definition C.6, then λ is
monotone increasing in ξ .

Proof. The proof is by contradiction. Assume there exist ξ2,ξ1 ∈
 such that ξ2 >ξ1 and
λ(ξ2,zL)−λ(ξ1,zL)<0 for some zL ∈Z. Since λ(ξ2,zL)−λ(ξ1,zL)<0, by Lipschitz continuity
of λ, there exists a value x ∈ [−λ̄ξ ,0) such that

λ(ξ2,zL)−λ(ξ1,zL)=x (ξ2 −ξ1). (E3)

We decompose
T λ(ξ2,zL)−T λ(ξ1,zL)=T1 +T2 +T3, (E4)

where

T1 =A(zL)(ξ2 −ξ1);

T2 =B(zL)[λ(ξ2,zL)−λ(ξ1,zL)]

⎛
⎜⎝1−

∑
z′
L

∈Z

ω
(
z′
L

∣∣zL

)
λ(C(ξ2,zL),z′

L)

⎞
⎟⎠;

T3 =B(zL)(1−λ(ξ1,zL))
∑

z′
L

∈Z

ω
(
z′
L

∣∣zL

)(
λ(C(ξ2,zL),z′

L)−λ(C(ξ1,zL),z′
L)
)
.

For some λ3 ∈ [0,1], we can write T2 as

T2 =B(zL)(1−λ3)x (ξ2 −ξ1).

By Lipschitz continuity of λ, there is some value y ∈ [−λ̄ξ ,λ̄ξ ] such that we can write T3 as

T3 =B(zL)(1−λ(ξ1,zL))(C(ξ2,zL)−C(ξ1,zL))y

=B(zL)

[
(1−q)(1−λ(ξ1,zL))(1−λ(ξ2,zL))(1−xzL)

+x (1−C(ξ1,zL))

]
y(ξ2 −ξ1),
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where for the second line we used Equation (E2) to simplify the term

(1−λ(ξ1,zL))(C(ξ2,zL)−C(ξ1,zL))

=[(1−q)(1−λ(ξ1,zL))(1−λ(ξ2,zL))(1−xzL)+x (1−C(ξ1,zL))](ξ2 −ξ1).

Combining the expressions for T1,T2,T3, we rewrite Equation (E4) as

T λ(ξ2,zL)−T λ(ξ1,zL)=H (x,λ1,λ2,λ3,ξ3,y)(ξ2 −ξ1), (E5)

where we define

H (x,λ1,λ2,λ3,ξ,y)=A(zL)+B(zL)(1−λ3)x

+B(zL)[(1−q)(1−λ1)(1−λ2)(1−xzL)+x (1−ξ3)]y.

For λ(ξ,zL) to be an interior equilibrium, λ(ξ,zL) must be a fixed point of the T mapping: the
RHS in Equation (E3) must be the same as RHS in Equation (E5). We will prove that x <H for all
y ∈ [−λ̄ξ ,λ̄ξ ] and (λ1,λ2,λ3)∈ [0,1]3 and ξ3 ∈ [ξ,1] and x ∈ [−λ̄ξ ,0). This will lead to the required
contradiction.

Since H is linear in y, then, for fixed values of (x,λ1,λ2,λ3,ξ3), H achieves its minimum either
at y =−λ̄ξ or at y = λ̄ξ . Furthermore, for all x <0, we have

H
(
x,λ1,λ2,λ3,ξ3,λ̄ξ

)≥A(zL)+B(zL)
[
1+ λ̄ξ

(
1−ξ

)]
x ≡H1 (x); (E6)

H
(
x,λ1,λ2,λ3,ξ3,−λ̄ξ

)≥A(zL)+B(zL)
[
x− λ̄ξ (1−q)(1−xzL)

]≡H2 (x). (E7)

It is therefore sufficient to prove that for all x ∈ [−λ̄ξ ,0),

x <min{H1 (x),H2 (x)}. (E8)

Using the definitions of H1,H2 in Equations (E6) and (E7), it is immediate to verify that H1 (0)>0
and H2 (0)≥0 if and only if λ̄ξ ≤ λ̄a , where λ̄a is defined in Definition C.3 Equation (C3). Since
H1,H2 are linear in x and 0≤min{H1 (0),H2 (0)}, a sufficient condition for (E8) to hold for all
x ∈ [−λ̄ξ ,0) is that

−λ̄ξ <min
{
H1
(−λ̄ξ

)
,H2

(−λ̄ξ

)}
. (E9)

Using the definitions of H1,H2 in Equations (E6) and (E7) yields that −λ̄ξ <H1
(−λ̄ξ

)
if and only

if λ̄ξ <λ̄b (zL), where λ̄b (zL) is defined in Definition C.3. Similarly, we obtain that −λ̄ξ <H2
(−λ̄ξ

)
if and only if λ̄ξ <λ̄c (zL), where λ̄c (zL) is defined in Definition C.3. Since λ̃ξ is defined in Equation
(C3) as the minimum of λ̄a,λ̄b and λ̄c over all zL ∈Z and λ̄ξ <λ̃ξ by Definition C.4, then (E9)
holds for all x ∈ [−λ̄ξ ,0) and zL ∈Z. This concludes the proof. �

Lemma E.9. Under Assumption C.1, T λ is Lipschitz continuous of modulus λ̄ξ in ξ for every
λ∈F0.

Proof. Take λ∈F0. We decompose

T λ(ξ2,zL)−T λ(ξ1,zL)=T1 +T2 +T3,

where

T1 =A(zL)(ξ2 −ξ1);

T2 =B(zL)[λ(ξ2,zL)−λ(ξ1,zL)]

⎛
⎜⎝1−

∑
z′
L

∈Z

ω
(
z′
L

∣∣zL

)
λ(C(ξ2,zL),z′

L)

⎞
⎟⎠;

T3 =B(zL)(1−λ(ξ1,zL))
∑

z′
L

∈Z

ω
(
z′
L

∣∣zL

)(
λ(C(ξ2,zL),z′

L)−λ(C(ξ1,zL),z′
L)
)
.
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First, it is immediate that |T1|≤A(zL)|ξ2 −ξ1|. Second, the Lipschitz continuity and monotonicity
of λ in ξ imply that there exists λξ0 ∈ [0,λ̄ξ ] such that λ(ξ2,zL)−λ(ξ1,zL)=λξ0 (ξ2 −ξ1). Because∑

z′
L

∈Z ω
(
z′
L

∣∣zL

)
λ(C(ξ2,zL),z′

L)≤1, we have

|T2|≤B(zL)λ̄ξ |ξ2 −ξ1|.
Again by the Lipschitz continuity and monotonicity of λ in ξ , there exist λξ1 ∈ [0,λ̄ξ ] such that

T3 =B(zL)(1−λ(ξ1,zL))(C(ξ2,zL)−C(ξ1,zL))λξ1 ,

and therefore,
|T3|≤B(zL)|(1−λ(ξ1,zL))(C(ξ2,zL)−C(ξ1,zL))|λ̄ξ .

By Lemma E.7, the previous inequality can be written as

|T3|≤B(zL)f
(
λ̄ξ ,zL

)
λ̄ξ |ξ2 −ξ1|.

Summing up terms, we get

|T λ(ξ2,zL)−T λ(ξ1,zL)|≤(A(zL)+B(zL)
[
1+f

(
λ̄ξ ,zL

)]
λ̄ξ

)|ξ2 −ξ1|.
Taking the maximum of the RHS over zL values yields that T λ is Lipschitz continuous of modulus
λ̄T in ξ, where

λ̄T = max
zL∈Z

A(zL)+B(zL)
[
1+f

(
λ̄ξ ,zL

)]
λ̄ξ

and the function f is as in Definition C.2. Under Assumption C.1, Definition C.4 implies that
λ̄ξ ≥ λ̄T . This concludes the proof. �

Lemma E.10. Under Assumption C.1, T λ is monotone increasing in ξ for every λ∈F0.

Proof. Take λ∈F0 and let ξ2 >ξ1. By the proof of Lemma E.9, there exist λξ0 ,λξ1 ∈ [0,λ̄ξ ] such
that

T λ(ξ2,zL)−T λ(ξ1,zL)

=

⎧⎨
⎩A(zL)+B(zL)

⎡
⎣
(

1−∑z′
L

∈Z ω
(
z′
L

∣∣zL

)
λ(C(ξ2,zL),z′

L)
)
λξ0

+
(1−λ(ξ1,zL))(C(ξ2,zL)−C(ξ1,zL))

(ξ2−ξ1) λξ1

⎤
⎦
⎫⎬
⎭(ξ2 −ξ1).

Hence, T λ is increasing in ξ if

A(zL)+B(zL)

[
(1−λ(ξ1,zL))(C(ξ2,zL)−C(ξ1,zL))

(ξ2 −ξ1)
λ̄ξ

]
≥0.

Using Equation (E2) in the proof of Lemma E.7, there exists some λξ ∈ [0,λ̄ξ ] such that the above
inequality is equivalent to

A(zL)+B(zL)

[
(1−q)(1−λ(ξ1,zL))(1−λ(ξ2,zL))

(
1−λξ zL

)
+λξ (1−C (ξ1,zL))

]
λ̄ξ ≥0,

which is satisfied if
H (λ̄ξ ,zL)≥0,

where

H (λ̄ξ ,zL)≡ min
λ1,λ2∈[0,1],x∈[0,1],λξ ∈[0,λ̄ξ ]

A(zL)+B(zL)

[
(1−q)(1−λ1)(1−λ2)
×(1−λξ zL

)
+λξ (1−x)

]
λ̄ξ .
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For λ̄ξ ≤1/zL, it is immediate that H (λ̄ξ ,zL) is positive. For λ̄ξ >1/zL, H (λ̄ξ ,zL) is positive if

A(zL)+B(zL)(1−q)
(
1− λ̄ξ zL

)
λ̄ξ ≥0,

or equivalently, if

λ̄ξ ≤
1+
√

1+ 4zL

β(1−q)2zS

2zL

.

Taking the minimum of the RHS over zL values in Z yields the expression for λ̂ξ in Definition C.4.
Under Assumption C.1, Definition C.4 implies that λ̄ξ ≤ λ̂ξ . This concludes the proof. �

Lemma E.11. Under Assumption C.1, the mapping T is a contraction on F0.

Proof. Take λ1,λ2 ∈F0. We decompose

T λ2(ξ,zL)−T λ1(ξ,zL)=T1 +T2 +T3,

where

T1 =B(zL)[λ2(ξ,zL)−λ1(ξ,zL)]

⎛
⎜⎝1−

∑
z′
L

∈Z

ω
(
z′
L

∣∣zL

)
λ2(C2(ξ,zL),z′

L)

⎞
⎟⎠;

T2 =B(zL)(1−λ1(ξ,zL))
∑

z′
L

∈Z

ω
(
z′
L

∣∣zL

)(
λ2(C1(ξ,zL),z′

L)−λ1(C1(ξ,zL),z′
L)
);

T3 =B(zL)(1−λ1(ξ,zL))
∑

z′
L

∈Z

ω
(
z′
L

∣∣zL

)(
λ2(C2(ξ,zL),z′

L)−λ2(C1(ξ,zL),z′
L)
)
.

First, we have

|T1|≤B(zL)

⎛
⎜⎝1−

∑
z′
L

∈Z

ω
(
z′
L

∣∣zL

)
λ2(C(ξ,zL),z′

L)

⎞
⎟⎠||λ2 −λ1||≤B(zL)||λ2 −λ1||.

Second, we have
|T2|≤B(zL)||λ2 −λ1||.

Third, using Equation (C2), we have

C2(ξ,zL)−C1(ξ,zL)

=(1−q)(λ2(ξ,zL)−λ1(ξ,zL))
[
1−ξ −zL (1−λ1(ξ,zL)−λ2(ξ,zL))

]
,

and therefore

|T3|≤B(zL)λ̄ξ (1−q)

×|(1−λ1(ξ,zL))(1−ξ −zL(1−λ1(ξ,zL)−λ2(ξ,zL)))|||λ2 −λ1||.
Let �(zL) be the value

�(zL)= max
λ1,λ2∈[0,1],ξ∈

[
ξ,1
]|(1−λ1)(1−ξ −zL(1−λ1 −λ2))|.
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It is immediate to verify that �(zL) is from Definition C.2. Therefore,

|T3|≤B(zL)λ̄ξ (1−q)�(zL)||λ2 −λ1||.
Summing up terms, we have

|T λ2(ξ,zL)−T λ1(ξ,zL)|≤B(zL)(2+ λ̄ξ (1−q)�(zL))||λ2 −λ1||.
Therefore, T is a contraction mapping if for all zL ∈Z,

B(zL)(2+ λ̄ξ (1−q)�(zL))<1,

or equivalently, if

λ̄ξ <λ̄∗
ξ = min

zL∈Z

1/B(zL)−2

(1−q)�(zL)
.

Under Assumption C.1, λ̄ξ <λ̄∗
ξ by Definition C.4. This concludes the proof. �

Lemma E.12. Under Assumptions C.1, C.2, and C.3, T λ is decreasing in zL for all λ∈F1.

Proof. Let zm
L >zn

L. The difference of T λ(ξ,zL) with respect to zL is given by

T λ(ξ,zn
L)−T λ(ξ,zm

L )

=(A(zn
L)−A(zm

L ))

⎛
⎜⎝ξ −β (1−q)zS (1−λ(ξ,zm

L ))

×
⎛
⎜⎝1−

∑
z′
L

∈Z

ω
(
z′
L

∣∣zm
L

)
λ(C(ξ,zm

L ),z′
L)

⎞
⎟⎠
⎞
⎟⎠

+B(zn
L)(λ(ξ,zn

L)−λ(ξ,zm
L ))

⎛
⎜⎝1−

∑
z′
L

∈Z

ω
(
z′
L

∣∣zm
L

)
λ(C(ξ,zm

L ),z′
L)

⎞
⎟⎠

+B(zn
L)(1−λ(ξ,zn

L))
∑

z′
L

∈Z

ω
(
z′
L

∣∣zn
L

)[
λ(C(ξ,zn

L),z′
L)−λ(C(ξ,zm

L ),z′
L)
]

+B(zn
L)(1−λ(ξ,zn

L))
∑

z′
L

∈Z

(
ω
(
z′
L

∣∣zn
L

)−ω
(
z′
L

∣∣zm
L

))
λ(C(ξ,zm

L ),z′
L).

We can simplify each line in the expression above as follows. First, using the definitions of A

and B, we can write

(A(zn
L)−A(zm

L ))ξ =A(zn
L)A(zm

L )ξ (zm
L −zn

L);
(A(zn

L)−A(zm
L ))β (1−q)zS =A(zn

L)B(zm
L )(zm

L −zn
L).

(E10)

Second, since λ is decreasing in zL, then, for any ξ ∈
, zm
L ,zn

L ∈Z there exists some λz ∈[0,λ̄z

]
,

which depends on ξ,zn
L,zm

L , such that,

λ(ξ,zn
L)−λ(ξ,zm

L )=λz

(
zm
L −zn

L

)
. (E11)
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Third, because λ is increasing and Lipschitz in ξ with modulus λ̄ξ , there exists some λξ ∈[0,λ̄ξ

]
,

which depends on ξ,zn
L,zm

L ,z′
L, such that

λ(C(ξ,zn
L),z′

L)−λ(C(ξ,zm
L ),z′

L)=λξ

(
C(ξ,zn

L)−C(ξ,zm
L )
)
. (E12)

Fourth, because λ is decreasing in zL, for all ξ ∈
 we have21

α
(
λ(ξ,z̄L)−λ(ξ,z

L
)
)

≤
∑

z′
L

∈Z

(
ω
(
z′
L

∣∣zn
L

)−ω
(
z′
L

∣∣zm
L

))
λ(ξ,z′

L)≤α
(
λ(ξ,z

L
)−λ(ξ,z̄L)

)
,

and furthermore, because the rate of change of λ in zL is bounded by λ̄z and M
∣∣zn

L −zm
L

∣∣≥ z̄L −z
L

by definition, then

λ(C(ξ,zm
L ),z

L
)−λ(C(ξ,zm

L ),z̄L)≤ λ̄z

(
z̄L −z

L

)≤ λ̄zM
∣∣zn

L −zm
L

∣∣.
Hence, the above inequalities imply that∑

z′
L

∈Z

(
ω
(
z′
L

∣∣zn
L

)−ω
(
z′
L

∣∣zm
L

))
λ(C(ξ,zm

L ),z′
L)

∈
[
−αMλ̄z

∣∣zn
L −zm

L

∣∣,αMλ̄z

∣∣zn
L −zm

L

∣∣].
(E13)

Using Equations (E10)–(E13) we can rewrite the difference of T λ(ξ,zL) with respect to zL as

T λ(ξ,zn
L)−T λ(ξ,zm

L )=�(ξ,zn
L,zm

L )(zm
L −zn

L), (E14)

where

�(ξ,zn
L,zm

L )=A(zn
L)A(zm

L )ξ −A(zn
L)B(zm

L )

×(1−λ(ξ,zm
L ))

⎛
⎜⎝1−

∑
z′
L

∈Z

ω
(
z′
L

∣∣zm
L

)
λ(C(ξ,zm

L ),z′
L)

⎞
⎟⎠

+B(zn
L)λz

⎛
⎜⎝1−

∑
z′
L

∈Z

ω
(
z′
L

∣∣zm
L

)
λ(C(ξ,zm

L ),z′
L)

⎞
⎟⎠

+B(zn
L)(1−λ(ξ,zn

L))

[
C(ξ,zn

L)−C(ξ,zm
L )

zm
L −zn

L

λξ +χ

]

for some λz ∈[0,λ̄z

]
, λξ ∈[0,λ̄ξ

]
, and χ ∈[−αMλ̄z,αMλ̄z

]
.

The difference of C(ξ,zL) with respect to zL can be written as

C(ξ,zn
L)−C(ξ,zm

L )

=(1−q)

[
(λ(ξ,zn

L)−λ(ξ,zm
L ))[1−ξ −zn

L(1−λ(ξ,zn
L)−λ(ξ,zm

L ))]
+λ(ξ,zm

L )(1−λ(ξ,zm
L ))
(
zm
L −zn

L

) ]

=(1−q)

[
λz[1−ξ −zn

L(1−λ(ξ,zn
L)−λ(ξ,zm

L ))]
+λ(ξ,zm

L )(1−λ(ξ,zm
L ))

](
zm
L −zn

L

)
,

(E15)

21 Recall the definition α≡max
zn
L

,zm
L

,z′
L

∈Z

∣∣ω( z′
L

∣∣zm
L

)−ω
(
z′
L

∣∣zn
L

)∣∣.
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where the second line makes use of Equation (E11). Using Equation (E15), we can write
Equation (E14) as

T λ(ξ,zn
L)−T λ(ξ,zm

L )=A(zn
L)A(zm

L )ξ (zm
L −zn

L)

+
(
B(zn

L)λz −A(zn
L)B(zm

L )(1−λ(ξ,zm
L ))
)

×
⎛
⎜⎝1−

∑
z′
L

∈Z

ω
(
z′
L

∣∣zm
L

)
λ(C(ξ,zm

L ),z′
L)

⎞
⎟⎠(zm

L −zn
L)

+B(zn
L)(1−λ(ξ,zn

L))

×
[

(1−q)

(
λz[1−ξ −zn

L(1−λ(ξ,zn
L)−λ(ξ,zm

L ))]
+λ(ξ,zm

L )(1−λ(ξ,zm
L ))

)
λξ +χ

]
(zm

L −zn
L).

Hence, we obtain that T λ is decreasing in zL if for all λ1,λ2,λ3 ∈ [0,1],ξ ∈ [ξ,1],λz ∈ [0,λ̄z],

λξ ∈ [0,λ̄ξ ]:

A(zn
L)A(zm

L )ξ +
(
B(zn

L)λz −A(zn
L)B(zm

L )(1−λ2)
)
(1−λ3)

+B(zn
L)(1−λ1)

[
(1−q)

[
λz[1−ξ −zn

L(1−λ1 −λ2)]

+ λ2 (1−λ2)]λξ −αMλ̄z

]≥0.

It is easy to verify that the LHS of the above inequality is minimized at λ1 =λ2 =0 for all λ3 ∈
[0,1],ξ ∈ [ξ,1],λz ∈ [0,λ̄z], λξ ∈ [0,λ̄ξ ], which leaves

A(zn
L)A(zm

L )ξ +
(
B(zn

L)λz −A(zn
L)B(zm

L )
)
(1−λ3)

+B(zn
L)
[
(1−q)λz

(
1−ξ −zn

L

)
λξ −αMλ̄z

] ≥0. (E16)

Next, it is immediate to check that the LHS of Equation (E16) is minimized at ξ =ξ for all λ3 ∈
[0,1],λz ∈ [0,λ̄z], λξ ∈ [0,λ̄ξ ] if the following condition on λ̄ξ holds:

λ̄ξ ≤ 1

(z̄L +zS )β (1−q)2zS λ̄z

. (E17)

Hence, if Equation (E17) holds, Equation (E16) is satisfied if

A(zn
L)A(zm

L )ξ +
(
B(zn

L)λz −A(zn
L)B(zm

L )
)
(1−λ3)

+B(zn
L)
[
(1−q)

(
1−ξ −zn

L

)
λzλξ −αMλ̄z

] ≥0.

Using the definitions of A,B, and ξ ≥1− z̄L
1−√

q

1+
√

q
, the above inequality can be rearranged as

1

zS +zm
L

(
1− z̄L

1−√
q

1+
√

q

)
+β (1−q)zS

⎡
⎢⎣

(
λz − 1

zS+zm
L

)
(1−λ3)

−(1−q)λzz̄L
2
√

q

1+
√

q
λξ −αMλ̄z

⎤
⎥⎦≥0.

Because the LHS is linear in λz, it is minimized either at λz =0 or λz = λ̄z. At λz =0, the LHS is
bounded from below by the value

1

zS +zm
L

(
1− z̄L

1−√
q

1+
√

q

)
−β (1−q)zS

(
1

zS +zm
L

+αMλ̄z

)
, (E18)
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and at λz = λ̄z the LHS is equal to

1

zS +zm
L

(
1− z̄L

1−√
q

1+
√

q

)
+β (1−q)zS

⎡
⎢⎣

(
λ̄z − 1

zS+zm
L

)
(1−λ3)

−λ̄z

(
(1−q)z̄L

2
√

q

1+
√

q
λ̄ξ +αM

)
⎤
⎥⎦. (E19)

It is immediate that Equation (E18) is positive if

λ̄z ≤
1− z̄L

1−√
q

1+
√

q
−β (1−q)zS

(zS + z̄L)β (1−q)zSαM
, (E20)

which is satisfied under Assumptions C.2 and C.3. For Equation (E19), we see that either λ̄z ≤
1

zS+zm
L

, in which case Equation (E19) is minimized at

1

zS +zm
L

⎡
⎣ 1− z̄L

1−√
q

1+
√

q
−β (1−q)zS

+β (1−q)zS

(
1−max

{
(1−q)z̄L

2
√

q

1+
√

q
λ̄ξ +αM,1

})
⎤
⎦, (E21)

which is positive under Assumption C.2 if

λ̄ξ ≤ 1−αM

(1−q)z̄L
2
√

q

1+
√

q

, (E22)

or λ̄z > 1
zS+zm

L
, in which case Equation (E19) is minimized at

1

zS + z̄L

⎡
⎣ 1− z̄L

1−√
q

1+
√

q
−β (1−q)zS

+β (1−q)zS

(
1−(zS + z̄L)λ̄z

(
(1−q)z̄L

2
√

q

1+
√

q
λ̄ξ +αM

))
⎤
⎦. (E23)

Under Assumption C.2, Equation (E23) is positive if

λ̄ξ ≤ 1

(1−q)z̄L
2
√

q

1+
√

q

(
1

(zS + z̄L)λ̄z

−αM

)
. (E24)

Putting together the bounds in Equations (E17), (E22), and (E24) gives the inequality in
Assumption C.3. �

Lemma E.13. Under Assumptions C.1, C.2, and C.3, the rate of change of T λ in zL is bounded
by λ̄z for all λ∈F1.

Proof. We bound the rate of change of T λ in z. Using Equation (E15) and the definition of C in
Equation (C2), we compute

(1−λ(ξ,zn
L))(C(ξ,zn

L)−C(ξ,zm
L ))

=(1−q)

[
λz(1−λ(ξ,zn

L))[1−ξ −zn
L(1−λ(ξ,zn

L)−λ(ξ,zm
L ))]

+λ(ξ,zm
L )(1−λ(ξ,zn

L))(1−λ(ξ,zm
L ))

](
zm
L −zn

L

)

=(1−q)

[
λz(1−λ(ξ,zn

L))(1−ξ +zn
Lλ(ξ,zn

L))
+
(
λ(ξ,zm

L )−zn
Lλz

)
(1−λ(ξ,zn

L))(1−λ(ξ,zm
L ))

](
zm
L −zn

L

)

=

[
λz(1−C(ξ,zn

L))
+(1−q)

(
λ(ξ,zm

L )−zn
Lλz

)
(1−λ(ξ,zn

L))(1−λ(ξ,zm
L ))

](
zm
L −zn

L

)
.

(E25)
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Using Equations (E14) and (E25), we have:∣∣T λ(ξ,zn
L)−T λ(ξ,zm

L )
∣∣

≤A(zn
L)A(zm

L )
∣∣zm

L −zn
L

∣∣+B(zn
L)λz

×
⎛
⎜⎝1−

∑
z′
L

∈Z

ω
(
z′
L

∣∣zm
L

)
λ(C(ξ,zm

L ),z′
L)

⎞
⎟⎠∣∣zm

L −zn
L

∣∣

+B(zn
L)G(ξ,zm

L ,zn
L)λξ

∣∣zm
L −zn

L

∣∣+B(zn
L)(1−λ(ξ,zn

L))λ̄zαM
∣∣zm

L −zn
L

∣∣
≤A(zn

L)A(zm
L )
∣∣zm

L −zn
L

∣∣+B(zn
L)
[
λ̄z (1+αM)+G(ξ,zm

L ,zn
L)λ̄ξ

]∣∣zm
L −zn

L

∣∣,
where

G(ξ,zm
L ,zn

L)

≡ ∣∣λz(1−C(ξ,zn
L))+(1−q)

[
λ(ξ,zm

L )−zn
Lλz

]
(1−λ(ξ,zn

L))(1−λ(ξ,zm
L ))
∣∣.

From Definition C.2, we have

g
(
λ̄z,z

n
L

)
=max

{
1−q,(1−q)zn

Lλ̄z,λ̄z

(
1−ξ

)
,λ̄z

(
1−ξ

)
+(1−q)

(
1−zn

Lλ̄z

)}
.

Then, it is immediate that

G(ξ,zm
L ,zn

L)≤g
(
λ̄z,z

n
L

)
.

Therefore, we have∣∣T λ(ξ,zn
L)−T λ(ξ,zm

L )
∣∣

≤[A(zn
L)A(zm

L )+B(zn
L)
(
λ̄z (1+αM)+g

(
λ̄z,z

n
L

)
λ̄ξ

)]∣∣zm
L −zn

L

∣∣.
Taking the maximum of this bound, we obtain that the rate of change of T λ in zL is bounded by
λ̄ζ , which we define as

λ̄ζ = max
zn
L

,zm
L

∈Z,n �=m
A(zn

L)A(zm
L )+B(zn

L)
[
λ̄z (1+αM)+g

(
λ̄z,z

n
L

)
λ̄ξ

]
.

Under Assumption C.3, Definition C.5 implies λ̄z ≤ λ̄ζ . This concludes the proof. �
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